
HAL Id: hal-02353190
https://hal.science/hal-02353190v1

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

O-GlcNAc transferase associates with the MCM2-7
complex and its silencing destabilizes MCM-MCM

interactions
Maïté Leturcq, Marlène Mortuaire, Stephan Hardivillé, Céline Schulz, Tony

Lefebvre, Anne-Sophie Vercoutter-Edouart

To cite this version:
Maïté Leturcq, Marlène Mortuaire, Stephan Hardivillé, Céline Schulz, Tony Lefebvre, et al.. O-
GlcNAc transferase associates with the MCM2-7 complex and its silencing destabilizes MCM-MCM
interactions. Cellular and Molecular Life Sciences, 2018. �hal-02353190�

https://hal.science/hal-02353190v1
https://hal.archives-ouvertes.fr


1 
 

O-GlcNAc transferase associates with the MCM2-7 complex and its 

silencing destabilizes MCM-MCM interactions 

 

Maïté Leturcq, Marlène Mortuaire, Stéphan Hardivillé, Céline Schulz, Tony Lefebvre and Anne-Sophie 

Vercoutter-Edouart
* 

Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France 

* To whom correspondence should be addressed (anne-sophie.vercoutter@univ-lille1.fr) 

 

ABSTRACT 

O-GlcNAcylation of proteins is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The 

homeostasis of O-GlcNAc cycling is regulated during cell cycle progression and is essential for proper cellular 

division. We previously reported the O-GlcNAcylation of the Mini-Chromosome Maintenance proteins MCM2, 

MCM3, MCM6 and MCM7. These proteins belong to the MCM2-7 complex which is crucial for the initiation of 

DNA replication through its DNA helicase activity. Here we show that the six subunits of MCM2-7 are O-

GlcNAcylated and that O-GlcNAcylation of MCM proteins mainly occurs in the chromatin-bound fraction of 

synchronized human cells. Moreover, we identify stable interaction between OGT and several MCM subunits. 

We also show that down-regulation of OGT decreases the chromatin binding of MCM2, MCM6 and MCM7 

without affecting their steady-state level. Finally, OGT silencing or OGA inhibition destabilize MCM2/6 and 

MCM4/7 interactions in the chromatin-enriched fraction. In conclusion, OGT is a new partner of the MCM2-7 

complex and O-GlcNAcylation homeostasis might regulate MCM2-7 complex by regulating the chromatin 

loading of MCM6 and MCM7 and stabilizing MCM/MCM interactions.  
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Introduction 

 

O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) of proteins is catalysed by O-GlcNAc Transferase 

(OGT) which uses uridine-diphospho-N-Acetylglucosamine (UDP-GlcNAc) to transfer the GlcNAc moiety onto 

serine or threonine residues of cytosolic, nuclear and mitochondrial proteins [1–4]. Conversely, O-GlcNAcase 

(OGA) reverses this abundant post-translational modification by removing the GlcNAc residue [5, 6]. O-

GlcNAcylation regulates various cellular processes including transcription, translation, chromatin remodelling 

and cell cycle progression by modulating protein activity, stability, subcellular localization or protein-protein 

interaction [4, 7–10]. Moreover, a crosstalk can occur between O-GlcNAcylation and phosphorylation, either on 

adjacent sites or at the same sites of the target proteins [7, 9, 11–13]. Recently, the motif 

(pSp/T)P(V/A/T)(gS/gT) has been defined as a very specific and stringent phospho/O-GlcNAc crosstalk motif 

[14].  

In mammalian cells, O-GlcNAcylation levels and the expression of OGT and OGA are highly regulated 

during the cell cycle, and disruption of O-GlcNAc cycling induces defects in cell cycle progression and mitosis 

[15–24]. The loss in O-GlcNAc homeostasis alters the expression of the early-induced transcription factors c-

Fos, c-Jun, c-Myc and Sp1 [15] and the expression of cyclin D and p27
KIP1 

cell-cycle inhibitor [21, 25, 26]. It can 

also induce abnormal oscillations in the levels of cyclins E, A and B, resulting in aberrant mitotic-specific 

phosphorylation and defects in cytokinesis [12, 16–18, 23, 24]. To identify new targets of OGT during G1/S 

transition, we previously performed a differential analysis of the O-GlcNAcome of G1- and S-phase 

synchronized human cells and identified the MiniChromosome Maintenance (MCM) proteins MCM2/3/6/7 [22].  

MCM2-7 complex is composed of six distinct MCM subunits assembled in a highly defined order: 

MCM5-MCM3-MCM7-MCM4-MCM6-MCM2. MCM proteins display a well-conserved organization of their 

functional domains, and possess an AAA+ ATPase activity in their C-terminal domain [27–29]. The 

heterohexameric MCM2-7 complex has a ring-shaped structure to encircle DNA, the MCM2-MCM5 interaction 

being identified as the gate that promotes the opening of the MCM2-7 complex [29, 30]. Sub-complexes 

containing MCM2/4/6/7, MCM4/6/7 or MCM3/5 have also been isolated from yeast and mammalian cells [31–

36]. In vitro, the sub-assembly MCM4/6/7 exhibits the DNA helicase activity [37–40]. MCM2 which is weakly 

associated with this sub-complex negatively regulates its helicase activity [36, 37]. The strong interaction 

between MCM3 and MCM5 serves also negative regulatory function on MCM2-7 ATPase activity [36, 39, 41].  

The MCM2-7 complex plays an essential role in the initiation of DNA replication which is a two-step 

process: licensing and firing. In G1 phase, MCM2-7 takes part in the formation of the pre-replicative complex 

(pre-RC) which is composed of ORC (Origin Replication Complex, Orc1-6) and the licensing factors Cdc6 and 

Cdt1. During this licensing step, inactive head-to-head double MCM2-7 hexamers encircle DNA origins. As 

cells enter the S phase, the firing step requires the recruitment of Cdc45 and GINS to the MCM ring. Within the 

Cdc45/MCM2–7/GINS (CMG) complex, MCM2-7 exhibits the core replicative helicase activity necessary for 

parental DNA strands to unwind [29, 42, 43]. Finally, as cells progress in late S phase, MCM2-7 complexes 

progressively dissociate from chromatin to prevent DNA re-replication  [44–47]. Importantly, most of the origins 

on which MCM2-7 complexes have been loaded constitute dormant origins that are not used normally in S 

phase. However, under conditions of replicative stress that induces replication fork stalling, excess MCM2-
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7 complexes license latent origins as a backup mechanism to prevent under-replication and maintain genome 

integrity [42, 48–51]. 

 

Phosphorylation of MCM subunits dramatically changes during cell cycle progression to finely regulate 

the functionality of MCM2-7 complex, from the licensing step to the dissociation of the complex from chromatin 

in late S phase [44, 52–62]. In this work, we investigate the role of O-GlcNAc post-translational modification on 

MCM2-7 complex. We show that all the MCM subunits are modified by OGT, mostly in the chromatin-bound 

fraction. We identify stable interaction between OGT and the MCM3, MCM6 and MCM7 proteins. Moreover, 

dysregulation of O-GlcNAc cycling by OGT silencing decreases the amount of chromatin-bound MCM2, 

MCM6 and MCM7 proteins and destabilizes MCM-MCM interactions.  

 

 

Materials and Methods 

Antibodies, siRNA and chemicals. 

Thymidine (T1895), propidium iodide solution (P4864), RNAse A (R4875), complete protease inhibitor cocktail 

tablets and OGA inhibitor Thiamet G (ThG) were from Sigma-Aldrich (St Quentin Fallavier, France). ThG was 

used at 1 µM (prepared at 100 mM in DMSO) [63]. The OGT inhibitor Acetyl-5S-GlcNAc (5S-G) was kindly 

provided by Pr. G.W. Hart and used at 50 µM (prepared at 50 mM in DMSO) [64]. GlcNAc was from TCI 

Chemicals (TCI Europe N.V., Belgium).  

The following primary antibodies were used for Western blot : RL2 O-GlcNAc antibody (1:3,000, 

ThermoScientific, Fisher Scientific, France), OGT (DM17 or Ti-14; 1:2,000, Sigma-Aldrich), OGA (1:10,000, 

anti-MGEA5, ab124807, Abcam, Cambridge, UK), GST, MCM2 (PLA0060) and MCM5 (PLA0064) (1:3000, 

Sigma-Aldrich) ; MCM3 (N-19), MCM4 (H-300), MCM6 (H-8), MCM7 (141.2), GAPDH (0411) (1:3,000, 

Santa-Cruz, Heidelberg, Germany), Cyclin D1 (A-12), Cdt1 (H-300) (1:1,000, Santa Cruz), Cdc6 (DCS-180) 

(1:1,000, Merck, Darmstadt, Germany). The same antibodies were used for immunoprecipitation and indirect 

immunofluorescence or PLA experiments except for immunoprecipitation of MCM7 (D10A11, Cell Signaling 

Technology, Ozyme, Montigny-le-Bretonneux, France) and detection of MCM3 by PLA (3E1, Abgent, 

Euromedex, Souffelweyersheim, France). Normal control IgG polyclonal antibodies were used as negative 

controls for IP experiments (rabbit, mouse, or goat, Santa Cruz). The following secondary antibodies were also 

used: anti-goat IgG-HRP linked (1:30,000, Santa Cruz), anti-mouse IgG HRP-linked and anti-rabbit IgG HRP-

linked antibodies (1:10,000, GE Healthcare, V.W.R. Fontenay-sous-Bois, France), anti-rabbit IgG Alexa Fluor 

488 and anti-mouse IgG Alexa Fluor 568 (1:600, ThermoScientific, Fisher Scientific, France). Control siRNA 

(siRNA univ. negative control) and siRNA against OGT (GGAGGCUAUUCGAAUCAGU[dT][dT] sens, 

ACUGAUUCGAAUAGCCUCC[dT][dT] anti-sens) were purchased from Sigma-Aldrich. siRNA against OGA 

(siGENOME Human MGEA5 (10724) siRNA SMARTpool) was from Dharmacon (GE Healthcare Europe 

GmbH, Velizy-Villacoublay, France). The p3XFLAG-OGT-siRNA resistant vector were generated by directed 

mutagenesis using Phusion® Hot start (NEB), p3XFLAG-OGT as temple and, 5’-

agcagggaaaactgcaggaagctctgatgcattataaagaagcgatcaggatttcccctacctttgctgatgcctactc-3’and 5’- 

gagtaggcatcagcaaaggtaggggaaatcctgatcgcttctttataatgcatcagagcttcctgcagttttccctgct-3’ as primers. Prior 
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transformation in DH5α, template was digested 2h at 37°C by 1U of DpnI (NEB). Positive clones were screened 

by sequencing.  

Cell culture, transfection and cell cycle synchronization 

MCF7 and MDA-MB-231 breast cancer cell lines, and HEK 293T cells were routinely grown at 37°C in a 

humidified atmosphere enriched with 5% CO2 in Dulbecco’s modified Eagle’s Medium (DMEM) (Lonza, Basel, 

Switzerland) containing high glucose (4.5 g/L) and glutamine, and supplemented with 10% fetal calf serum 

(FCS) (Lonza) (complete medium). 

For HA-OGT transfection, HEK293T cells were cultured in complete medium (8x10
5
 cells/100-mm dish) and 

when they reached around 60% of confluence, they were transiently transfected with HA-tagged OGT (1.25 

µg/100-mm dish) using the Lipofectamine® 2000 (Thermofisher, Fisher Scientific, France), according to the 

manufacturer’s instructions. HEK293T were harvested 48 h after transfection. For small Interfering RNA 

(siRNA) transfection, MCF7 (1.5 x 10
6
 cells/100-mm dish) and MDA-MB-231 (10

6
 cells/100-mm dish) were 

reverse-transfected with Lipofectamine® RNAiMAX (Thermofisher, Fisher Scientific, France) according to the 

manufacturer’s recommendations, using 60 pmol of siControl, siOGA or siOGT. Cells were harvested 

respectively after 60 h or 72 h of transfection. To rescue OGT silencing, one day later siRNA transfection, 

MCF7 cells were transfected with the 3XFLAG-OGT-siRNA resistant plasmid or the 3X-pCMV plasmid as the 

negative control (250 ng/w), using 2.5 µl Lipofectamine® 2000. For both type of experiments (siRNA 

±3XFLAG-OGT-siRNA), when cell cycle synchronization was needed, cells were serum-starved 24 h after 

transfection and the synchronization protocol was followed, as mentioned below.  

Cell cycle synchronization was performed using starvation followed by serum stimulation [22]. After 24 

h in complete medium (DMEM-10% FCS), cell monolayer was rinsed with PBS (Lonza) and placed either 24 h 

in DMEM-0.5% FCS for MCF7 cells, or 48 h in serum-free medium for MDA-MB-231 cells. Cells were either 

harvested (Time 0 h) or grown in complete medium to release cells in cell cycle. Cells were harvested at 

different time points, according to cell cycle progression that was systematically monitored by propidium iodide 

(PI) DNA staining and flow cytometry analysis, as previously described [22]. When mentioned, vehicle (DMSO, 

1:1,000), Acetyl-5S-GlcNAc (5S-G, 50 µM) and ThG (1 µM) were added simultaneously with serum. 

 

Cell lysis and subcellular fractionation 

After two washes of cellular layers with ice-cold PBS, whole cellular lysates (WCL) were obtained using RIPA 

buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1% (v/v) Triton-X100, 0.2% (w/v) NaDoc, 0.1% (w/v) SDS, 

containing 1 mM orthovanadate, 10 mM sodium fluoride and protease inhibitors), and placed on ice for 10 min. 

The lysate was then clarified by centrifugation at 18,800xg for 15 min and the supernatant stored at -20°C or -

80°C before use.  

Subcellular fractionation was performed as previously described [55]. Cells were lysed in cytoskeleton 

extraction buffer (CSK) (100 mM NaCl, 10 mM PIPES, pH 7, 300 mM sucrose, 3 mM MgCl2, 0.1% (v/v) NP-40 

with protease inhibitor cocktail and phosphatase inhibitors (10 mM NaF, 1 mM orthovanadate) at 4˚C for 20 

min. Lysates were then centrifuged at 300xg for 5 min at 4°C and supernatants were retrieved. A pellet wash was 

performed in CSK buffer, and after centrifugation at 300xg for 5 min at 4°C, supernatants were retrieved. 
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Combined supernatants were then clarified by centrifugation at 18,80xg for 15 min at 4°C to constitute the 

soluble fraction (Sol.) containing the nucleocytoplasmic proteins. Finally, pellets were incubated in modified 

RIPA buffer (350 mM NaCl, 20 mM Tris pH 7.5, 2.5 mM sodium pyrophosphate, 1% (v/v) Triton X100) for 20 

min on ice, sonicated for 3 min to break DNA, and then centrifuged at 18,800xg for 15 min at 4°C. The clear 

supernatant was used as the chromatin-bound protein fraction (Chrom.).  

 

Immunoprecipitation and Western Blotting 

For co-immunoprecipitation experiments, non SDS containing lysis and washing buffers were used, and 

chromatin-bound protein fraction (500 µg) was diluted ½ in NaCl-free modified RIPA-buffer to reduce NaCl 

concentration to 175 mM. Total, soluble and chromatin-bound protein extracts were precleared with a mix of 

protein A- and protein G-sepharose beads (50:50) (GE Healthcare, V.W.R.) in lysis buffer for 2 h at 4°C (20 

µl/mg). After centrifugation (5 min, 5,000xg), the supernatant was incubated with primary antibodies for 2 h or 

overnight at 4°C (5 µg/mg). Then, protein A-sepharose (for rabbit IgG) or protein G-sepharose (for mouse and 

goat IgG) was added and incubated for an additional 1 h (30 µl/mg). Beads were washed successively three 

times with RIPA buffer (5 min), once in high-salt containing RIPA buffer (300 mM NaCl), and finally boiled in 

Laemmli buffer before separation by SDS-PAGE and transfer onto nitrocellulose membranes (Protran supported 

0.45 µm NC, GE Healthcare).  

For Western blot, membranes were blocked in 5% (w/v) nonfat dry milk in Tris-Buffered Saline (TBS 

10X, Euromedex) with 0.05% (v/v) Tween 20 (TBS-T) and probed with primary antibodies overnight at 4°C. 

The membranes were washed 3 times with TBS-T and incubated with the corresponding HRP-conjugated 

secondary antibody for 1 h at RT. Membranes were washed 3 times in TBS-T and immunoblots were developed 

with enhanced chemiluminescence (ECL prime Reagent, GE Healthcare, Supersignal West Pico Plus or 

Supersignal West Femto, ThermoScientific, Fisher Scientific, France). Image acquisition was done on a CCD 

camera (Fusion Solo, Vilber Lourmat, Marne-la-Vallée, France). The membranes were stripped in the antibody 

stripping buffer (Gene Bio-Application LTD, Euromedex, France) for 15 min at RT, extensively washed in water 

and TBS-T before reprobing with another antibody. 

 

sWGA lectin chromatography  

Soluble and chromatin-bound proteins were enriched for GlcNAc-modified proteins using the GlcNAc-specific 

lectin succinylated wheat germ agglutinin (sWGA) immobilized on agarose (Vector Laboratories, Clinisciences, 

Nanterre, France) [65]. sWGA beads were first equilibrated in the two-fold diluted RIPA-modified buffer used 

for chromatin-bound protein extraction (175 mM NaCl, 10 mM Tris pH 7.5, 1.25 mM sodium pyrophosphate, 

0.5% (v/v) Triton X-100). For each fraction (Sol. and Chrom.), the volume corresponding to 1 mg of proteins 

was adjusted to 500 µl in the initial lysis buffer, and then two-fold diluted in PBS to get a final concentration of 

1 mg/mL. Each fraction (1 mg) was incubated for 2 h at 4°C with 50 µl of sWGA-beads. Beads were centrifuged 

at 1,000xg for 3 min, and then washed under vigorous stirring successively, twice with 1 mL ½ diluted RIPA-

modified buffer and twice with the same buffer containing 300 mM NaCl. Finally, beads were re-suspended in 

Laemmli buffer before heating at 95°C for 7 min and SDS-PAGE. A negative control was performed for each 

fraction by adding 0.5 M free GlcNAc in the lysate before incubation with sWGA-beads. 
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GST-Pull down assay 

Bacterial expression plasmids pGEX-2T for GST and GST-OGT fusion proteins were kindly provided by Drs D. 

Leprince and X. Yang, respectively. For GST recombinant protein expression, BL21 DE-3 Escherichia coli were 

transformed with plasmids and cultured in LB medium containing 50 µg/mL ampicillin. When bacteria reached 

the exponential growth phase, induction was performed at room temperature with 0.1 mM IPTG for 4 h. Bacteria 

were centrifuged and pellets were resuspended in PBS containing a cocktail of protease inhibitors (Sigma-

Aldrich). Crude lysates were obtained using the high pressure homogenizer Emulsiflex-C3 (Avestin, Mannheim, 

Germany) and centrifuged at 10,400xg for 45 min. GST fusion proteins were immobilized on Glutathione 

Sepharose 4B beads (GE Healthcare) for 2 h at 4°C under gentle agitation. Beads were successively washed 5 

min by gentle vortex in 20 mM Tris pH 7.4 with 0.1% (v/v) Triton X-100 (twice) and in the same buffer 

containing 100 mM NaCl (twice), followed by centrifugation at 500xg for 5 min. For direct elution, beads were 

equilibrated twice in the elution buffer (50 mM Tris pH 8 with 0.1% (v/v) Triton X-100) before adding 50 mM 

reduced Glutathione (Sigma-Aldrich) in elution buffer. For GST-Pull down experiments using human cell 

lysates, 700 µg of proteins (soluble nucleocytoplasmic and chromatin-bound subcellular fractions) were added in 

each tube with the beads and incubated overnight at 4°C with gentle agitation. Beads were successively washed 

in three times in PBS with 0.1% Triton X-100, once in PBS with 0.1% Triton X-100 and 150 mM NaCl, and 

twice in 50 mM Tris pH 8 with 0.1% Triton X-100 before elution as described before. Laemmli buffer was 

added in each eluted fraction, samples were boiled 5 min at 95°C before SDS-PAGE. 

 

Click chemistry  

We used the Click-It O-GlcNAc enzymatic labelling and the Click-It biotin glycoprotein systems 

(ThermoScientific, Fisher) to enrich O-GlcNAc proteins from cell lysates on streptavidin-agarose beads (Merck), 

as previously described [66]. Briefly, proteins from the chromatin-bound fraction were first precipitated using 

chloroform/methanol according to the manufacturer’s protocol, and then solubilized in presence of 1% (w/v) 

SDS in 20 mM HEPES (pH 7.9). O-GlcNAcylated proteins were enzymatically labelled with a GalNAz residue 

using the Y289L galactosyltransferase (GalT) and UDP-GalNAz as the nucleotide-sugar. A negative control 

(time point 18H) in which UDP-GalNAz was omitted, was carried out in parallel and treated exactly in the same 

conditions than samples. Labelled proteins were then subjected to a click chemistry reaction with a biotin-alkyne 

probe and enriched on streptavidin-agarose beads. After click-chemistry reaction, 10% of solubilized and Click-

It labelled proteins were removed to attest the presence of MCM proteins in labelled samples (Input Click-It). 

We performed O-GlcNAc Mass-Tag labelling to detect and quantify O-GlcNAcylated fraction of MCM proteins 

using a 4.4 kDa DBCO-PEG mass tag. After using the Click-It O-GlcNAc enzymatic labelling kit following 

manufacturer’s instructions, 50 µg of GalNAz-labelled proteins were re-suspended in 1% SDS, 20 mM HEPES 

(pH 7.9) and incubated for 1 h at room temperature, under a gentle agitation, either with a 4.4 KDa DBCO-PEG 

at a final concentration of 10 mM (PEG +) or with DMSO (PEG -). Finally, labelled protein samples were 

precipitated using chloroform/methanol to remove excess of DBCO-PEG and boiled with Laemmli buffer before 

separation on polyacrylamide gel. For each MCM, electrophoretic Rf values were calculated to estimate the 

molecular weight of the non-PEGylated and the PEGylated shifted bands and establish how many O-GlcNAc 



7 
 

sites are present on MCM proteins. Standard curve was established using the PageRuler Prestained Protein 

Ladder (10 to 170 kDa, ThermoScientific, Fisher). In vivo glycosylation stoichiometry was determined by 

quantifying the relative intensities of each band [67]. 

 

Cell cycle and DNA synthesis analysis  

Distribution of cells in G0/G1, S and G2/M was routinely determined by DNA staining with PI as previously 

described [22]. The rate of DNA synthesis was measured using the Click-iT
®
 EdU Flow cytometry assay kit 

(ThermoScientific, Fisher). After siRNA transfection or treatment with inhibitor and subsequent 

synchronization, cells were labelled with 10 µM EdU (5-ethynyl-2’-deoxyuridine) for 15 min before harvesting 

cells. Detection of EdU-positive cells was based on the click reaction (K+) with Alexa Fluor
® 

647 (AF647) azide 

fluorescent dye according to the manufacturer’s recommendations. DNA content was further labelled with PI. 

Several controls were performed to set up the flow cytometry instrument parameters: no labelled cells, PI-

labelled cells, Edu-K+-labelled cells and Edu-K-/PI-labelled cells. Cells were then analysed by flow cytometry 

on a CyAn ADP LX9 instrument using the Summit V4.3.04 software for data acquisition (Beckman Coulter, 

Life Sciences). AF647 and PI signals were read respectively in FL8 channel (laser 635 nm and em: 665/20 nm) 

and FL3 channel (laser 488nm, em: 613/20 nm). Data were analysed using FlowJo software.  

 

Immunofluorescence and proximity ligation assay 

MCF7 cells were grown on glass coverslips for 72 h and washed three times in cold PBS before fixation in 4% 

paraformaldehyde in PBS at room temperature for 20 min. After three washes in PBS (5 min per wash, at RT), 

permeabilization of cells was performed either with 0.5% (v/v) Triton-X100 in PBS for 2 min to detect OGT-

MCM interaction [68], or 20 min with 0.5% (v/v) Triton-X100 in CSK buffer without NP-40 for the detection of 

MCM-MCM interactions [47]. This was followed by a quenching with 100 mM glycine (pH 7.4) in PBS for 20 

min and three washes in PBS. Coverslips were incubated with blocking buffer (2% (v/v) FCS, 2% bovine serum 

albumin (w/v), 0.2% (w/v) gelatin in PBS) for 1 h at RT before incubation with the primary antibodies (1:100) 

diluted in the blocking buffer, overnight at 4°C. For indirect immunofluorescence, coverslips were washed 3 

times with 0.5% (v/v) Tween 20 in PBS and incubated with Alexa Fluor conjugated secondary antibodies (1:600 

in blocking buffer) for 1 h in the dark, at RT For the Proximity ligation assay (Duolink® in situ kit, Sigma-

Aldrich), after incubation with the primary antibodies and two washes in PBS, the coverslips were incubated 

with PLA PLUS and MINUS probes for mouse and rabbit respectively for 1 h, with the ligase for 30 min 

(ligation step), and with the polymerase for 2 h (amplification step, Duolink in situ detection reagents Green, 

ex/em: 495/527 nm) in a humidity chamber at 37°C. Finally coverslips were washed 3 times in 0.5% (v/v) 

Tween 20 in PBS, once in PBS alone, and nuclei were stained with DAPI (50 µg/mL) for 2 min before mounting 

slides in Mowiol solution (Calbiochem, Merck chemicals, Nottingham, UK). Negative controls were done by 

using only one of the primary antibodies. Immunofluorescence was detected through an inverted Zeiss LSM700 

confocal microscope with a 40x oil immersion lens at room temperature and data were collected with the ZEN 

2010 software (Zeiss, Oberkochen, Germany). Images from PLA were processed with ImageJ
® 

using a home-

made plugin developed by TISBio to detect and quantify the nuclear fluorescent dots in labelled cells. Briefly, 
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for each PLA files (channel 1, DAPI; channel 2, green PLA fluorescence), the nuclei were detected and labelled 

in channel 1 to define the r.o.i. (regions of interest) that were then applied to channel 2 to measure and quantify 

the fluorescence inside each labelled nucleus. The mean of fluorescence per cell is the ratio of the integrated 

density/area measured for each nucleus. Scatter dot plot (median with interquartile range) showing the mean of 

fluorescence per cell and statistical analysis (one-way ANOVA test, * p<0.05) were obtained using GraphPad 

Prism software. 

 

 

Results  

 

All the MCM subunits are O-GlcNAcylated when they are loaded onto chromatin 

We previously reported the O-GlcNAcylation of MCM3, MCM6 and MCM7 in MCF7 human cells after 

immunoprecipitation of endogenous MCM protein and detection by Western blot of the O-GlcNAc status using 

the anti-O-GlcNAc RL2 antibody [22]. Using the same approach, we show here that immunoprecipitated 

MCM2, MCM4 and MCM5 proteins are also O-GlcNAcylated in Thiamet G-treated MCF7 cells (Fig. 1a).  

The phosphorylation status of MCM proteins regulates the chromatin loading of MCM2-7 complex [44, 

53, 56, 57, 59, 61, 62, 69]. To investigate whether O-GlcNAcylated forms of MCM proteins are differentially 

distributed in the soluble and the chromatin-bound fractions during cell cycle progression, MCF7 cells were 

arrested in G0 by serum starvation and released in G1 phase by serum stimulation. Cells were harvested in early 

(15H) and late (18H) S phase, as measured by FACS (Fig. 1b). Subcellular fractionation from synchronized 

MCF7 cells was then performed to obtain a nucleocytoplasmic soluble fraction (Sol.) and a chromatin-bound 

fraction (Chrom.) [55]. Efficiency of fractionation was checked by Western blot using the G1-phase Cyclin D1 

and GAPDH which are good markers for the soluble fraction (Fig. 1c). In contrast, as expected, the licensing 

factors Cdc6 and, to a lesser extent Cdt1, are exclusively detected in the chromatin-bound fraction [70, 71] (Fig. 

1c). Interestingly, OGT is more abundant in the chromatin-bound fraction than in the soluble one, while OGA is 

only detected in the soluble one (Fig. 1c). Each MCM subunit was then detected by Western blot in the two 

subcellular fractions. Except for MCM2 and MCM7 which are equally detected in both fractions, the 4 other 

MCM subunits are preferentially located in the chromatin-bound fraction (Fig. 1d, Input). Then, to assess the O-

GlcNAcylation of MCM proteins, we enriched O-GlcNAc proteins on succinylated WGA (sWGA)-agarose 

beads before Western blotting [65]. Negative controls in presence of free GlcNAc were performed to confirm the 

specificity of the binding of GlcNAc-bearing proteins to the lectin (Fig. 1d, lanes C
-
). Although the six MCM 

subunits are present in both fractions, sWGA-bound MCM proteins were detected only in the chromatin-bound 

fraction (Fig. 1d). The same results were obtained with synchronized MDA-MB-231 cells (Suppl. Fig. 1a-c). Our 

results demonstrate that O-GlcNAc-modified MCM proteins are stably loaded onto chromatin. 

To ascertain that each chromatin-bound MCM subunit was individually and directly O-GlcNAcylated, 

we used a click chemistry approach to enrich and detect O-GlcNAcylated proteins from the chromatin fraction of 

quiescent and S-phase synchronized MCF7 cells. With this approach, SDS (1%) was used in the solubilization 

buffer, allowing dissociation and denaturation of protein complexes. O-GlcNAcylated proteins were 

enzymatically labelled with a GalNAz residue before the click chemistry reaction with the biotin-alkyne probe, 
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allowing the enrichment of O-GlcNAcylated proteins on avidin-agarose beads [66]. The presence of MCM 

proteins in click-labelled samples was confirmed by the signal detected in the input (Input Click-It) (Fig. 1e). 

Western Blotting of the avidin-bound proteins with anti-MCMs antibodies allowed us to confirm that all the six 

MCM2-7 subunits are strongly O-GlcNAcylated in the chromatin fraction of S-phase synchronized cells in 

comparison with quiescent cells (18H versus 0) (Fig. 1e).  

Then to evaluate the number of O-GlcNAc site and the stoichiometry of O-GlcNAcylated isoforms of 

MCM proteins [67], we performed the chemoenzymatic labelling of O-GlcNAc proteins with UDP-GalNAz and 

GalT1 followed by the click reaction to conjugate a 4.4 kDa DBCO-PEG mass tag to the labelled glycoproteins. 

After SDS-PAGE separation, immunoblotting with MCM antibodies enabled the detection of both the non-

glycosylated and glycosylated forms of MCM (indicated with arrows) from the chromatin fraction of 

asynchronous MCF7 cells (Fig. 1f). Using this approach, we were able to detect 2 sites on MCM2 and MCM4 

(corresponding to a shift of an estimated MW of 10.1 ± 1.5 kDa and 9.3 ± 1.1 kDa, respectively), the 

glycosylated forms representing less than 3% of both MCMs (Fig. 1f). For MCM6, we observed two distinct 

glycosylated species with 2 and 3 O-GlcNAc sites, representing 10.9% and 2.3% of MCM6 subunit, 

respectively. For MCM7, only one glycosylated form with 3 O-GlcNAc sites (MW ≈ 12.3 kDa) was detected, 

representing nearly 9% of the protein. However MCM proteins glycosylated at more than 2 or 3 sites may also 

exist in cells. They might be undetectable by immunoblotting due to steric hindrance of PEG molecules which 

could mask the epitopes and/or are stoichiometrically lower than the limit of detection.  

 

OGT stably interacts with several subunits of the MCM2-7 complex 

The progressive and timely regulated assembly of MCM proteins with their partners is very important for the 

regulation of MCM2-7 stability and chromatin loading [29, 42]. To investigate whether OGT tightly interacts 

with the MCM2-7 subunits, we first performed a GST Pull-Down assay, using recombinant GST-tagged OGT 

immobilized onto glutathione-sepharose beads as the bait [72]. Soluble and chromatin-bound extracts from 

asynchronous MCF7 cells were used as the source of prey proteins. The same experiment was conducted with 

GST as the negative control. After extensive washes and elution of proteins from the matrix with free 

glutathione, we first checked that GST and GST-OGT were efficiently eluted from glutathione-sepharose beads 

using an anti-GST tag antibody, also confirmed by reprobing the membranes with an anti-OGT (Fig. 2a, lower 

panel). Then MCM proteins were detected by Western blot in the glutathione-eluted fractions; cellular extracts 

from both fractions were used as positive controls for the detection of endogenous MCM proteins (Fig. 2b, lanes 

Inp). Except for MCM4 that doesn’t seem to bind to GST-OGT, both soluble and chromatin-bound MCM2/3/5/7 

were able to interact with GST-OGT and not GST (Fig. 2b). For MCM6, we could observe a signal in the GST-

OGT lane only in the chromatin-bound fraction. However, a faint band was also revealed in the negative control 

(GST alone), suggesting that MCM6 may also interact weakly with the GST tag in an unspecific manner (Fig. 

2b). The same experiment was conducted with MDA-MB-231 cellular extracts in which we could observe the 

interaction between GST-OGT and MCM3, MCM5 and MCM7 in the two subcellular fractions (Suppl. Fig. 1d). 

When we conducted the same experiment by adding 0.1% SDS in the MCF7 cellular extracts before incubation 

with beads, no signal was detected for any MCM in the GST-OGT lanes, indicating that SDS may denaturate the 

recombinant GST-OGT protein (data not shown). As we used here soft experimental conditions for the 
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incubation, washing and elution buffers, we cannot exclude that eluted MCM proteins bind to OGT in an indirect 

manner due to the presence of MCM2-7 hexameric complexes and MCM proteins sub-complexes [31, 34, 37]. 

Then we conducted co-immunoprecipitation experiments to ascertain the interaction of OGT with 

MCM proteins in living cells. We first tried in MCF7 cells but we couldn’t detect any co-immunoprecipitation of 

MCM proteins with endogenous OGT, corroborating the low OGT-bound/OGT-unbound MCM ratio that we 

observed using the GST Pull-Down approach (Fig. 2b). We used transitory OGT-transfected HEK293T cells and 

performed immunoprecipitation of either OGT or MCM from whole cell extracts. Western blot analysis showed 

that MCM3, MCM6 and MCM7 co-immunoprecipitate with OGT (Fig. 2c). Reverse IP allowed us to confirm 

that OGT interacts with MCM3 and MCM7 and, to a weaker extent, with MCM6 (Fig. 2d).  

We next performed Proximity Ligation Assay (PLA) experiments in asynchronous cells, using 

antibodies against OGT, MCM3, MCM4, MCM6 and MCM7 for which we could validate their use in indirect 

immunofluorescence (data not shown). The specificity of PLA signal between OGT and MCM was confirmed by 

doing control experiments with only one of the primary antibodies followed by the incubation with both minus 

and plus PLA probes (Fig. 2e, lower panel). We observed strong PLA fluorescent signal in nuclei for OGT-

MCM3, OGT-MCM6 and OGT-MCM7, in agreement with our GST Pull-down and co-IP results (Fig. 2b-d). In 

contrast, the signal obtained for OGT-MCM4 was not significantly different from the MCM4-negative control 

(Fig. 2e), indicating that OGT doesn’t stably interact with MCM4, as concluded by our co-IP results (Fig. 2c-d). 

It is important to note that we had to reduce the time of cell permeabilization to detect OGT-MCM interactions 

by PLA (2 min in 0.5% Triton X-100 instead of 20 min for the detection of MCM-MCM interactions by PLA, 

see Fig. 4b). This highlights that OGT is indirectly recruited to the chromatin via stable interaction with DNA-

binding factors and chromatin effectors [4, 10, 72], while MCM proteins strongly associate with DNA [28, 29]. 

Altogether our results indicate that OGT is a new partner of MCM2-7 complex through its direct binding with 

MCM3, MCM6 and MCM7 subunits.  

 

O-GlcNAcylation does not affect MCM steady-state levels but impacts the loading of MCM2, MCM6 and 

MCM7 to the chromatin 

To test whether OGT and O-GlcNAc dynamics could regulate the binding of MCM proteins to chromatin, we 

induced silencing of either OGT or OGA by small interfering RNA (siRNA). Efficiency of OGT (siOGT) and 

OGA (siOGA) silencing was determined by Western blot against both enzymes and O-GlcNAcylated proteins 

(O-GlcNAc), and compared with random silencing (siCtrl) (Fig. 3a-b). As previously reported, OGT silencing 

induces a strong decrease in OGA protein level. Conversely, OGA silencing induces a moderate decrease in 

OGT protein level (Fig. 3a-b) [19, 73, 74]. Efficiency of the subcellular fractionation was attested by Western 

blot with anti-GAPDH antibody as a control for the soluble fraction, and anti-Cdc6 antibody for the chromatin-

bound one (Fig. 3b). We did not observe any change in the expression of the six MCM2-7 subunits in the WCL 

when O-GlcNAcylation levels were disturbed (Fig. 3a-c), indicating that O-GlcNAc homeostasis may not 

regulate the steady-state level of MCM proteins.  

Western blot analysis of soluble and chromatin-bound fractions showed that chromatin association of 

MCM3, MCM4, MCM5 was not affected by OGT or OGA silencing (Fig. 3b-c). In contrast, down-regulation of 

OGT slightly decreased the association of MCM6, MCM7, and to a lesser extent MCM2, with chromatin, while 
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OGA silencing had no significant impact (Fig. 3b-c). For MCM7, this was accompanied by a moderate increase 

in the soluble fraction, suggesting that OGT may contribute to the loading or the stabilization of MCM7 onto 

chromatin. This hypothesis is reinforced by the strong interaction between OGT and MCM7 that we showed here 

for the first time (Fig. 2). We showed here a decrease in the chromatin loading of MCM2 when OGT was 

silenced, despite that no direct interaction between both proteins could be evidenced (Fig. 2c-e). MCM2 weakly 

interacts with the other MCM subunits and negatively regulates the helicase activity of the MCM4/6/7 

subcomplex in vitro [31, 37, 40, 75]. Our results suggest that OGT might indirectly regulate the MCM2-7 

complex via the regulation of MCM2-MCM interactions and the chromatin binding of MCM2.  

 

Perturbation of O-GlcNAc cycling destabilizes MCM2-7 complex. 

The MCM2-7 helicase complex is a heterohexameric complex but sub-complexes containing MCM2/4/6/7, 

MCM4/6/7 or MCM3/5 have also been isolated in mammalian cells [31–33, 36]. Furthermore, the proper 

association of MCM subunits is essential for the establishment of active ATPase sites necessary for the helicase 

activity of the complex [27]. On the other hand, O-GlcNAcylation can alter protein-protein interactions [7]. Then 

we wondered whether MCM O-GlcNAcylation and/or OGT-MCM interaction could be involved in MCM-MCM 

interactions. To address this question, O-GlcNAc levels were reduced by OGT silencing, and co-IP and PLA 

experiments were performed to analyse MCM-MCM interactions in the chromatin-bound protein fraction (Fig. 

4). OGT down-regulation induced a slight decrease of co-immunoprecipitation of MCM6 with MCM2, and 

MCM7 with MCM4 (Fig. 4a). In situ PLA confirmed these results: nuclear PLA signals between MCM2/MCM6 

and MCM4/MCM7 were significantly lower in siOGT-transfected cells compared with those in siCtrl-

transfected cells (Fig. 4b). In contrast, interaction between MCM4 and MCM6 tended towards a decrease in 

siOGT-cells, while differences in intensity of both co-IP and PLA fluorescence signals were not statistically 

significant between siCtrl and siOGT conditions (Fig. 4a-b, middle panels). To confirm that the decrease in 

MCM/MCM interactions that we observed in siOGT cells was due to the downregulation of OGT, we performed 

a rescue experiment by transfecting siOGT cells with a plasmid coding for a FLAG-tagged and siRNA-resistant 

OGT (3X-OGT-RSI). As shown in Fig. 4c, PLA signals obtained for both MCM2/MCM6 and MCM4/MCM7 

were significantly restored when OGT was overexpressed in synchronized MCF7 cells, indicating that the 

presence of OGT may be important to maintain such interactions. To determine whether this could be related to a 

defect in O-GlcNAcylation of MCM proteins, we next performed immunoprecipitation of these four subunits 

from the chromatin-bound fractions of synchronized MCF7 cells and revealed their O-GlcNAc status by 

Western-blot. Interestingly, the disturbance in MCM/MCM interactions upon OGT silencing is concomitant with 

a decrease of the O-GlcNAcylation level of MCM2, MCM4, MCM6 and MCM7 in the chromatin-bound fraction 

(Fig. 4d). 

Then we perturbed O-GlcNAc cycling in synchronized MCF7 cells by using either 5S-G or ThG to 

inhibit the catalytic activity of OGT or OGA, respectively [63, 64] (Suppl. Fig. 2). Surprisingly, we were not 

able to detect any significant and reproducible changes in MCM2/MCM6 and MCM4/MCM7 interactions in 5S-

G-treated cells, as shown by co-IP and PLA experiments (Fig. 5a-b). However, both approaches showed a 

moderate decrease in MCM2/MCM6 interaction in the chromatin-bound fraction when O-GlcNAc levels were 

increased through OGA inhibition by ThG treatment (Fig. 5a-b). It is important to note that we couldn’t detect 
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MCM2 when MCM6 was immunoprecipitated (data not shown), probably due to the weak association of MCM2 

with MCM6 [40]. Moreover, MCM4/MCM6, MCM4/MCM7, and MCM3/MCM5 interactions didn’t seem to be 

sensitive to OGT inhibition (Fig. 5c-e). Co-immunoprecipitation of MCM3 and MCM5 was also not 

significantly perturbed by ThG (Fig 5e). However, PLA approach shows that inhibition of OGA induced a 

moderate decrease in MCM4/MCM7 interactions (Fig. 5c), whereas it tended to increase MCM4/MCM6 co-

immunoprecipitation albeit in a non-significant manner (Fig. 5d), that we could confirm by in situ PLA (data not 

shown). 

 

Effect of perturbation of O-GlcNAc cycling on S phase progression and DNA replication. 

We next determined whether dysregulation in O-GlcNAc homeostasis would affect DNA replication and S phase 

progression. We used synchronized MCF7 cells that were either transfected by siRNA or treated with potent 

inhibitors of OGT and OGA. After serum stimulation, cells were harvested at different time points and cell cycle 

progression was analysed by flow cytometry after staining with PI. DNA replication rate was also evaluated by 

labelling nascent DNA within the last 15 min of serum stimulation with EdU. After click chemistry reaction and 

PI staining, the percentage of EdU positive cells was determined by flow cytometry. In parallel, cells were 

seeded and treated with either siRNA or inhibitors, and counted every day during 5 days. 

For each experiment, the efficiency of treatments was systematically confirmed by Western Blotting (Suppl. Fig. 

3). It is noteworthy that the decrease in O-GlcNAcylation levels induced by 5S-G was accompanied by a 

significant decrease in OGA expression, whereas elevation of O-GlcNAcylation levels induced by ThG 

treatment was accompanied by a decrease in OGT expression and an increase of OGA protein (Suppl. Fig. 3a, 

see also Suppl. Fig. 2). Similarly, as we observed above (Fig 3), silencing of OGT strongly decreased OGA 

protein level. Conversely silencing of OGA decreased the levels of OGT, albeit to a lesser extent (Suppl. Fig. 

3b).  

As shown in Fig. 6a, inhibition of OGT by 5S-G induced a moderate decrease in the percentage of MCF7 cells in 

S phase compared with control condition (35.6% versus 43% at 15H; 32 % versus 52% at 24H). However, this 

was not correlated with changes on the rate of EdU incorporation (Fig. 6b), although the cellular growth of 5S-

G-treated cells was significantly reduced by 30% after five days of treatment (Fig. 6c). Likewise, inhibition of 

OGA did not modify the DNA replication rate but tended towards a slowdown in S phase progression; this was 

accompanied with a decrease of 25 % of proliferation after 5 days of treatment (Fig. 6a-c). Surprisingly, S phase 

progression of siOGT- and siOGA-transfected MCF7 cells was not significantly affected compared with that of 

control siRNA-transfected cells, nor was the rate of DNA replication (Fig. 6d-e). In agreement with these results, 

no difference in cellular growth was observed between siCtrl, siOGT and siOGA conditions in MCF7 cells (Fig. 

6f).  

 

 

Discussion 

The heterohexameric MCM2-7 helicase complex is crucial for the initiation of DNA replication and is 

finely regulated by post-translational modifications, including phosphorylation. We previously showed that 

MCM3, MCM6 and MCM7 were O-GlcNAcylated by OGT [22]. Here we demonstrate that MCM2, MCM4 and 
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MCM5 are also O-GlcNAcylated in human cells (Fig. 1a-b). This result is strengthened by two recent works 

which have identified MCM2, MCM3, MCM4 and MCM5 as O-GlcNAc-modified proteins using metabolic 

incorporation of chemical GlcNAc analogue probes combined with click chemistry labelling [76, 77]. Using a 

mass-tagging strategy, we show that the O-GlcNAcylated MCM proteins are of low stoichiometry (from less 

than 3% for MCM2 and MCM4, to 13% for MCM6) (Fig. 1f), as it has been evidenced for many O-GlcNAc 

modified proteins [78, 79]. We could detect 2 O-GlcNAc sites on MCM2 and MCM4, 2 and 3 O-GlcNAc sites 

on MCM6, and 3 O-GlcNAc sites on MCM7; although we cannot exclude that some of the O-GlcNAc sites may 

not have been detectable using this approach. Many phosphorylation sites have been characterized on MCM 

proteins, especially within the N-terminal extension of MCM2 and MCM4; some of them are known to play 

crucial roles in regulating MCM2-7 loading and helicase activity [53–58, 60–62]. It is tempting to speculate that 

O-GlcNAc modification may cooperate or compete with phosphorylation to regulate MCM2-7 complex. 

Therefore we performed the in silico analysis of the potential O-GlcNAc/phosphorylation crosstalk according to 

the recently published stringent motif (S/T)-P-(V/A/T)-(gT/gS) [14]. We also used the YinOYang1.2 server to 

predict the O-GlcNAc sites on MCM proteins, by taking into account only the high scoring potential O-GlcNAc 

sites (www.cbs.dtu.dk/services/YinOYang). Such prediction tool has to be taken with caution and experimental 

data are required to ascertain their localization. By using the human primary sequences of MCM2 to MCM7 

proteins of the UniProtKB database, we found the specific crosstalk motif [
611

SPVT
614

] within the sensor 2 

subdomain of MCM3, which is adjacent to the potential predicted O-GlcNAc site at Thr610. It is noteworthy that 

phosphorylation of Ser611 of MCM3 has been identified by mass spectrometry in human leukaemia cells but to 

date, no functional role has been assigned to this residue [80]. For MCM4, we found the motif [
3
SPAS

6
] in the 

N-terminal extension of which is known to be phosphorylated at multiple sites (www.PhosphoSitePlus) [53, 56]. 

Interestingly, three highly potential O-GlcNAc sites are located within the same N-terminal region of MCM4, at 

position Ser2, Ser3 and Thr7, suggesting that the N-terminal tail of MCM4 may be targeted by both kinases and 

OGT to regulate MCM2-7 helicase complex. On the other hand, for MCM5 subunit, we found the degenerated 

crosstalk motif [
133

SPSS
136

], which is located at the hinge of two structural subdomains of the N-terminal domain 

(NTD) of MCM5, NTD-A (A subdomain of NTD, amino acids 32-129) and oligonucleotide/oligosaccharide-

binding (OB)-fold (amino acids 136-172) (www.ebi.ac.uk/interpro/InterPro) [28]. It is of interest that the two 

predicted O-GlcNAc sites of MCM5, Ser135 and Ser136, are adjacent to Ser133 which is a phosphorylation site 

with unknown function [81]. Although no such O-GlcNAc-phospho crosstalk motif has been found for MCM2, 

the potential O-GlcNAc site Thr25 is close to Ser27 which is phosphorylated by Cdc7/Dbf4 and takes part in the 

initiation of DNA replication [54, 59]. This in silico analysis strongly suggests that a crosstalk may occur 

between O-GlcNAcylation and phosphorylation on MCM proteins, adding a layer of complexity to finely 

regulate MCM2-7 complex. Further mass spectrometry analysis is now required to unambiguously identify the 

glycosylation sites of human MCM proteins and experimentally test this hypothesis. 

Our results show that OGT glycosylates the 6 subunits of MCM2-7 complex when quiescent cells 

progress normally in S phase, and that O-GlcNAcylated MCM proteins are present nearly exclusively in the 

chromatin fraction (Fig. 1d-e). This indicates that O-GlcNAcylation of MCM2-7 complex may occur mostly 

when MCM proteins are loaded onto chromatin. Another possible explanation to the lack of O-GlcNAc-enriched 

MCM proteins in the soluble fraction is that the turnover of MCM protein O-GlcNAcylation may be higher in 

the nucleoplasmic soluble fraction in which both OGT and OGA were present, than in the chromatin-bound 
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fraction in which we could not detect OGA (Fig. 1c, Fig. 3b, Suppl. Fig. 2). O-GlcNAcylation of MCM proteins 

might help in the recruitment of MCM2-7 complex onto the chromatin, as described for the phosphorylation of 

MCM2 and MCM3 [54, 60]. In contrast, for MCM4, O-GlcNAc modification could act in an opposite manner to 

phosphorylation, since highly phosphorylated MCM4 is less tightly bound to chromatin than 

underphosphorylated form of MCM4 [31].  

 

On the other hand, we demonstrate that OGT strongly interacts with distinct MCM2-7 subunits in 

human cells. Indeed, biochemical and in situ approaches show that OGT is a new partner of MCM2-7 complex 

through its direct binding with MCM3, MCM6 and MCM7 subunits (Fig. 2). Our findings are in agreement with 

previous studies that demonstrate that the recruitment of MCM2-7 partners occurs via their specific interaction 

with one or two MCM subunits, as it has been reported for the interactions of the licensing factor Cdt1 with 

MCM6 [82] and Cdc45 with MCM2 and MCM5 [43]. It has also been shown for the DDK subunits: whereas 

Dbf4 strongly binds to MCM2, Cdc7 interacts with both MCM4 and MCM5 subunits [83]. Our data suggest that 

OGT might regulate the chromatin loading of MCM6 and MCM7 through this strong interaction. Indeed, down-

regulation of OGT protein level by siRNA decreases the chromatin-bound level of MCM6 and MCM7 (Fig. 3b). 

This hypothesis is reinforced by the destabilization of MCM2/MCM6 and MCM4/MCM7 interactions when 

OGT is silenced in synchronized MCF7 cells (Fig. 4a-c). Given the fact that we did not observe significant 

changes in these interactions when OGT is inhibited by 5S-G (Fig. 5a-c) whereas OGT rescue experiment in 

siOGT-transfected cells could restore them (Fig. 4c), we hypothesize that in normal culture conditions, OGT 

protein might be more important than its catalytic activity and act as a scaffold protein to regulate such 

interactions and recruit MCM2-7 complexes to the chromatin through its direct binding to MCM6 and MCM7 

subunits. Moreover, our data show that the destabilization of the interactions between MCM2/MCM6 and 

MCM4/MCM7 are concomitant with a decrease in the O-GlcNAcylation levels of these MCM subunits (Fig. 

4d). This suggests that O-GlcNAc modification of MCM proteins may be also involved in the stabilization of 

MCM2-7 complex onto chromatin. Since this glycosylation is known to stabilize protein-protein interactions [4, 

6], we would have expected in an elevation of MCM/MCM interactions upon OGA inhibition. But it did not, 

since the increase of the overall O-GlcNAcylation levels in ThG treated cells slightly downregulated the binding 

of MCM2/MCM6 and MCM4/MCM7 in S-phase synchronized MCF7 cells (Fig 5b-c). Altogether, our data 

suggest that O-GlcNAc homeostasis might contribute to stabilize MCM-MCM interactions. Further 

investigations are needed to decipher the molecular mechanisms underlying the regulation of the chromatin 

loading and stabilization of MCM2-7 complex through the recruitment of OGT and O-GlcNAcylation of the 

MCM2-7 complex subunits.  

 

Here we perturbed O-GlcNAc cycling by using either siRNA or selective and potent inhibitors of the O-

GlcNAc enzymes, OGT and OGA. As previously reported, in case of disruption to O-GlcNAc homeostasis, cells 

adjust OGT and OGA expression to compensate for the changes in O-GlcNAc levels, OGA protein expression 

being more sensitive to O-GlcNAc homeostasis than OGT. Reduction in O-GlcNAc levels induces a decrease in 

OGA protein level and reciprocally, elevation of O-GlcNAcylation induces a decrease in the expression of OGT, 

(Fig. 3, Suppl. Fig. 2-3) [16, 19, 22, 64, 73, 74, 84–86]. Similar results were obtained in MDA-MB-231 breast 

cancer cells, but also in the colorectal cell lines HCT116, HT29 and CCD841CoN (unpublished data). This 
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mutual regulation of OGT and OGA to compensate the loss of O-GlcNAc homeostasis is far to be fully 

understood. To date, no mechanism has been established that can explain how OGA protein is as much 

downregulated when OGT is inhibited or silenced. However, Zhang and collaborators have shown that Thiamet 

G increases the transcription of OGA mRNA [84]. Moreover it has been recently demonstrated that OGT mRNA 

levels are controlled by an intron splicing silencer (ISS) that induces the nuclear degradation of the mRNA under 

high O-GlcNAcylation conditions, thus allowing a decrease in OGT protein levels [85]. This may explain the 

lower levels of OGT that we and others have observed upon inhibition or silencing of OGA. In contrast, an 

overall decrease of O-GlcNAcylation upon OGT inhibition induces an efficient splicing of OGT mRNA to 

produce a cytoplasmic mRNA that will be further translated [85].  

 

Neither silencing nor inhibition of the O-GlcNAc-regulating enzymes perturbs significantly the rate of 

DNA synthesis in synchronized human MCF7 cells (Fig. 6b, e). Nevertheless, the S phase progression and 

growth rate slow down when OGT is inhibited and, to a lesser extent when OGA is inhibited (Fig. 6a, c). Thus, 

the delay in S-phase entry induced by OGT or OGA inhibition may not be related to a defect in DNA synthesis 

in MCF7 cells. It could be due to an abnormal activity or expression of cell cycle-related proteins that are known 

to be directly or indirectly regulated by OGT, like transcription factors, Cyclin/CDK, or cell cycle inhibitors [15, 

21, 22, 87]. Collectively, our results indicate that the effects of OGT down-regulation on MCM proteins that we 

report here for the first time are not sufficient to disrupt S phase progression and DNA synthesis in human MCF7 

cells. Although we assessed the DNA helicase activity in an indirect manner through the measurement of Edu 

incorporation, our results are consistent with previous work demonstrating that an acute down-regulation of each 

one of the MCM2-7 subunits by silencing approach does not slow down the replication fork speed during DNA 

elongation in human cells [50]. Therefore we believe that when cells normally progress in S phase, perturbation 

of O-GlcNAc cycling may destabilize MCM/MCM interactions but without interfering with MCM2-7 helicase 

activity and DNA replication. The possible explanation is that a large excess of MCM2-7 complexes are loaded 

to chromatin during G1 phase to license dormant replication origins that are not used during normal DNA 

replication but are required under conditions of replicative stress to maintain genome integrity [48-50]. This 

hypothesis is reinforced by recent studies highlighting that OGT relocates to the sites of DNA damage and 

targets key signalling proteins and DNA polymerase  in response to DNA damage [13, 88, 89]. In conclusion, 

our work demonstrates that OGT is a new partner of MCM2-7 complex and regulates MCM/MCM interactions. 

Although further investigations are needed to investigate the molecular mechanisms in detail, it opens up new 

prospects for the role of OGT and O-GlcNAc post-translational modification in the regulation of DNA 

replication under conditions of unperturbed replication as well as replicative stress. 
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Figure Captions 

Fig. 1 All MCM2-7 subunits are O-GlcNAcylated and mainly found in the chromatin-enriched fraction. a MCF7 

cells were treated overnight with 1 µM ThG before lysis and immunoprecipitation of MCM2, MCM4 and 

MCM5 followed by Western blot analysis. Membranes were first incubated with anti-O-GlcNAc antibody 

(RL2), stripped and then reprobed with anti-MCM antibodies.  b MCF7 cells were synchronized in cell cycle by 

starvation (Time point 0) then released in S phase (15H, 18H). Cell cycle profiles were determined by FACS 

analysis after DNA staining with PI. Percentage of cells in G0/G1, S and G2/M phases are indicated. c The 

nucleocytoplasmic soluble fraction (Sol.) and chromatin-bound fraction (Chrom.) were obtained by subcellular 

fractionation of proteins from synchronized cells. Samples were analysed by Western blot for the indicated 

proteins (n.s., non-specific band). d O-GlcNAcylated proteins from soluble (Sol.) and chromatin-bound 

(Chrom.) fractions were enriched on sWGA-agarose beads. Incubation with excess of GlcNAc (0.5 M) was used 

as negative control (C
-
). MCM proteins were detected by Western blot before (Inp) and after enrichment on 

sWGA lectin (sWGA-bound). Equal loading was confirmed by Ponceau staining of the membranes. e O-

GlcNAcylated proteins from chromatin-bound proteins of synchronized MCF7 cells were labelled with GalNAz 

and a biotin-alkyne probe (Input click-it) before enrichment on avidin-agarose beads (Avidin-bound). Negative 

controls were done by omitting UDP-GalNAz (C
-
). Samples were analysed by Western blot for MCM proteins 

before (Input) and after click-chemistry. (*) these bands correspond to the remnant signal for MCM2, despite 

membrane stripping.  f O-GlcNAc-modified proteins from whole cell extract of MCF7 cells were enzymatically 

labelled with GalNAz and chemically modified with a 4.4 kDa DBCO-PEG mass tag (PEG +) or incubated with 

DMSO (PEG-) as negative control. MCM proteins were detected by Western blot and the number of O-GlcNAc 

sites and O-GlcNAcylation stoichiometry (indicated as the percentage of total MCM protein) were determined as 

reported in Material and Methods section.  

 

Fig. 2 OGT stably interacts with several subunits of MCM2-7 complex. a GST-pull down assay using OGT-GST 

and GST (negative control) was performed using soluble (Sol.) and chromatin-bound (Chrom.) protein fractions 

from asynchronous MCF7 cells (Inp). Western blot analysis was performed using anti-GST and anti-OGT 

antibodies. b Eluted MCM proteins were detected by Western blot after GST-pull down assay c, d OGT and 

subunits of MCM2-7 were immunoprecipitated from whole cell extracts of HEK293T cells transiently 

transfected with HA-OGT. Co-immunoprecipitated proteins were detected by Western blot using the indicated 

antibodies. e In situ Proximity ligation assay was performed in fixed asynchronous MCF7 cells shortly 

permeabilized with 0.5% T-X100 in PBS to visualize interaction of endogenous OGT with MCM3, MCM4, 

MCM6 or MCM7. Nuclei were counterstained with DAPI and negative controls were performed by incubating 

fixed cells with only one of the primary antibodies (MCM-neg and OGT-neg). Quantification of PLA is 

presented as scatter dot plot; each dot represents the total signal of PLA in the nucleus of a single cell. Bars 

represents the median with interquartile range for each experience (one-way ANOVA test, * p<0.05). Scale bar, 

30 µM.  

 

Fig. 3 Down-regulation of OGT decreases the chromatin loading of MCM2, MCM6 and MCM7. MCF7 cells 

were treated with siRNA (Ctrl, OGT, OGA) for 60 h before harvesting. a The whole cellular extracts (WCL) and 
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b the soluble (Sol.) and chromatin-bound (Chrom.) protein fractions were analysed by Western blot using anti-

OGT, -OGA and O-GlcNAc proteins antibodies to confirm the efficiency of siRNA transfection. MCM proteins 

were also detected by Western blot using specific antibodies. Equal loading was confirmed using GAPDH 

antibodies (WCL) and Ponceau staining of the membranes (Sol./Chrom.). GAPDH and Cdc6 were used as 

markers for the soluble and chromatin fractions, respectively. c Band intensity was quantitated using Image J ; 

the relative intensity of each MCM protein level in siOGT and siOGA conditions was normalized to that 

obtained for the siCtrl condition (100%) and depicted as a graph. Statistical analysis was performed by Student’s 

t-test. Values are mean ±S.E.M. of at least 4 independent experiments (** p<0.05, * p<0.1).  

 

Fig. 4 Silencing of OGT affects MCM2/MCM6 and MCM4/MCM7 interactions. MCF7 cells were transfected 

with siRNA (siCtrl, siOGT), then synchronized in S phase by stimulation with serum (18H) after serum 

starvation. a Chromatin-bound protein fraction was used for immunoprecipitation of MCM2 and MCM4 and 

Western blot analysis of co-immunoprecipitated MCM subunits. Band signal intensity was measured and 

statistical analysis was performed by Student’s t-test. Values are mean ±S.E.M. of 3 independent experiments 

(** p<0.05). b MCM-MCM interactions were detected by in situ PLA and immunofluorescent confocal 

microscopy after nuclei counterstaining with DAPI. Quantification was performed as in Fig. 2e. Bars represents 

the median with interquartile range (one-way ANOVA test, * p<0.05). Scale bar, 15 µM. c pCMV-3X or 3X-

OGT-RSI plasmids were transfected in siOGT MCF7 cells for 24 hours. Then cells were synchronized in S 

phase and MCM-MCM interactions were detected by in situ PLA, as described above (t-test, *** p<0.001). 

Scale bar, 20 µM. d MCM2, MCM4, MCM6 and MCM7 were immunoprecipitated from the chromatin-bound 

protein fractions and Western-blots were revealed using the anti-O-GlcNAc antibody (RL2). Membranes were 

stripped and reincubated with the corresponding anti-MCM antibodies. 

 

Fig. 5 Hyper O-GlcNAcylation induced by OGA inhibition alters MCM/MCM interactions. Serum-starved 

MCF7 cells were released in S phase by serum addition (18H), in presence of DMSO (Ctrl), 5S-G or ThG, 

before harvesting. a, d MCM proteins were immunoprecipitated from the chromatin-bound fraction and samples 

were analysed by Western blot using the indicated antibodies. Band signal intensity was measured and statistical 

analysis was performed by Student’s t-test. Values are mean ±S.E.M. of 3 independent experiments (** p<0.05). 

b, c MCM-MCM interactions were detected by in situ PLA and immunofluorescent confocal microscopy. Nuclei 

were counterstained with DAPI. Quantification was performed as in Fig. 2e. Bars represents the median with 

interquartile range (one-way ANOVA test, * p<0.05). Scale bar, 10 µM.  

 

Fig. 6 Perturbation of O-GlcNAc cycling does not affect DNA replication rate in MCF7 cells. Serum-starved 

MCF7 cells were released into the cell cycle by serum addition for the indicated times in presence of OGT and 

OGA inhibitors (5S-G, ThG) or DMSO (Ctrl). a Cell cycle distribution was determined by flow cytometry after 

DNA staining with PI. Percentage of cells in S phase is indicated for each time point. Results are representative 

of three independent experiments. b EdU was added during the last 15 min of serum stimulation to label nascent 

DNA using the Click-It EdU flow cytometry assay, and DNA content was stained with PI before flow cytometry 

analysis. Percentage of EdU-positive cells is indicated for each time point. Results are representative of 3 

independent experiments. c One day after seeding, MCF7 cells were treated with DMSO (Ctrl), 5S-G or ThG. 
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Cells were counted every day for 5 days and medium was replaced every two days (with inhibitors). Values are 

mean ±S.E.M. of 3 independent experiments. d MCF7 cells were transfected with siRNA (siCtrl, siOGT, 

siOGA) and then synchronized as in (a). Results are representative of 3 independent experiments. e MCF7 cells 

were treated as above. Percentage of EdU-positive cells was obtained as in (b). Results are representative of 3 

independent experiments. f MCF7 cells were transfected with siRNA (siCtrl, siOGT, siOGA). Cells were 

counted every day for 5 days and medium was replaced every two days (with siRNA). Values are mean ±S.E.M. 

of 3 independent experiments. 
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Supplementary Figure Captions 

 

Suppl. Fig. 1 O-GlcNAcylated MCM2-7 subunits are mainly found in the chromatin-enriched fraction in MDA-

MB-231 cells. Serum-starved MDA-MB-231 cells were released into the cell cycle by serum addition for the 

indicated times. a Cell cycle distribution was determined by flow cytometry after DNA staining with PI. 

Percentage of cells in G0/G1, S and G2/M phases are indicated. b The nucleocytoplasmic soluble (Sol.) and 

chromatin-bound fractions (Chrom.) were analysed by Western blot for the indicated proteins. c O-

GlcNAcylated proteins from both fractions were enriched on sWGA-agarose beads. Incubation with excess of 

GlcNAc (0.5 M) was used as negative control (C
-
). MCM proteins were detected by Western blot before (Input) 

and after enrichment on sWGA lectin (sWGA-bound). d Recombinant GST-tagged OGT (OGT-GST) and GST 

alone (GST) were immobilized onto glutathione sepharose beads. GST-pull down assay was performed using 

soluble (Sol.) and chromatin-bound (Chrom.) protein fractions from asynchronous MDA-MB-231 cells (Inp). 

Eluted MCM proteins were detected by Western blot and anti-GST antibodies were used to confirm the presence 

of the recombinant proteins after elution.  

 

Suppl. Fig. 2 Efficiency of inhibition of OGT and OGA in MCF7 cells. Serum-starved cells were released in S 

phase by serum addition for 18 h in presence of DMSO (Ctrl), 5S-G (50 µM) or ThG (1µM), before harvesting. 

Proteins from subcellular fractions (Sol. and Chrom.) were separated by SDS-PAGE and analysed by Western 

blot for the indicated proteins. Equal loading was confirmed by Ponceau staining of the nitrocellulose membrane.  

 

Suppl. Fig.3 Serum-starved MCF7 were released in S phase by serum addition for the indicated times. a DMSO 

( 1/1000, Ctrl), 5S-G (50 µM) or ThG (1 µM) was added at the same time as serum. b cells were transfected with 

siRNA 24 hours before serum starvation. Whole cell lysates were resolved by SDS-PAGE and analysed by 

Western blot for the indicated proteins. 
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