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a b s t r a c t

The contribution of gear tooth flank surface micro-finish on gear noise has not yet been taken into
consideration. This paper is devoted to study the simultaneous effect of tooth roughness and lubricant
viscosity on automotive gear vibrations. The vibrations performances were evaluated on an instrumented
test rig under both dry and wet conditions. A non-destructive replication technique coupled to 3D optical
measures was used to acquire the flanks topographies, which were characterized using multiscale
decomposition. A three-dimensional finite element simulation of a helical gear was performed to assess
the micro-scales impact on gear noise. Numerical representative surfaces morphologies were introduced
into the simulation and compared through the transmission error calculation. Results have shown gear
noise dependence on tooth finishing processes.

1. Introduction

The development of electric motorizations has increased the
need for high quality gears in the automotive powertrain trans-
missions, as the combustion does not cover its noise anymore. It is
known that gear meshing produces vibrations due to load varia-
tions on the teeth. Indeed, this uneven load generates excitations
which are then transmitted to the environment and produce noise.
Nevertheless, manufacturing and assembly defects such as profile
[1,2], division [3–5] and eccentricity errors [6,7] amplify this
inherent behavior by enhancing the existing excitations. To
counteract this, teeth corrections such as crowning are put in
place. The industrial manufacturing of gear tooth of a powertrain
transmission for an automotive application involves an inter-
rupted multistage process to meet its mechanical contact func-
tionalities. It is a succession of several stages. First, the teeth are
cut using a continuous hobbing operation. The gears are then
shaved before carbonitriding. Shaving is a machining process in
which the tool”s cutting edges (Fig. 1a) come scraping the tooth
flanks during the meshing with the piece. It removes the fine
particles under high pressure [8]. Then, carbonitriding allows the
hardening of the surface, thus effectively reducing wear. Finally,
the gear surfaces are shot-peened. Manufacturing errors due to
these operations can then be reduced using a finishing operation
after shot-peening such as power honing or grinding. Both of these
are abrasive processes which use the meshing mechanics to

machine the flanks. The power honing process (Fig. 1b), uses an
internal gear with shafts that are not parallel to generate an
increased lateral friction on the flanks and thus correct tooth
surface irregularities [9]. Due to this, the load is important but
balanced along the width of the teeth; it leaves high residual
compressive stress [10]. Grinding (Fig. 1c) is very often used as a
worming gear in order to generate friction between the abrasive
surface and the workpiece. It is a process which has high cutting
speed and thus induces high temperatures [11], which can lead to
“grinding burns” on the flanks. The whole multi-step process
produces structured surfaces which need to be characterized on
the entire wavelength band.

In the automotive industry, vibratory tests are performed to
select the adequate gear finishing process. However, they can
quickly become time consuming and costly. Thus researchers have
turned to simulation and modeling in order to overcome these
limits. Nevertheless, these models take into account only geome-
trical deviations at the macro scale as it is required in manu-
facturing tooth specifications. They do not consider the finishing
process and its micro-scale signature. Studies by Åkerblom [13,14]
have focused on this effect without giving significant global con-
clusions but they showed that a higher roughness tends to
increase gear noise by 1 or 2 dB. Most developed models calculate
the gear transmission error, defined by Harris [15] and Welbourn
[16] as the deviation between the theoretical angular position of
the driven gear and its actual position. It has been shown to be the
main cause of gear noise [17–19]. However, the multi-step man-
ufacturing process can introduce micro-geometry deviations on
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the flanks which can alter the meshing contact and influence gear
noise [20].

In this paper, experimental and numerical studies were
developed to study the influence of tooth finishing process on gear
noise under dry and wet conditions. Three configurations are
considered: not finished, finished by power honing and finished by
grinding. The vibratory response of each gear as well as the
topographic teeth surface modification have been used as a sig-
nature of the considered finishing process before, during and after
the meshing tests. Furthermore, a finite element model of a helical
gear computing transmission error has been developed. Then the
relationship between the surface irregularities, the lubrication and
the generated vibrations were analyzed in a wide range of wave-
length from roughness to waviness.

2. Multiscale signature of each gear manufacturing step

In order to characterize the evolution of three-dimensional
texture on the flank surfaces at different instants of the vibratory
test, a nondestructive technique was used. Replicates of the pri-
mary shaft teeth were made with a silicone-based resin (Struers,
Repliset F1) which were then measured at the primitive diameter
with a white-light interferometer (WYKO 3300 NT –WLI), sampled
at 515�515 points with a 3.88 mm step in both x and y directions.
The form error component was removed from the acquired 3D
data using least squared approximation method based on a cubic
spline function.

Fig. 2 presents typical tooth surface morphology after each
manufacturing steps. It is interesting to note that facets appear on
the flanks after hobbing (Fig. 2a). The next step, the shaving
operation, introduces oriented grooves on the surface (Fig. 2b). The
carbonitriding does not significantly change the surface mor-
phology (Fig. 2c). This figure also shows that surface topography
(Fig. 2d) is very rough without the finishing step as compared to
the finished surfaces. The power honing generates surfaces with
curved grooves (Fig. 2e) while the grinding generates ones
oriented in the helix direction (Fig. 2f). These are due to the sig-
nificantly different process kinematics.

Fig. 3 gives the ISO 25178 standard parameters for each step.
The arithmetic average roughness (Sa) is decreasing during the
overall manufacturing processing. The roughness is very close
between the two finishing processes, grinding and power honing;
it is reinforced by their overlapping standard deviations. Three
functional parameters from the bearing curve were considered for
tooth surface characterization. The core roughness depth (Sk) is a
measure of the surface with the predominant peaks and valleys
removed. The Reduced Valley Depth (Svk) is a measure of the
valley depth below the core roughness while the Reduced Peak
Height (Spk) is a measure of the peak height above the core

roughness. In the same manner as the (Sa) parameter, they tend to
decrease as manufacturing advances. They also indicate that
grinded surfaces tend to have higher functional peaks and less
deep valleys. However the differences are not significant.

As the flanks were generated in several steps, the surfaces
irregularities occur on large wavelength band. Then, multi-scale
analysis based on the continuous wavelet transform was used to
identify the relationship between surface irregularities and the
functional finish product behavior [21–23]. Then, the surfaces
were decomposed in the profile direction of the teeth, using
Morlet wavelet function. The multiscale roughness spectra, called
SMa, were then calculated [24,25]. It represents the arithmetic
average roughness computed at each scale of the surface, and thus
at each wavelength. From there, the Multiscale Process Signature
(MPS) can be computed with the relative difference between the
initial surface SMa and the final one:

MPS ¼ SMafinal�SMainitial

SMafinal
ð1Þ

Fig. 4 shows the process signature of each manufacturing step,
which is the relative difference of the SMa before and after the
considered processing step. It demonstrates clearly that the
shaving process introduces a high roughness on the facets made
on the flanks by the hobbing tool (Fig. 2a). Indeed, while a
representative surface after hobbing is very rough, the roughness
inside these facets is very low. The carbonitriding operation dilates
the surface and offers a small but significant increase of the
amplitude in the waviness scales, superior to 0.2 mm. After that,
the craters left by the shot peening operation largely increase the
amplitude in the roughness scales, while leaving the waviness
ones intact. In the end, the hard finishing operations correct the
irregularities of the preceding steps at all scales. Furthermore, it
can be noted that there is a difference between the two finishing
processes: the grinding operation leaves higher waviness ampli-
tudes on the flanks than the power honing step and reversely in
the roughness scales. In the end, the finishing operation erases the
irregularities left by the preceding steps on all scales.

3. Experimental vibratory tests on single stage gears

An instrumented low-powered vibratory testing rig for a
single-stage gear was developed in order to test the gears, as
shown in Fig. 5 [12]. The primary shaft is driven by a 2.4 kW
asynchronous motor while a resisting load is applied by a 2.1 kW
DC machine linked to a 4 kW rheostat. Both machines are
assembled on silent blocs. Flexible couplings make the liaison with
the electric machines to reduce the vibration transmitted to
the gear.

Fig. 1. Tooth flank finishing processes: (a) shaving process, (b) power honing with internal meshing and (c) grinding with worm meshing [12].



The gear (23�51 teeth) comes from an automotive powertrain
transmission. Three configurations were then studied for the pri-
mary shaft. The first one uses a power honing operation, the sec-
ond a grinding one and the third does not have a finishing
operation. For the latter, the shaving process was slightly changed

in order to maintain the same geometric and dimensional on the
product. The secondary shaft was grinded and it was changed after
each experimental test by a new one with identical geometric as
well as surface characteristics to have the same initial con-
ditions in each test. The teeth were manufactured so that their

Fig. 2. 3D micro-topographies (2 mm�2 mm) of tooth surfaces generated respectively (a) after hobbing, (b) after shaving, (c) after carbonitriding, (d) after shot peening
(without hard finishing), (e) by power honing and (f) by grinding. The color scale is in millimeters. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)



macro-geometric and form parameters were maintained as close
as possible. The tests lasted for two hours with a 1500 rpm speed
and an 8 Nm load on the driven gear.

Dry and wet regimes using two lubricant viscosity, “Oil A” and
“Oil B” are considered for each test. The oil temperature varied
averagely from 20 to 33 °C during experiments. The dynamic
viscosity of “Oil A” ranged from 40 to 70 centipoise while it ranged
from 250 to 500 centipoise for “Oil B”. Each test configuration was
repeated for three times.

Every 15 minutes, gear vibrations were acquired with an
accelerometer (Brüel&Kjaer, 4533-B) which was placed radially to
the rotation of the gear, at the top of the assembly as shown in
Fig. 2. The signal was conditioned before it being recorded
(Brüel&Kjaer, conditioning amplifier 1704-A-002). The vibration

acquisition was averaged on 128 signals of 1.6 s each and sampled
at 5120 Hz.

4. Numerical simulation of transmission error of helical gear

A finite element elastic model has also been developed to
simulate the impact of various surface parameters on gear noise,
and more precisely on transmission error. The gear geometry as
well as the experimental conditions (rotation speed and load) are
respectively the same as the experimental ones: 23�51 teeth,
1500 rpm on the driving gear, 8 Nm on the driven gear. The
characteristics of the gear pair are given in Table 1. Abaqus
(SIMULIA, Dassault Systèmes) software was used for these dry
contact simulations. The mesh has the particularity to be very
refined on the surface of the teeth, where we used C3D8R quad-
ratic elements of 30 mm�30 mm size, which were then tied to the
rest of the body by a tie constraint. For the other parts of the gear’s
body, C3D10 were used in an adaptive mesh (Fig. 6). This mesh
permitted to introduce roughness error directly on the teeth sur-
faces by vertically moving the nodes along the direction normal to
the surface [26].

The transmission error was calculated from the angle deviation
between the driving and driven gears, during the meshing of the
central pair of teeth which has the most refined mesh. It was then
extrapolated on a full primary shaft rotation and studied in the
frequency space through Fourier transform.

5. Results and discussion

5.1. Experimental tests on the influence of ISO surface parameters on
gear noise in dry conditions

The acquired vibration signals from the experimental tests
were decomposed using Fast Fourier Transform (FFT). Then, the
average amplitude of the first three meshing harmonics, called
“Lm” was computed. As the primary shaft has 23 teeth and it was
rotating at 1500 rpm (25 Hz) during the tests, the meshing orders
considered were thus 575; 1150 and 1725 Hz.

From these tests, the influence of two surface parameters on
the Lm value was studied: the roughness amplitude through the
mean square roughness Sq defined in the ISO 25178 standard and
the roughness scale through the autocorrelation length Sal. The
values of these parameters were determined from the direct
measurements on the tooth flanks as shown in Table 2.

The results of their influence on gear noise, and more precisely
on the Lm value at 120 minutes, are given in Fig. 7. On one hand,
we can note the influence of surface roughness on the average
amplitude of the meshing harmonics. Indeed, there a clear positive
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linear relation between the two (Fig. 7a). On the other hand, the
impact of the autocorrelation length is more difficult to interpret
(Fig. 7b). There is no clear trend linking the two, be it in the profile
or the helix direction. Nevertheless, it is interesting to note that
above 50 mm the increase in autocorrelation length does not
impact gear noise anymore. In the end, this lets us conclude that
the roughness amplitude has a more impactful effect on gear noise
in dry conditions. This can be explained by the fact that the
increase of roughness amplitude leads to the increase of noise
induced by friction during the contact that occurs between sur-
faces asperities in this regim.

5.2. Numerical simulation on the influence of ISO surface parameters
on gear noise in dry conditions

Virtual texturing can be used to generate surfaces possessing
chosen distinct characteristics and sampling. In order to better
understand the impact of the surface on the meshing vibrations,
virtual surfaces with Gaussian distributions and characteristics
based of the ones measured directly on the studied flanks were
generated (Fig. 8).These topographies were then integrated in the
simulation model.

The results obtained after simulation are given in Fig. 9. It gives
the mean amplitude of the first three meshing harmonics as a
function of the studied surface parameters: it is the same parameter

used experimentally, by calculated on the transmission error signal.
We can clearly see in Fig. 9a that the roughness amplitude has a
very negative impact on transmission error. Indeed, it increases
linearly with the quadratic roughness. This trend is very close to the
experimental one as shown earlier. On the contrary, the Fig. 9b
indicates that a higher surface scale decreases the transmission
error amplitude, but is not as significant as roughness amplitude.
When compared to the experimental results (Fig. 7b), this trend is
quite different and could be explained by the fact that the surfaces
do not have the same morphology.

5.3. Experimental tests on the influence tooth finishing process on
gear vibrations in dry conditions

As mentioned before, the experimental tests were run over two
hours. The Fig. 10 shows the Lm parameter as a function of the
meshing time, for all three studied configurations. The most obvious
observation is that the vibration level is higher when the flanks are
not finished. Lm is about three times more important at every time
step. The difference in global roughness, represented by the Sq
parameter in Table 2, between the configurations with and without
finishing can explain this behavior: there is more than a factor of
two between the configurations. However the variations of Lm
cannot be explained with these parameters only. Indeed, a transi-
tional regime in terms of vibrations can be observed during the first
45 min.

In this regime, the vibration amplitudes for the power honing
flanks finish and those without finishing increase before decreas-
ing and stabilizing. It can be explained through the computation of
the Multiscale Meshing Signature (MMS) between these afore-
mentioned time steps. It is the relative difference between the
initial SMa and the one at the considered time step. The results for
the configuration without finishing and with power honing are

Table 1
Gear and material characteristics.

Gear pair geometry Values Material parameters Values

Modulus 1.85 mm Material Steel
Pressure angle 20° Young’s Modulus 210 GPa
Center distance 75 mm Density 7800 kg �m�3

Helix angle 25°
Active facewidth 24 mm
Driving gear geometry Values Driven gear geometry Values
Teeth number 23 Teeth number 51
Root diameter 43 mm Root diameter 96 mm
Tip diameter 53 mm Tip diameter 107 mm

Fig. 6. Mesh of the helical gears of the finite element model.

Table 2
Auto correlation length in the profile and helix directions as well as quadratic
roughness for each of the three studied configurations.

Sal in the profile
direction (lm)

Sal in the helix
direction (lm)

Quadratic rough-
ness (lm)

Grinding 48.5 122.3 0.53
Power honing 17.5 25.2 0.64
No finishing 21.4 17.5 1.02
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given in Fig. 11. Despite the modifications in the roughness scale, a
common behavior can be highlighted in the waviness scale.
Indeed, above 0.2 mm for the configuration without finishing and
above 0.4 mm for the power honing, there is an increase in surface
amplitude which is not negligible. These changes in the mesos-
cales, which are adaptation of the surface to the meshing, could
explain the increase of vibration amplitude for these two config-
urations. As for the grinded samples, we were unable to investi-
gate the vibrations values between the 0 and 15 min time steps.

Fig. 8. Examples of virtual surfaces integrated in the numerical simulations.
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5.4. Experimental tests on the influence tooth finishing process on
gear vibrations in lubricated conditions

In order to quantify more precisely the effect of each factor
(lubrication, roughness, waviness, time) on the average of the
vibratory amplitude of the first three meshing harmonics, a var-
iance analysis by linear regression on the Lm parameter was con-
sidered. A type III sum of squares was chosen in order to test the
main effects as well as their interactions. The validation of the
model was evaluated by the calculation of the correlation coeffi-
cient R2 [27]. It is a reel number between zero and one: a higher
value indicates a model closer to the data. The Fisher test was used
to quantify the significativity of each factor α by the following
formula [28]:

F αð Þ ¼MSregðαÞ
MSr

ð2Þ

Where MSreg is the mean of the squares due to the regression and
MSr the mean of the squares of the residue. To quantify the C
contribution of each factor to the parameter Lm, the quotient of the
contribution C of each factor α was calculated with the Fisher test
with a R2 trust [29,30]. It is defined by:

C αð Þ ¼ FðαÞP
αFðαÞ

� R2 ð3Þ

Then:
X

α
C αð Þ ¼ R2 ð4Þ
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This analysis was done with the software XLSTAT (Microsoft).
As variables of the models, the following parameters were
considered:

– Time: in minutes;
– Sca1: average of SMa for the scales from 0 to 0.025 mm;
– Sca2: average of SMa for the scales from 0.025 to 0.25 mm;
– Sca3: average of SMa for the scales from 0.25 to 0.75 mm;
– Sca4: average of SMa for the scales from 0.75 to 1.5 mm.

The results giving the percentage contribution are in Fig. 12. In
dry meshing, Fig. 12a, we can note that the roughness scales from
0 to 0.025 mm have the largest impact on gear vibrations as their
contribution are around 20%. The interaction of these scales with
the ones between 0.025 and 0.25 mm are also important with
more than 15% contribution. This result corroborates what we
have shown both experimentally and numerically. When lubricant
is introduced, Fig. 12b, there is a shift of the impactful scales
toward waviness, as the major factor is the scales between 0.25
and 0.75 mm. The roughness factor, Sca2, stays influent. When the
lubricant viscosity is increased, Fig. 12c, the shift is even more
prominent as the main factors are Sca4 with more than 40% con-
tribution and Sca3 with around 25%. Thus as viscosity increases,
the influent scales on gear vibrations shift from microroughness
toward waviness. This can be explained by the presence of a
thicker oil film between the teeth, reducing the number of aspe-
rities in contact and leading to the increase the spacing interval
between different contact area and therefore enhancing the
impact of higher surface scales.

6. Conclusions

This study highlighted a methodology to developed and
quantify the contribution of each surface scale on the gear noise,
permitted by the use of multiscale surface decomposition based on
wavelet transform. The results obtained for dry meshing experi-
mentally and numerically showed that the surface, and more
precisely the microroughness, had a large impact on gear vibra-
tions, indicating that finishing processes were influent. The sub-
sequent experimental tests in wet conditions have shown that the
surface scales are still very influent and thus need to be included
in future studies. Indeed, the lubricant and its viscosity shifted the
influent scales toward waviness. Perspectives include the inte-
gration of lubrication in the simulations in order to develop a
powerful predictive tool to optimize the choice of finishing process
in gear manufacturing.

Acknowledgments

Funding for this research was provided by Renault SAS. The
calculations would not have been possible without the support of
the HPC Center of Champagne-Ardenne ROMEO.

References

[1] Munro RG. Gear Transmission Error. AGMA Aerospace Gearing Commitee
Meeting, vol 10. Portsmouth; 1967.

[2] Mark WD. Analysis of the vibratory excitation of gear systems: basic theory. J
Acoust Soc Am 1978;63:1409–30.

[3] Mark WD. Gear noise origins. In: Proceedins of the AGARD conference (pro-
pulsion energy panel symposium). Lisbonne; 1984, p. 1–14.

[4] Salzer MLW, Smith JD, Welbourn DB. Simulation of noise from gears when
varying design and manufacturing parameter. Paris: World Congress on
Gearing; 1977.

[5] Welbourn DB. Gear noise spectra – a rational explanation. In: Proceedings of
the ASME international power transmission and gearing conference. Chicago
(US); 1977.

[6] Welbourn DB. Gears errors and their resultant noise spectra. Gearing
1970;184:131–9.

[7] Munro RG. A review of the theory and measurement of gear transmission
error. In: Proceedings of the 1st international conference on gearbox noise and
vibration. Cambridge; 1991, p. 3–10.

[8] Henriot G. Taillage et finition des engrenages. Tech L'Ingénieur 1984.
[9] Mehta DT, Rathi MG. A Review On Internal Gear Honing. Int J Eng Res Technol

2013;2:973–83.
[10] Karpuschewski B, Knoche H-J, Hipke M. Gear finishing by abrasive processes.

CIRP Ann – Manuf Technol 2008;57:621–40. http://dx.doi.org/10.1016/j.
cirp.2008.09.002.

[11] Brinksmeier E. Giwerzew a. Hard gear finishing viewed as a process of abrasive
wear. Wear 2005;258:62–9. http://dx.doi.org/10.1016/j.wear.2004.09.032.

[12] Jolivet S, Mezghani S, Isselin J, Giraudeau A, El Mansori M, Zahouani H. Evaluation
of Tooth Surface Micro-Finishing on Gear Noise. Key Eng Mater 2015;651–
653:498–503. http://dx.doi.org/10.4028/www.scientific.net/KEM.651-653.498.

[13] Åkerblom M. Gear noise and vibration – a literature survey. Stockholm; 2001.
[14] Åkerblom M, Pärssinen M. A study of gear noise and vibration; 2002.
[15] Harris SL. Dynamic Loads on the Teeth of Spur Gears. Proc Inst Mech Eng

1958:87–112.
[16] Welbourn DB. Fundamental knowledge of gear noise – a survey. In: Pro-

ceedings of the conference on noise vibration engines transmission. Cranfield;
1979, p. 9–29.

[17] Davoli P, Gorla C, Rossa F, Rossi F. Transmission error and noise excitation of
spur gears. In: Proceedings of the 10th ASME International Power Transmis-
sion Gearing Conference. Las Vegas; 2007.

[18] Podzharov E, Syromyatnikov V, Ponce Navarro JP, Navarro RP. Static and
dynamic transmissin error in spur gears. Open Ind Manuf Eng J 2008;1:37–41.
http://dx.doi.org/10.2174/1874152500801010037.

[19] Henriksson M. On noise generation and dynamic transmission error of gears
[Doctoral thesis]. Stockholm, Sweden: KTH University; 2009.

[20] Bihr J, Heider M, Otto M, Stahl K, Kume T, Kato M. Gear noise prediction in
automotive transmissions. In: Proceedings of the international gear con-
ference; 2014, p. 457–65.

[21] Mezghani S, Mansori M, El, Massaq A, Ghidossi P. Correlation between surface
topography and tribological mechanisms of the belt-finishing process using
multiscale finishing process signature. Comptes Rendus Méc 2008;336:794–9.
http://dx.doi.org/10.1016/j.crme.2008.09.002.

[22] Jolivet S, Mezghani S, Mansori M, El, Zahouani H. Gear noise behavior induced
by their topological quality. Surf Topogr Metrol Prop 2013;2:014008. http://dx.
doi.org/10.1088/2051-672X/2/1/014008.

[23] Jolivet S, Mezghani S, El M, Jourdain B. Dependence of tooth flank finishing on
powertrain gear noise. J Manuf Syst 2015;37:467–71. http://dx.doi.org/
10.1016/j.jmsy.2014.11.006.

[24] Zahouani H, Mezghani S, Vargiolu R, Dursapt M. Identification of manu-
facturing signature by 2D wavelet decomposition. Wear 2008;264:480–5.
http://dx.doi.org/10.1016/j.wear.2006.08.047.

[25] El Mansori M, Mezghani S, Sabri L, Zahouani H. On the concept of process
signature in analysis of multistage surface formation. Surf Eng 2010;26:216–23.

[26] Thompson MK, Thompson JM. Considerations for the incorporation of mea-
sured surfaces in finite element models. Scanning 2010;32:183–98. http://dx.
doi.org/10.1002/sca.20180.

[27] Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics.
Chemom Intell Lab Syst 2001;58:109–30. http://dx.doi.org/10.1016/
S0169-7439(01)00155-1.

[28] Massart DL, Vandeginste BG, Buydens LMC, De Jong S, Lewi P, Smeyers-
Verbeke J. Handbook of chemometrics and qualimetrics: part A. . Amsterdam:
Elsevier; http://dx.doi.org/10.1016/S0922-3487(97)80056-1.

[29] Davim JP, Reis P. Damage and dimensional precision on milling carbon fiber-
reinforced plastics using design experiments. J Mater Process Technol
2005;160:160–7. http://dx.doi.org/10.1016/j.jmatprotec.2004.06.003.

[30] Ryan TP. Modern engineering statistics. Acworth, Georgia: Wiley. Wiley-
Interscience; 2007.

http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref1
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref1
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref1
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref2
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref2
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref2
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref3
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref4
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref4
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref4
http://dx.doi.org/10.1016/j.cirp.2008.09.002
http://dx.doi.org/10.1016/j.cirp.2008.09.002
http://dx.doi.org/10.1016/j.cirp.2008.09.002
http://dx.doi.org/10.1016/j.cirp.2008.09.002
http://dx.doi.org/10.1016/j.wear.2004.09.032
http://dx.doi.org/10.1016/j.wear.2004.09.032
http://dx.doi.org/10.1016/j.wear.2004.09.032
http://dx.doi.org/10.4028/www.scientific.net/KEM.651-653.498
http://dx.doi.org/10.4028/www.scientific.net/KEM.651-653.498
http://dx.doi.org/10.4028/www.scientific.net/KEM.651-653.498
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref8
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref8
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref8
http://dx.doi.org/10.2174/1874152500801010037
http://dx.doi.org/10.2174/1874152500801010037
http://dx.doi.org/10.2174/1874152500801010037
http://dx.doi.org/10.1016/j.crme.2008.09.002
http://dx.doi.org/10.1016/j.crme.2008.09.002
http://dx.doi.org/10.1016/j.crme.2008.09.002
http://dx.doi.org/10.1088/2051-672X/2/1/014008
http://dx.doi.org/10.1088/2051-672X/2/1/014008
http://dx.doi.org/10.1088/2051-672X/2/1/014008
http://dx.doi.org/10.1088/2051-672X/2/1/014008
http://dx.doi.org/10.1016/j.jmsy.2014.11.006
http://dx.doi.org/10.1016/j.jmsy.2014.11.006
http://dx.doi.org/10.1016/j.jmsy.2014.11.006
http://dx.doi.org/10.1016/j.jmsy.2014.11.006
http://dx.doi.org/10.1016/j.wear.2006.08.047
http://dx.doi.org/10.1016/j.wear.2006.08.047
http://dx.doi.org/10.1016/j.wear.2006.08.047
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref14
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref14
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref14
http://dx.doi.org/10.1002/sca.20180
http://dx.doi.org/10.1002/sca.20180
http://dx.doi.org/10.1002/sca.20180
http://dx.doi.org/10.1002/sca.20180
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/S0922-3487(97)80056-1
http://dx.doi.org/10.1016/S0922-3487(97)80056-1
http://dx.doi.org/10.1016/S0922-3487(97)80056-1
http://dx.doi.org/10.1016/j.jmatprotec.2004.06.003
http://dx.doi.org/10.1016/j.jmatprotec.2004.06.003
http://dx.doi.org/10.1016/j.jmatprotec.2004.06.003
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref19
http://refhub.elsevier.com/S0301-679X(16)30176-1/sbref19

	Experimental and numerical study of tooth finishing processes contribution to gear noise
	Introduction
	Multiscale signature of each gear manufacturing step
	Experimental vibratory tests on single stage gears
	Numerical simulation of transmission error of helical gear
	Results and discussion
	Experimental tests on the influence of ISO surface parameters on gear noise in dry conditions
	Numerical simulation on the influence of ISO surface parameters on gear noise in dry conditions
	Experimental tests on the influence tooth finishing process on gear vibrations in dry conditions
	Experimental tests on the influence tooth finishing process on gear vibrations in lubricated conditions

	Conclusions
	Acknowledgments
	References




