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The color of a surface structured at the mesoscopic scale differs from the one of a flat surface of the same material 
because of the light interreflections taking place in the concavities of the surface, as well as shadowing effects. The 
color variation does not only arise in scattering materials, but also in absence of scattering, e.g. in metals and clear 
dielectrics, just as a consequence of multiple specular reflections between neighboring flat facets of the surface. In 
this paper, we investigate such color variation in the case of an infinitely long V-shaped groove, having in mind the 
visual appearance of a surface composed of many structures of that sort, all parallel and identical. We develop a full 
model of multiple specular reflections, accounting for ray position and orientation and polarization effects 
occurring at each reflection. We compare that situation with two approximate models, more usual and easier to 
compute, where light is assumed to remain unpolarized all along, or where the p- and s-polarized components are 
treated separately. Spectral reflectances were predicted for various materials and angles of cavities, under diffuse 
illumination. In most cases, the three models predict very similar bi-hemispherical reflectances, but the 
hemispherical-directional reflectances can vary noticeably in certain observation directions. This study might help 
achieving more physically-realistic rendering of dielectric or metallic ridged surfaces in computer graphics.  

http://dx.doi.org/10.1364/AO.99.099999 

1. INTRODUCTION
It is well known that the structure of surfaces and materials has a 
crucial influence on the way they reflect light, thereby on their 
appearance. A same material structured in different ways, under the 
form of layers or particles, or with different surface topologies, can 
yield very different appearance attributes, from bright to dark, glossy 
to matte or transparent to opaque. 

The influence of the material structure on appearance is mainly 
related to the concept of light scattering, which covers a wide variety of 
optical principles according to the size of the material structures and 
their arrangement. Regular or periodical structures whose 
characteristic size is comparable to the wavelength of light generate 
diffraction, and consequently colorations that are often called 
structural colors [1]. These effects have been widely explored in optics 
for more than one century, even though pseudo-periodical structures 
are still an active subject of investigation [see for example Ref. 2]. In 
opposition, irregular structures can generate both coherent and 
incoherent light scattering, which mainly results in a reorientation of 
light in space and depolarization. For these randomly microstructured 
materials, many models have also been proposed in the last century to 
predict their reflection and transmission properties according to the 
wavelength, polarization, orientation and position of light. Among the 
most famous theories for the light scattering by volumes, we can 

mention the Kubelka-Munk model initially introduced for paints [3], 
the Melamed model for pigments powders and slurries [4], the 
radiative transfer theory by Chandrasekhar [5], the multi-flux theory, 
the Van de Hulst works for scattering by particles [6], etc. Beckman and 
Spizzichino [7] modelled diffraction by surfaces presenting a random 
roughness. Torrance and Sparrow [8] modelled incoherent reflection 
by randomly organized microfacets. The most advanced models can 
take into account the multiple scattering between different facets [9-
11]. All these models form a large prediction toolbox for many visual 
attributes (color, translucency and opacity, gloss and matte aspect), 
applicable to a wide range of materials according to their optical 
properties (refractive indices, scattering and absorption coefficients…) 
and structural properties (surface roughness, particle size and 
concentration, layer thickness…), provided the material can be 
considered as homogeneous at the macro- or mesoscopic scale. 

For many kinds of surfaces or objects, the multiscale structure of the 
matter does have to be taken into account in order to obtain accurate 
optical models and appearance predictions. Describing scattering at 
multiple scales is generally done by combining different models. The 
classical literature in physics shows various examples. Mie scattering 
model is used to describe the light scattering by one particle, and a 
radiative transfer model is then used to describe the light transport 
through a volume. For stacks of diffusing layers, the Kubelka-Munk 



model describes the light scattering at the microscopic scale within 
each layer and predicts its reflectance and transmittance, after which 
the Kubelka layering model [12] or more advanced models describe 
the flux transfers at the mesoscopic scale between the different layers 
with their respective interfaces [13-14]. For halftone prints, the optical 
properties of the paper and the inks can be both modeled by the 
Kubelka-Munk theory [15], after which the scattering properties of the 
set of ink dots on top of the paper can be predicted by a number of 
models describing the flux transfers between the different inked and 
non-inked areas [16-19]. But models are still missing for a volume 
made of a 3D juxtaposition of small material elements with different 
optical properties (e.g., diffuse and transparent ink droplets used in 3D 
printing), and for a surface whose shape has been given a mesoscopic, 
possibly periodical structure. The present paper addresses the latter 
case, when the multiple reflections between the different areas of the 
non-flat surface give to the object specific reflection properties 
according to the illumination conditions. We specifically focus 
periodically ridged surfaces, which enable studying the role of the 
multiple reflections on their appearance while being rather simple to 
model with analytical equations. Modeling the appearance of this kind 
of surface is not only crucial for accurate renderers in computer 
graphics, but also important in prototyping and manufacturing.  

As shown in recent studies dedicated to ridged diffuse materials 
(ridges with V-profile) [20-21], the presence of periodical ridges 
modifies the color of the material in comparison to the case where its 
surface is flat, in different ways according to the ridge shape and the 
illumination conditions. Specifically, the color of the ridge surface is 
brighter and more saturated than the one of the flat surface under 
frontal collimated illumination, but it is darker and less saturated 
under diffuse illumination. Interreflection models taking explicitly into 
consideration the microscopic optical properties of the material and 
the mesoscopic structure of the surface are capable to predict these 
color variations, thus also allowing the prediction of the irradiance 
repartition at those two scales. 

Recently, three studies, almost concomitant, have addressed the case 
of nonscattering materials such as metals or clear dielectric materials 
[10, 11, 22]. They consider surfaces with periodical V-shaped structure 
as shown in Fig. 1, by assuming that the faces of the ridges are flat, 
behaving like mirrors. In these three studies, different, although similar 
analytical expressions are derived for the description of the 
interreflections, which are in this case a finite number of specular 
reflections depending on the orientation and position of the incident 
rays in respect to the illuminated ridges, as well as the angular aperture 
α of the ridges and the refractive index of the material. The first study, 
dedicated to computer graphics, presents an analytical model of Bi-
directional Reflectance Distribution Function (BRDF) for a distribution 
of specular V-grooves, the second study, also dedicated to computer 
graphics, extends the application to anisotropic rough surfaces. The 
third study, that we authored, focused on the angular radiance 
perceived from any angle when the surface is illuminated by a 
completely diffuse light [22]. The three models assume that incident 
light is unpolarized, as it often is, and remain unpolarized during the 
whole multiple reflection model. 

In the present paper, we propose to model rigorously the 
polarization of light along the multiple reflection process, in order to 
see to which extent the approximation made by the previous studies 
stands according to the considered material, metal or dielectric. We 
compare this rigorous model with two approximate models where 
light is assumed to remain unpolarized all along (first approximate 
model), or where the p- and s-polarized components are treated 
separately (second approximate model). Notice that we assume that the 
facets are large enough, e.g. larger than a few tens of micrometers, to 
prevent visible effects of diffraction, which would be inevitable with 
such periodically structured facets if they were smaller.  

 

Fig. 1 – Structured surface with parallel, periodical, and identical V-
shaped ridges of dihedral angle α. 

The paper is organized as follows: we firstly introduce in Section 2 
the formalization of multiple light reflections in a V-cavity with 
specular facets, and derive in Section 3 the analytical formulas 
describing the attenuation of the radiance along its path into the cavity, 
according to the three models. Then, in Section 4, we sum up the 
radiances in order to obtain hemispherical-directional and bi-
hemispherical reflectances. Predictions are made with various 
materials, including a dielectric, a semi-conductor, and metals, in order 
to study the influence of the surface shape (precisely the dihedral angle 
of the cavities) on their respective spectral reflectances and their color. 
The differences between the predictions given by the three models are 
compared. Section 5 finally draws the conclusions. 

2. MULTIPLE REFLECTIONS OF A LIGHT RAY IN A 
SPECULAR CAVITY 

First of all, we can notice from Fig. 1 that a light ray entering into one 
cavity is reflected, possibly multiple times, in this cavity only. 
Therefore, we can focus on the reflection of light by one cavity, and 
consider that all cavities reflect light in the same way. In this section, we 
analytically predict the amount and directions of light reflected by the 
cavity. The model is based on geometrical optics, and therefore ray 
tracing. It describes the path of light after the successive reflections 
across the structure, and takes into account the number of bounces. 

2.1 Geometry of the cavity 
Each cavity is formed by two specular facets of infinite length along the 
x axis of the 3D Cartesian space (Fig. 2). The width of both facets is set 
to unity (it could be equivalently any other value: the width has no 
impact on the interreflection phenomenon as shown in [20] and on the 
computation of the specular radiance that we want to perform here). 
The dihedral angle between the two facets is denoted as α. Hence, each 
facet forms a dihedral angle α/2 with the (xOz)-plane, where the z-axis 
corresponds to the normal of the average structured surface. 

 

 

Fig. 2 – 3D geometry of one cavity, and vector e representing the 
direction of illumination. 

 
 



The normal of facets 1 and 2 are respectively: 

     0,  cos α /2 , sin α /21N  (1) 

and  

     2 0, cos α /2 ,  sin α / 2 N  (2) 

The incident light ray is characterized by a unit radiance, and a unit 
vector e with spherical coordinates (θ, φ) represented in Fig. 2. In this 
Cartesian coordinate system, the vector e is given by: 

  sinθsinφ, sinθcosφ, cosθe   (3) 

2.2 Multiple reflections in a cavity 
Once a light ray enters into a cavity, it may undergo one or several 
successive reflections on the facets. After each reflection, the direction 
of the ray is modified according to Snell’s laws. However, in 
geometrical optics, it is classical to unfold the rays into their virtual 
prolongation, which is aligned with the incident ray, as shown on Fig. 
3a through the example of two rays.  

By using this representation for the cavity, the path of one ray is 
represented by a straight line crossing the successive images of the 
facets: after a reflection on facet 1, the ray reaches the image of facet 2 
(which forms an angle α with facet 1), then the image of facet 1 (which 
also forms an angle α with the image of facet 2), and so on. 

2.3 Number of reflections within the cavity 
The number of reflections within the cavity depends on both 

orientation and position of the ray. This is visible in Fig. 3, where the 
two rays are parallel (thus characterized by the same vector e) and 
strike facet 2 in different positions: one ray (represented in red; color 
version online) undergoes 4 reflections, whereas the other ray 
(represented in orange) undergoes 3 reflections. The ray light paths in 
broken straight lines are featured on Fig. 3b, in a projection onto the 
(y0z) plane of the 3D scene represented on Fig. 3a. In the (yOz) plane, 
the projection of vector e, denoted as  e , is:  

  sinθ , cosθ  e   (4) 

 
with 

  θ arctan tanθcosφ    (5) 

The number of reflections according to the orientation and position 
of the ray is computed according to the following geometrical 
considerations, in the (yOz) plane. The orientation of the ray is denoted 
by the angle θ  given by Eq. (4). Its position is described by the point P 
where the ray meets the line (AB) which joins the extremities of the 
facets in the (yOz) plane, drawn in Fig. 3c. This point P has the 
coordinates   ,cos α /2PP y . The ray meets the unit circle 
centered in point  0,0O   in two points: first in point

 sinβ ,cosβG GG  , then in point  sinβ ,cosβH HH  . 
Fig. 3 shows two examples for the same position Py  but two 

different orientations of the ray. In Fig. 3c, the ray strikes first facet 1, in 
Fig. 3d, it strikes first facet 2. The facet first met is determined by the 
following condition: if the meeting point   ,0QQ y  of the ray and the 
y-axis has a negative abscissa Qy , facet 1 is met first, otherwise, facet 2 
is met first. With some geometric calculations, we find that abscissa 

Qy  is given by 

 
 




sin β β

cosβ cosβ
H G

Q
G H

y  (6) 

where the angles βG  and βH  are computed as follows.  

 

Fig. 3 – a-b) Representations of two light rays parallel to the unit vector 
e, striking the cavity on facet 2 in different positions. b) 2D 
representation of the two same light rays projected onto the (yOz) 
vertical plane. The light path can be represented by a straight line 
joining the successive images of the facets. The projection of the real 
light paths in broken straight lines is also represented. Geometry for 
the calculation of the number of reflections, for a same position yP of 
the ray, and two different orientations. c-d) Geometry for the 
calculation of the number of reflections, for a same position yP of the 
ray, and two different orientations. 

 Since  

   α
2

sinβ , cosβ cosG P Gy  PG   

and e  are collinear, we have: 

  α
2

sinβ sinθ
det 0

cosβ cos cosθ
G P

G

y  
   

 (7) 

 



After some calculations, Eq. (7) can be written 

    α
2

sin β θ cosθ cos sinθG Py      (8) 

and by noticing that β θ π / 2G   , we obtain 

  α
2

β θ arcsin cosθ cos sinθG Py        (9) 

Likewise PH  and e  are collinear, and by following similar 
reasoning as above with point H in place of point G, therefore with 
angle βH  in place of βG , we obtain:  

    α
2

sin β θ cosθ cos sinθH Py      (10) 

This time, we can notice that β θ π /2H   , therefore we have: 

  α
2

β θ π arcsin cosθ cos sinθH Py         (11) 

Figs. 3c and 3d illustrates the fact that the ray strikes first facet 1 
when 0Qy  , and strikes first facet 2 when 0Qy . Finally, the 
number of reflections occurring after the first reflection of the first facet 
met is the number of times angle γ α / 2H   contains α. By 
introducing the angle γ H  defined as: 

 
   

2π β  when 0
γ

β  when 0
H Q

H
H Q

y

y
 (12) 

the total number of reflections is given by: 

 
γ 1

floor 1
α 2

Hm      
  (13) 

where symbol floor[…] denotes the integer part of the number in 
argument. 

3. RADIANCE ATTENUATION FOR ONE RAY 
Now that the number of light reflections has been determined, we can 
express the global attenuation undergone by the radiance attached to a 
given light ray. We first present a simple approximate model which 
considers that light remains unpolarized after all reflections. Then, 
present a second approximate model where we consider the s and p 
components separately, and we finally introduce the rigorous model 
where the evolution of the polarization state after each reflection is 
rigorously modeled.  

3.1  First approximate model: light remaining unpolarized 
Let’s consider an unpolarized light ray reflected on an interface 

between a first medium, in our case always air, and a second medium. 
It is coming from the first medium with a local incidence angle θi. The 
reflectance, denoted as  θiR , is the average of the squared modules 
of the Fresnel coefficients for the s (perpendicular) and p (parallel) 
components [23]: 

        
2 21

θ θ θ
2i P i S iR r r   (14) 

Then, by multiplying the successive Fresnel reflectances  θiR  
corresponding to the different reflections on facets, we obtain the total 
reflectance for one path of the light. Note that we ignore the part of the 
light transmitted into the material (we can consider that it is absorbed, 
as it is the case for metals and dark dielectrics). 

For each reflection, we compute the local incidence angle θi . It can 
be easily obtained through the dot product between vector e, which 
describes the direction of the ray, and the normal of the facet, or image 
of facet, on which the considered reflection occurs. 

The facets have the normal vectors N1 and N2 given by Eq. (1). The 
local incident angle for the first reflection depends on whether the ray 
first meets facet 1 or facet 2, therefore on the sign of the parameter Qy  
defined by Eq. (6): 

    
 

     

1

2

arccos   if  0
θ

arccos   if  0
Q

i
Q

y

y
1e N

e N
 (15) 

where symbol "  " denotes the dot product . 
The next reflections, if any, occur on images of facets whose normal 

vector are denoted as  
1

jN  or  
2

jN  if the first reflection occurs on facet 
1, respectively on facet 2. These normal vectors, for 1j  to the 
number of reflections m given by Eq. (13), are given by: 

     
  

1

0

cos α /2 1 α

sin α /2 1 α

j j

j

 
    
   

N  (16) 

and  

     
  

2

0

cos α /2 1 α

sin α / 2 1 α

j j

j

 
     
   

N  (17) 

and the local incident angle is given by 

  
  
  

   
 

1

2

arccos   if  0
θ

arccos   if  0

j
Qj

i j
Q

y

y

e N

e N
 (18) 

Finally, the global attenuation of the radiance according to its 
position Py  between  sin α /2  and  sin α /2 , and its 
orientation  θ,φ , is given by the reflectance: 

    



   
1

θ,φ, θ
m

j
P i

j

R y R   (19) 

Notice that according to the Helmholtz reciprocity principle, a ray 
following the same path within the cavity but in opposite direction 
would undergo exactly the same attenuation. Hence,  θ,φ, PR y  can 
denote the attenuation for the ray entering or exiting the cavity at the 
angle  θ,φ  through the position Py . 

3.2 Second approximate model: reflections of p and s 
polarization components, separately 

Regarding the polarization of light along the multiple reflection 
process within the cavity, we can think in a second approximate model, 
by assuming that the p and s polarized components of the incident light 
(half the total radiance for each one) follow the same multiple 
reflection process. We can formulate the approximation that they do it 
in parallel. The p-polarized light component remains p-polarized after 
each reflection (therefore vibrating alongside each successive 
incidence plane), and the s-polarized light component remains s-
polarized (therefore vibrating perpendicularly to each successive 
incidence plane). The model is similar to the first approximate model, 
except that Eq. (19) is computed twice, a first time by substituting the 
Fresnel reflectance for unpolarized light,  θ j

iR   , with the one for p-
polarized light,  θ j

p iR    , and a second time by substituting   θ j
iR    

with the Fresnel reflectance for s-polarized light,   θ j
s iR    . Two 

reflectance components are obtained,   θ,φ,p PR y  and  θ,φ,s PR y , 
and their average forms the total reflectance:. 

      θ,φ, θ,φ, θ,φ,P p P s PR y R y R y    (20) 

Mis en forme : Police :(Par défaut) Cambria, 9 pt, Non Gras,
Condensé de 0.4 pt

Supprimé: (7)

Mis en forme : Police :Cambria, 9 pt, Non Gras

Supprimé: (13)

Supprimé: (19)



3.3 Rigorous model: calculating the polarization of light along 
the multiple reflection process 

The multiple reflections occurring in the cavity bring to the fore the 
question of the polarization of the light. Even if the light source is 
incoherent and unpolarized, each reflection partially polarizes the light. 
It is necessary to rigorously develop the calculation describing the 
transformation of the polarization and more precisely of its two 
components s (perpendicular to the incidence plane on the current 
facet) and p (parallel to it). That enables us to better apprehend the 
influence of the polarization on the final reflectance of the surface. 

Let us compute the Fresnel reflection coefficients for both the s and p 
components of light. Remind that at each reflection on a facet, or 
equivalently, at each intersection of the light ray with the images of the 
V-cavity facets as shown on Fig. 3, the incidence plane changes. 

At first, the incident wave is represented by its electric field of 
amplitude 0E . Because it varies very rapidly in a random manner, this 
wave is said to be incoherent and unpolarized. It can be represented by 
the sum of two wave components which are temporally decorrelated, 
vibrating perpendicularly to each other, and of respective amplitudes 

0pE  and 0 sE  [23]. 
After their reflection on the first facet, we have: 

 1 1 0

1 1 0

p p p

s s s

E r E

E r E





  (21) 

which is more conveniently written in matrix form 

 
   

      
   

1 0

1 0

p p

s s

E E

E E1R   (22) 

where 

 
 

  
 

1

1

0

0
p

s

r

r1R   (23) 

The wave components of amplitude 1pE  and 1sE  are respectively 
vibrating parallel and perpendicular to the incidence plane 1, and then 
arrive on facet 2. Notice that the incidence plane related to facet 2, 
labeled 2, differs from the incidence plane 1 previously considered: 
they form a dihedral angle, denoted as 12ψ , that will be computed 
later. 

In this incidence plane 2, the new wave components of amplitude 
1pE   and 1sE  , whose vibration directions are respectively parallel and 

perpendicular to the new incidence plane, can be derived from the 
previous amplitudes 1pE  and 1sE , and are given by: 

 1 1 12 1 12

1 1 12 1 12

cosψ sinψ

sinψ cosψ
p p s

s p s

E E E

E E E

  
    

  (24) 

If we now use the following rotation matrix: 

   12 12
12

12 12

cosψ sinψ
ψ

sinψ cosψ
 

   
M   (25) 

and the diagonal matrix containing the Fresnel reflection coefficients: 

 
 

  
 

2
2

2

0

0
p

s

r

r
R   (26) 

we can then write 

    2 1 0
2 12 2 12 1

2 1 0

ψ ψp p p

s s s

E E E

E E E

     
           

     
R M R M R   (27) 

Iterating for the m reflections, we obtain: 

       0
1, 3 23 2 12 1

0

ψ ... ψ ψmp p
m m m

ms s

E E

E E

   
      

   
R M R M R M R   (28) 

We thus have 

 
 

  

0 0

0 0

mp p s

ms p s

E aE bE

E cE dE
  (29) 

where a, b, c, d are the resulting entries of the matrix product in (28). 
By using the fact that the two incident wave components of 

amplitudes 0pE  and 0 sE  are temporally decorrelated, we can write 
the flux mpF  and msF  attached to them as: 
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  (30) 

where 0F  , 0pF  and 0sF  are the fluxes attached to the incident wave 
and its p and s components. 

Finally, the total reflected flux is: 

       2 2 2 2 0

2m mp ms

F
F F F a b c d   (31) 

The last missing point in the description of the model is the 
computation of the dihedral angles 12ψ , 23ψ , etc. In the geometrical 
configuration we considered in Fig. 3, the direction of propagation of 
the ray in the whole reflection process is given by vector e, Eq. (3). It is 
contained in the incidence plane j (j = 1, …, m) with the normal  j

kN  of 
the facet k = 1, 2. Hence, the normal vector of the incidence plane j, 
denoted as jS , is collinear to  j

ke N  , where symbol   denotes the 
cross product operator: 

 
 

 

j
k

j j
k






e N
S

e N
  (32) 

Since the dihedral angle , 1ψ j j  between the two planes of incidence 
is also the angle between their normal vectors, we have: 

   , 1 1cosψ j j j jS S   (33) 

4. REFLECTANCE OF THE STRUCTURED SURFACE 
From the reflectance attached to each incident radiance within the 
cavity, we could derive the BRDF of a ridged surface whose topology 
would be made of a juxtaposition of identical V-cavities. However, as 
the surface contains only two facet orientations, the BRDF is not 
interesting to display: it is simply a sum of Dirac Delta functions, the 
number of these functions corresponding to the maximum number of 
reflections for the considered incident angle. Instead of BRDF, we 
propose to derive the directional-hemispherical reflectance of the 
structured surface for a directional illumination in a given direction (θ, 
φ) and a collection of light over the hemisphere. This reflectance is 
equal to the hemispherical-directional reflectance based on a 
geometric configuration where the illumination is Lambertian over the 
hemisphere, and the observer is placed in direction (θ, φ). Finally, by 
integrating the hemispherical-directional reflectance over the 
hemisphere, we obtain the bi-hemispherical reflectance [24].  

4.1 Directional-hemispherical reflectance 
Let us consider that the cavity is illuminated by directional light from 

a direction  θ,φ  over a band joining the two edges of the cavity, of 
length  2sin α/2  along the y axis and of width Δx along the x axis. We 
assume that same radiance iL  strikes each point of the band, which 
therefore receives a uniform irradiance 



 cosθΔωi iE L   (34) 

where Δω  denotes the small solid angle of illumination. Since the 
illuminated area is  2sin α /2 Δx , the incident flux on the band is 

 2sin α /2 Δi iF xE . On each elementary area within the band, 
centered around the position Py  and of size Δ Pxdy , the elementary 
flux is Δi P idF xdy E . 

The different elementary fluxes are reflected in various directions 
according to the facet that each one meets first and the number of 
reflections. By collecting the whole reflected flux, in practice with a 
measurement device equipped with an integrating sphere, the 
captured flux Fr is given by 

  
 

 


 

sin α 2

sin α 2
Δ θ,φ,

p
r i P Py

F xE R y dy   (35) 

The directional-hemispherical reflectance of the band associated 
with this orientation of the incident light, and by extension of the whole 
structured surface made of a juxtaposition of identical bands, is 
therefore: 
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 (36) 

4.2 Hemispherical-directional reflectance 
According to the reverse path principle, this directional-

hemispherical reflectance  θ,φR  is also the hemispherical-directional 
reflectance, corresponding to the measurement geometry where the 
surface is observed from the direction  θ,φ  and illuminated by 
Lambertian light. This geometry is the one that we will consider later in 
our simulations, as it is more consistent with practical observation 
scenarios, for example a grooved surface placed under a forecast sky 
and visually observed from any direction. The picture in Fig. 4 shows 
an example of a V-cavity made of gold with a dihedral angle of 45°, 
placed in an integrating sphere in order to have a Lambertian 
illumination, and observed from a direction (θ ≈ 30°, φ ≈ 90°) . On the 
top of the picture, near the edge of the cavity, we see the different 
images of each facet by the other one. As the number of reflections 
increase, the color looks darker and more saturated, an effect that will 
be studied in more details in the next sections. We also concretely see 
what was suggested by Fig. 3: the number of reflections varies 
according to the position into the cavity, along the y axis defined in Fig. 
2. The red rectangle drawn on the picture represents the area where 
the cavity can be considered as a cavity of infinite length, without edge 
effects. The hemispherical-directional reflectance given by Eq. (36), 
and its related color, correspond to the average reflectance, 
respectively average color, captured over this area.  

In this hemispherical-directional geometry, the specular reflections 
on the facets do not modify the geometrical extent of the rays; the 
radiance rL  perceived in one direction  θ,φ  is therefore: 

    θ,φ θ,φr iL R L  (37) 

It is possible to display the reflectance given by Eq. (36) according to 
the observation direction on a 2D map thanks to the Lambert 
azimuthal equal area projection [25]. To every direction  θ,φ  
corresponds a point  ,u v  within a disk of radius 2  whose 
coordinates are given by: 
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 (38) 

The advantage of this transformation is that it conserves the areas by 
mapping a portion of the hemisphere of a given area into a portion of 
the disk with same area, as illustrated by Fig. 5. 

 

Fig. 4 – RGB picture of a V-cavity made of gold with dihedral angle of 
45°, placed in an integrating sphere and observed from a direction 
(θ≈30°, φ≈90°). The red rectangle features the area where the cavity 
can be considered as a cavity of infinite length. 

 

Fig. 5 – When the hemisphere (a) is mapped onto a disk (b) according 
to the Lambert azimuthal equal area projection, any portion of the 
hemisphere with area A is mapped into a portion of the disk with same 
area A.   

In order to apprehend the change in reflectance and color due to the 
dihedral angle of cavity and/or the viewing angle, we computed the 
hemispherical-directional reflectance by using the rigorous model 
presented in Section 3.3 in Eq. (36), for each wavelength of the light 
from 380 nm to 730 nm in steps of 10 nm, for different materials, and 
different dihedral angle values: 180° (flat surface), 150°, 120°, 90°, 60° 
and 45°. The materials are opaque black glass (refractive index 
assumed to be 1.5), and materials whose spectral complex refractive 
indices have been found in the database refractiveindex.info: silicon, a 
semi-conductor with a behavior similar to a dielectric material in the 
visible range, and pure metals: gold, silver, copper, and aluminum. 
Silicon is an interesting study case; the real part of its refractive index in 
the visible spectrum is very high (around 4) and the imaginary part is 



low. Since the gap between the two polarizations for this material can 
be high, it is the best example to study the influence of the polarization 
model used on the reflectance of the structured surface. For each 
observation direction (i.e., each point in a map), the spectral reflectance 
computed is converted first into CIE 1931 XYZ tristimulus values by 
considering a D65 illuminant, then, for a better visualization, into 
L*a*b* color values by considering a perfectly white diffuser under the 
same illuminant as white reference for the chromatic adaptation. We 
finally convert these L*a*b* values into sRGB color values in order to 

obtain displayable digital images. The color maps thus generated are 
shown in Fig. 6. 

In addition to the color maps, we computed maps of the maximum 
number of reflections for each observation direction. In directions 
where the captured light has undergone one reflection, whatever its 
entrance position in the cavity is, the corresponding point of the map is 
colored in light grey (area labeled 1). Other colors for labels 2, 3 and 4 
are used when the captured light is subject to have undergone 2, 3 or 4 
reflections, respectively.  

 
 

 

Fig. 6 – Color maps of hemispherical-directional reflectance for various materials, obtained with different dihedral angle of cavity, represented with 
the Lambert azimuthal equal area projection. 



By observing the color maps related to the dielectric material (black 
glass) in Fig. 6, we can see that the reflectance is globally very weak, 
except at grazing incidence angles (periphery of the disks) when the 
cavity dihedral angle is large (reflectance reaches 1 at these grazing 
angles in the case of the flat surface, i.e., when α = 180°). This is 
coherent with the angular variation of the Fresnel reflectance. For 
other dihedral angles of the cavity, the highest reflectance peaks are 
located near the zones where the azimuthal angle φ π 2 , i.e., when 
the incident plane contains the x-axis, directions where the appearance 
relief of the cavity is the lowest. We can also distinguish some 
discontinuities in the maps, which correspond to the directions at 
which the number of reflections within the cavity is incremented by 
one. For example, on the map attached to an aperture of 90°, a central 
area is lighter than the rest of the graph: it corresponds to rays 
undergoing one reflection, whereas in the rest of the graphs, rays 
undergo two reflections. Since the Fresnel reflectance at non-grazing 
incidence angles is low (less than 0.05 under 45° of incidence), 
radiance trends rapidly toward zero as the number of reflections 
increases.  

For silicon, a semi-conductor with high refractive index but low 
extinction coefficient in the visible spectrum of light, the influence of 
the surface structure is similar as the one observed with black glass, 
but amplified. It looks darker in direction where the number of 
reflections in the cavity is the highest 

Metals have a higher reflectance that the previous materials due to a 
higher extinction coefficient. The influence of the surface structure, i.e., 
of the dihedral angle of cavity, is consequently lower than for black 
glass and silicon, but remains comparable. For gold, the Fresnel 
reflectance depends on the wavelength of light, being much higher for 
long wavelengths than for short wavelengths. This is at the origin of the 
intense yellow color displayed in case of small dihedral angles. The 
color variations concern the chroma rather than the lightness. 
Comparable effects are observed with copper. For achromatic metals 
with high reflectance, the attenuation of light at each reflection is low, 
and the number of reflections as a weak impact on the amount of light 
that exits the cavity: the reflectance is very high in every observation 
direction. This is especially true for silver, whose reflectance, near 1, 
looks constant over the whole hemisphere. With aluminum, an 
attentive observation of the maps allows to distinguish the effect of the 
dihedral angle of cavity, which is similar to the one observed with the 
other metals.  

4.3 Bi-hemispherical reflectance 
The bi-hemispherical reflectance corresponds to a measurement 

geometry where the sample is illuminated by Lambertian light, and the 
reflected light is collected all over the hemisphere. It is obtained by 
integrating over the hemisphere the angular reflectance given by Eq. 
(37).  

The irradiance on the structured surface is related to the radiance Li 
according to the equation: 

 
π 2 2π

θ 0 φ 0

cosθsinθ θ φ πi i iE L d d L
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     (39) 

and the flux reflected by a band of area  2sin α /2 Δx  on the surface 
is given by Eq. (35). The exitance is the sum of the reflected radiances 
expressed by Eq. (37): 
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Finally, the bi-hemispherical reflectance is given by: 

Table 1 – Bi-hemispherical reflectance at 550 nm (in %)  

Material 
Dihedral angle of the V-cavity 

45° 60° 90° 120° 150° 180° 
Black glass 0.9 1.6 3.5 5.5 7.3 8.6 
Silicon 11.0 16.6 26.4 34.0 36.8 37.3 
Gold 66.3 72.9 80.0 83.6 85.1 85.4 
Silver 89.7 92.1 94.4 95.6 96.0 96.1 
Copper 33.9 42.8 54.4 61.2 63.9 64.6 
Aluminum 77.1 82.2 87.4 90.2 91.0 90.9 
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which yields, according to Eqs. (36) and (37), 
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Using Eq. (42) with  θ ,φ ,r rR y  predicted by the rigorous model, 
we computed the spectral bi-hemispherical reflectances for the same 
dihedral angles of cavity and materials as in Fig. 6. The values at one 
wavelength, 550 nm, are presented in Table 1.  

The spectral bi-hemispherical reflectances obained for a chromatic 
metal, namely gold, are shown also in Fig. 7. Each of them is then 
converted into color values in the  CIE1976 L*a*b* color values. Its 
lightness L*, and chroma C* given by 

 2 2* * *C a b    (43) 

are represented by a point in a (L*, C*) diagram on the right of the 
figure. All these values and spectra confirm the tendencies featured by 
the color maps shown in Fig. 6: As the dihedral angle decreases, 
reflectances also decrease and the surface has a darker appearance, 
because of a higher number of light reflections in the cavity which 
provokes more successive attenuations. Of course, this attenuation 
effect is stronger at wavelengths for which the material is less reflective 
or more absorbing, which explains that cavities with a smaller dihedral 
angle exhibit a more chromatic color, chroma being generally 
correlated with the contrast between highest and smallest reflectance 
values in the visible spectrum of light. This is clearly visible in the 
picture of Fig. 4. 

Remind that the fact that the surface looks darker with smaller 
dihedral angles of cavity has nothing to do with shadowing or masking 

Fig. 7 – (a) Spectral bi-hemispherical reflectances of cavities with 
different dihedral angles made of gold, and (b) corresponding 
color components represented in the (L*, C*) diagram of the 
CIE1976 L*a*b* color space, predicted by the rigorous model for 
various of cavity.  



effects, widely used in models for light scattering by rough surfaces 
[26]. In our models, shadowing is implicitly but rigorously taken into 
account, as all possible ray paths are considered from their entrance to 
their exit of the cavity. With facets of reflectance 1, all rays would exit 
the cavity and the bi-hemispherical reflectance would be 1. 

4.4 Comparison between the rigorous and approximate models 
In order to see how much the approximate models presented in 

Sections 3.1 and 3.2 deviate from the rigorous model presented in 
Section 3.3, we propose to compare reflectance maps, colors and 
lightness values predicted by the three models, for a selection among 
the materials and dihedral angles of cavity considered in Fig. 6 by 
favoring the ones which exhibit the highest differences. In Fig. 8, the 
hemispherical-directional reflectance maps are shown for silicon at a 
dihedral angle of 45°. There is a sensible difference between the three 
models for observation in the direction of the ridge (φ around 90°): 
The rigorous model predicts a darker color in this case.  

In Fig. 9, the lightness profile of these three maps are compared 
along the horizontal diameter of the maps (observation perpendicular 
to the ridge, i.e., φ = 0 or π) and their vertical diameter (observation 
parallel to the ridge, i.e., φ = π/2 or 3π/2).  The difference between the 
rigorous model and its two approximate versions is once again well 
visible, except in graph a) where the rigorous and 2nd approximate 
model are equivalent when φ = 0: all multiple reflections occur in the 
same incidence plane, therefore the p-polarized component remains p-
polarized and the s-polarized component remains s-polarized all along 
the multiple reflection process. In graph b), however, the three models 
differ dramatically. The fact that the lightness approached 0 near 63° is 
due to the fact that light strikes a facet with an incident angle near the 
Brewster angle while being almost totally p-polarized, which can be 
rendered only by the rigorous model, not the approximate ones. 
Comparable differences are obtained with gold, as well as the other 
materials, although it is less visible (color maps not reproduced here).  

Finally, in Table 2, we compare, using the CIE1994 ΔE metric, the 
color differences associated with the bi-hemispherical reflectances 
predicted by the rigorous and the first approximate models for various 
materials, once again according to the dihedral angle of cavity. The 
color differences are very small for most materials, except at small 
dihedral angles of cavity for silicon, the material for which we have 
shown that the differences between the different models are the more 
pronounced. For this material, we also compare the colors issued from 
the rigorous and second approximate model, the deviations being even 
higher than the ones observed between the rigorous and first 
approximate model. For the other materials, and other angles for the 
silicon, the colorimetric distance CIE 1994 is lower than 1 unit, 
therefore almost non distinguishable.  

 

Fig. 8 – Color maps of the hemispherical-directional reflectance thanks 
to the Lambert azimuthal equal area projection, generated for silicon, 
with a dihedral angle of cavity of 45°, by using a) the rigorous model 
taking into account the polarization of light, b) the first approximate 
model assuming that light remains unpolarized after each reflection, 
and c) the second approximate model where the p- and s-components 
are assumed to be multiply reflected in parallel, independently from 
each other.  

 

Fig. 9 – Lightness L* in the CIE1976 L*a*b* color space computed from 
the spectral reflectance of silicon according to the rigorous model and 
the two approximate ones for a dihedral angle of cavity of 45°, as a 
function of the polar observation angle θ when (a) the observation 
direction is perpendicular to the ridges (φ = 0 or π) and (b) when it is 
parallel to the ridges (φ = π/2 or 3π/2).  These curves correspond to 
Lightness profiles of the (a) horizontal diameter and (b) vertical 
diameter of the maps shown in Fig. 8.   

Table 2 – CIE 1994 E values between colors corresponding to 
spectral reflectances predicted by different models 

Materiala 

 
Dihedral angle of the V-cavity 
45° 60° 90° 120° 150° 180° 

Black Glassa 0.28 1.01 1.02 0.24 0.37 0.00 
Golda 0.39 0.55 0.43 0.13 0.15 0.00 
Coppera 0.52 0.53 0.41 0.56 0.62 0.00 
Silicona 2.50 2.78 2.21 0.44 0.71 0.00 
Siliconb 6.16 4.62 2.72 1.19 1.45 0.00 

a ΔE value computed between the colors corresponding to the spectral 
reflectances predicted by the rigorous and 1st approximate models;  

b ΔE value computed between the colors corresponding to the spectral 
reflectances predicted by the rigorous and 2nd approximate models 

Table 3 – Bi-hemispherical reflectance (in %) at 550 nm of a V-
cavity made of silver  

Number of reflections 
taken into account 

Dihedral angle of the V-cavity 
45° 60° 90° 

1 13.4 24.3 54.7 
2 39.0 66.7 94.4 
3 71.3 92.1  
4 89.7   

 
We would like to insist on the necessity to take all reflections of light 

into account, even though it is often assumed, especially in computer 
graphics, that one or two reflections suffice to obtain accurate or 
physically realistic color rendering of a structured surface. Table 3 
illustrates the difference between bi-hemispherical reflectances that 
we would obtain by considering only the rays being reflected once 
within the cavity (the other rays being assumed to be blocked by a 



neighboring facets therefore ignored), or the rays being reflected once 
or twice, or rays reflected up to three times, and finally the rays 
reflected up to four times, for a cavity made of silver at 550 nm (n = 
0.1249 + i3.3391), silver being a highly reflective material. The 
reflectance values in the table are significant enough to show that it is 
crucial to account for all reflections, as recent studies in computer 
graphics also noticed, even though they used a model comparable to 
the one that we call here the first approximate model [10-11]. 

5. Conclusions 
In this paper, we analyzed the interreflections occurring in a structured 
surface made of parallel V-cavities, with flat and mirror-like faces 
under a Lambertian illumination. We proposed a model taking into 
account the exact number of light reflections occurring in the 
structures, in order to accurately predict the reflectance according to 
the observation angle. We showed that the type of material and the 
dihedral angle of the cavity have a strong impact on the predicted 
reflectance, in particular because of the number of light reflections and 
the successive attenuations undergone by each ray according to the 
Fresnel coefficients. This is especially true for surfaces presenting 
concavities with a small dihedral angle: their color is darker, and in the 
case of chromatic materials such as gold and copper, their chroma 
strongly increases, even dramatically in some observation directions.  

We also proposed to accurately take into account the change of 
incidence plane at each reflection of the light, inducing a change in its 
polarization, and therefore in the reflectance of the surface. We 
compared this rigorous approach with two approximate versions of 
the model which are simpler and faster to computed, the first one 
being comparable to the one that has been recently introduced in 
computer graphics [10-11]. The bi-hemispherical spectral reflectance 
computed with these three models are very close from each other, 
except for silicon when the dihedral angle of cavity is small. However, 
the hemispherical-directional reflectances predicted by the 
approximate models can deviate considerably from the one predicted 
by the rigorous model at some observation angles, especially those for 
which it is probable that light has become linearly polarized during its 
path before striking the next facet at an angle close to the Brewster 
angle.  

As ridged surfaces are rather frequent in manufacturing (e.g. 
brushed steel objects), there is an interest in predicting accurately their 
appearance, in particular with prototyping renderers developed by the 
computer graphics community. Although this study has focused on an 
ideal special kind of ridged surface, perfectly periodical, the influence of 
the number of reflections and the polarization of light stands for every 
patterned surface. Several extensions of this theoretical study would be 
needed to see to which extent the color variations predicted according 
to the observation angle remains similar when the ridged surfaces is 
made of cavities with different dihedral angles, or when their facets are 
imperfect mirrors (non-flat, slightly scattering…) We can expect that 
these color variations are smaller than the ones drawn in this study, 
but follow similar tendencies. Moreover, as scattering tends to 
decrease the effect of polarization of light, we can expect that the 
difference between the rigorous polarization model and the first 
approximate one, which assumes that light remains unpolarized 
during the multiple reflection process, decreases. But this still needs to 
be shown.  
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