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Abstract

Phylogenetic networks are rooted directed acyclic graphs used to depict the evolution of a set of
species in the presence of reticulate events. Reconstructing these networks from molecular data is
challenging and current algorithms fail to scale up to genome-wide data. In this paper, we introduce
a new width measure intended to help design faster parameterized algorithms for this task. We study
its relation with other width measures and problems in graph theory and finally prove that deciding
it is NP-complete, even for very restricted classes of networks.

1 Introduction
Phylogenetic networks are rooted directed acyclic graphs used to depict the evolution of a set of species in
the presence of reticulate events such as hybridizations, where two species combine their genetic material
to create a new species (see nodes H1 and H2 in Fig. 1(left)) [9]. Herein, leaves represent the studied
species and the root their most recent common ancestor, from which time flows away (as indicated by the
direction of the arcs). Internal vertices represent either speciation events (a single parent) or reticulation
events (several parents). Each arc represents the evolution of a species in time, during which each gene
in the species genome can change due to mutations, allowing different forms of a gene (alleles) to appear
among species, and even among individuals within the same species. Though the species history is
modeled by a network, the evolution of a single non-recombinant gene can always be depicted by a tree,
see Fig. 1(center), embedded in the species network, see Fig. 1(right).

Usually, a species network is inferred from a DNA dataset S = {S1, . . . , SL} composed of L genes
sequenced from the genome of one or several individuals for each studied species [15]. To find the best
phylogenetic network explaining S, a possibility is to sample many different networks N and compute the
probability P (S|N) of each N given S. Without giving all details here (they can be found for instance in
[15]), P (S|N) can be computed from the individual probabilities P (Gi|N) of gene trees G1, . . . , GL for the
L loci given N . In turn, each P (Gi|N) can be computed from the probabilities of all possible embeddings
of Gi in N , weighted by their respective probability depending on Si, i.e. P (Gi|N,Si). See Fig. 1(center)
for a gene tree and Fig. 1(right) for one of its possible embeddings within the network. Thus, heavy compu-
tations are needed to obtain P (S|N) and current algorithms fail to scale to genome-wide data. To design
faster algorithms, it is possible to integrate out the possible gene trees and embeddings, as done in [5]. To
apply this technique to network inference we designed new partial likelihood formulae to compute P (S|N)
and stumbled on a new width parameter for DAGs that clearly puts into evidence why our approach is
faster than existing ones, allowing us to handle several real-world datasets within minutes instead of
weeks [12]. In this paper, we introduce this new parameter, which we call scanwidth, we study its relation
with other parameters and problems in graph theory and finally prove that deciding it is NP-hard. A com-
mon and intuitive idea when working with phylogenetic networks is to exploit the observation that reticu-
lation should be rare in practice to design algorithms that are fast for only mildly reticulate networks. This
tree-likeness is often measured by the tree-width of the input. However, tree decompositions are in no way
obligated to follow the leaf-to-root structure that phylogenies naturally impose and this makes dynamic
programming on decomposition trees unnecessarily complicated. The scanwidth remedies this problem by
forcing the leaves of the network to correspond to the leaves of the decomposition tree, yielding a form of
tree-like cutwidth. Thus, our work broadens the arsenal of width measures that can be – and recently have
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Figure 1: Left: A phylogenetic network N depicting the evolutionary history of species A, B, and C.
Center: An evolution scenario for a gene, given the sequences of one individual from species A, one from
C and two from B, where different alleles (boxes) are observed: gray for A and for one individual from
B, and white for the other individuals. The arc containing the mutation from the white to the gray allele
is marked. Right: An embedding (gray arcs) in N of this gene evolution scenario.

been – used to attack hard problems in phylogenetics [4, 8, 11]. To get an intuition, imagine a (possibly
red) scanner line traversing a network from the leaves to the root; at any moment, its width is the number
of arcs it cuts. As the line moves up, it traverses nodes, changing the set of arcs it cuts and, hence its width.
The cutwidth of the network is the largest width achieved by such a traversing line. Now, consider multiple
independent scanner lines, each one scanning an arc incoming to a different leaf of the network. Whenever
a node could be passed by two different lines, they are merged to form a single one. This naturally gen-
eralizes the cutwidth to a stronger (that is, smaller) width measure that we call scanwidth. As with the
cutwidth, different orders in which the nodes are passed imply different values of the final width and the
goal is to minimize it. In many optimization approaches for phylogenetic networks, a network is traversed
from the leaves up to its root, while computing some quantities. For some applications, computations on
tree-parts can be done independently for each arc but, when meeting a reticulation node, computations
on both arcs entering the node have to be considered jointly. This inter-dependence makes computing
the required quantities more time consuming. In such cases, one really wants to process the network
while minimizing the numbers of arcs considered jointly. This is captured by the scanwidth parameter.

In this work, we show that deciding the scanwidth of a network relates to an old problem in program
optimization called Register Sufficiency (PO1 of Garey and Johnson [7]). Our proof comprises a
non-trivial adaptation of an NP-hardness proof [13] for the latter problem to a very restricted class of
rooted DAGs, on which Register Sufficiency coincides with deciding the cutwidth and the scanwidth
(offset by 1). This hardness proof, as well as the scanwidth parameter itself, may be of independent
interest to the design of algorithms for other problems on DAGs.

Note that computing the scanwidth and using it as a parameter for other algorithms are two different
pairs of shoes and, though a parameterized algorithm may require a tree extension (see Section 2) to be
given, there is still hope that the scanwidth can be approximated efficiently. Thus, in analogy with other
highly successful (width) parameters such as the treewidth, the hybridization number or the hybridization
level [2, 3, 10, 14], we point out that being NP-complete to compute does not hurt the practical usefulness
of the scanwidth.

We defer some proofs to a long version of this paper.

2 Preliminaries
Phylogenetic Networks. Let G be a leaf-labelled, directed, acyclic graph with a single source (which
is called “root”). The in-degree of a vertex v in G is deg−G(v) and its out-degree is deg+

G(v), the sum of
those being the degree of v. If all vertices of G have either in-degree one and out-degree zero (leaves), in-
degree at most one and out-degree at least two (tree-vertices), and in-degree at least two and out-degree
one (reticulation), then G is called rooted phylogenetic network (henceforth network). Note that the root
is a special tree-vertex. We denote the set of leaves of G by L(G), the set of vertices by V (G) and the
tree-vertices by VT (G). If the root has degree two, the internal vertices have degree three, and the leaves
have degree one, then G is called binary. If G contains a u-v-path for vertices u and v, we say that u is
an ancestor of v (and v is a descendant of u) and we write v <G u.

Vertex Orderings. A linear ordering σ of a subset V ′ of the vertices of a network G is called G-
respecting if u <G v ⇒ u <σ v for all u, v ∈ V ′. A G-respecting ordering σ over V (G) is called an
extension (or “reverse topological order”) of G, see Fig. 2. We call a tree Γ on V (G) a tree extension for
G if x <G y ⇒ x <Γ y for all x, y ∈ V (G). We denote the vertex at position i in σ by σ(i) and σ−1(u)
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Figure 2: Left: For an extension σ each position i induces a cut through G separating the vertices
in σ[1..i] (below gray line) from σ[i + 1..] (above gray line). Right: G with vertices linearly arranged
according to σ.

returns the position of the vertex u in sigma. Since positions and vertices are in bijection, we sometimes
use vertices to represent their positions. We denote the sub-order of σ restricted to the elements of a set U
by σ[U ] and we abbreviate σ[{σ(i), σ(i + 1), . . . , σ(j)}] =: σ[i..j]. A position i of σ is called a milestone
if σ(i) is a tree-vertex and σ is called stable if all maxima (wrt. ≤G) in σ[1..i] for any milestone i are
tree-vertices (that is, each reticulation in σ[1..i] has a parent in σ[1..i]). For disjoint orders σ and π let
σ ◦π denote the concatenation of σ with π (that is, σ followed by π). For a set X, we let (X) denote any
order on the elements of X. Further, for distinct vertices or disjoint vertex sets X1, X2, . . ., we abbreviate
(X1) ◦ (X2) ◦ . . . =: (X1, X2, . . .).

(Directed) Cutwidth. For an extension σ of a DAG G and a position i, we will use CWσ
i to denote

the set of arcs from a vertex in σ[i + 1..] to a vertex in σ[1..i] and cwσ
i := |CWσ

i | is called the cutwidth
of σ at position i. The cutwidth of σ is cw (σ) := maxi cwσ

i and the cutwidth of G, denoted cw (G), is
the minimum of cw (σ) over all extensions σ of G. We allow i to be a vertex instead of a position, as σ
is a bijection between the two.

(Directed) Register width. For an extension σ of G and a position i, we will use RWσ
i to denote

the set of vertices in σ[1..i] that have a parent in σ[i+ 1..] and rwσ
i := |RWσ

i | is called the register width
(also known as “vertex cut” or “separation” [6]) of σ at position i (again, we allow i to be a vertex instead
of a position, as σ is a bijection between the two). The register width of σ is rw (σ) := maxi rwσ

i and the
register width of G, denoted rw (G), is the minimum over all extensions σ for G of rw (σ).

Theorem 1. For all binary networks G, we have cw (G) = rw (G) + 1.

In order to prove Theorem 1, we first need some definitions and intermediary observations. First, observe
that swapping vertices u and v at position i and i+ 1 in an extension σ for G increases cwσ

i by exactly
(deg−G(v)− deg−G(u)) + (deg+

G(u)− deg+
G(v)), without changing cwσ

j for any j 6= i. However, such a swap
is only possible if u and v are incomparable in G as, otherwise, either σ or the result of the swap is not
an extension of G.

Observation 1. Let σ extend G and let u and v occur consecutively in σ.
(a) Then, cwσ

v = cwσ
u + deg−G(v)− deg+

G(v).
(b) If u 6<G v and deg−G(v) − deg+

G(v) ≤ deg−G(u) − deg+
G(u) then cw (π) ≤ cw (σ) where π results from

swapping u with v in σ.

For binary G, Observation 1(a) implies that cwσ
i > cwσ

i+1 if σ(i + 1) is a tree-vertex, and cwσ
i < cwσ

i+1,
otherwise. Thus, the maximum cutwidth is attained at a reticulation or leaf followed by a tree-vertex.

Lemma 1. Let i be a position of an extension σ for G such that cwσ
i = cw (σ). Then, σ(i + 1) is a

tree-vertex and σ(i) is not.

Proof. If u := σ(i) is a tree-vertex, then deg−(u) < deg+(u) and, by Observation 1(a), cwσ
i−1 > cwσ

i . If
v := σ(i+ 1) is a reticulation or a leaf, then deg−(v) > deg+(v) and, by Observation 1(a), cwσ

i < cwσ
i+1.

Both cases contradict cwσ
i = cw (σ).

Observation 1(b) also implies that it suffices to consider stable orderings.

Lemma 2. Every binary G has a stable extension σ with cw (σ) = cw (G).
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Proof. Let σ be an extension of G with cw (σ) = cw (G) and suppose that it is not stable. Then, there is
a maximal (wrt. ≤σ) milestone i such that σ[1..i] contains a reticulation r whose parents are not in σ[1..i].
Since σ is G-respecting, r 6<G v for all v ∈ σ[1..i]. Since G is binary, r maximizes deg−G(r) − deg+

G(r) in
G and, thus, we can use Observation 1(b) to move r to position i (by repeatedly swapping it with the
next vertex in the order) without increasing the cutwidth of the ordering. Thus, σ can be transformed
into a stable extension σ′ with cw (σ′) = cw (σ) = cw (G).

Note that, for all i 6= 1, RWσ
i \RWσ

i−1 = {σ(i)} and RWσ
i−1 \RWσ

i contains only children of σ(i) (not
necessarily all of them).

Observation 2. rwσ
i ≥ rwσ

i−1−deg+
G(σ(i)) + 1 for all 1 < i < |V (G)|.

Lemma 3. Let σ be an extension for G, let u := σ(i) be a reticulation such that u is not a child of
v := σ(i+ 1). Let π be the order resulting from swapping u and v in σ. Then, rw (π) ≤ rw (σ).

Proof. Observe that rwπ
j = rwσ

j for all j 6= i. For the sake of contradiction, suppose that rwπ
i > rwσ

i and
rwπ

i = rw (π). Let w be the unique child of u in G, note that RWπ
i \RWσ

i ⊆ {v, w} and RWσ
i \RWπ

i ⊇
{u}. However, rwπ

i > rwσ
i (that is, |RWπ

i \RWσ
i | > |RWσ

i \RWπ
i |) implies RWπ

i \RWσ
i = {v, w} and

RWσ
i \RWπ

i = {u} and, thus, rwπ
i = rwσ

i +1. This means that w is not a child of v and that each child z
of v is in both RWσ

i and RWπ
i , implying that z has another parent in σ[i+1..] = {v}∪π[i+2..]. Thus, we

know that each child of v has a parent in π[i+ 2..] = σ[i+ 2..]. But then, RWσ
i+1 = RWσ

i ∪{v}, implying
rw (σ) ≥ rwσ

i+1 = rwσ
i +1 = rwπ

i = rw (π), which contradicts rw (σ) < rw (π).

Replacing Observation 1(b) by Lemma 3 in the proof of Lemma 2 gives an analogous result for the register
width.

Corollary 1. Every G has a stable extension σ with rw (σ) = rw (G).

We can now relate directed cut- and register width on binary networks.

Lemma 4. Let G be a binary network and let σ be a stable extension of G. Then, cw (σ) = rw (σ) + 1.

Proof. For any position j, let Yj be the set of vertices in σ[1..j] whose two parents are in σ[j+1..] and note
that each vertex in RWσ

j has at least one incoming arc in CWσ
j . As G is binary, cwσ

j = rwσ
j +|Yj | follows.

“≤”: Let i be any position such that cwσ
i = cw (σ). By Lemma 1, v := σ(i + 1) is a tree-vertex,

implying that i+ 1 is a milestone. Since σ is stable, all reticulations w <σ v have at least one parent in
σ[1..i+1] and thus, Yi+1 = ∅, implying cwσ

i+1 = rwσ
i+1. Now, since v has one incoming and two outgoing

arcs, cwσ
i = cwσ

i+1 +1 = rwσ
i+1 +1 ≤ rw (σ) + 1.

“≥”: Towards a contradiction, assume that there are positions i for which rwσ
i = rw (σ) and cwσ

i <
rwσ

i +1 and let i be smallest among them. If u := σ(i) is a leaf, then we have rwσ
i = rwσ

i−1−1 and
cwσ

i = cwσ
i−1−1, contradicting the minimality of i. If u is a reticulation, then σ(i) ∈ Yi, implying

cw (σ) ≥ cwσ
i ≥ rwσ

i +1 = rw (σ) + 1, contradicting cwσ
i < rwσ

i +1. Thus, u is a tree-vertex and we let v
and w be the children of u inG (recall that we disallow tree-vertices with a single child in binary networks).

Case 1: Neither v nor w has a parent in σ[i + 1, ..] (that is, v, w /∈ Yi−1). Then, RWσ
i−1 =

(RWσ
i \{u}) ∪ {v, w}, implying rwσ

i−1 > rwσ
i , which contradicts rwσ

i = rw (σ).
Case 2: Both v and w have a parent in σ[i+ 1..] (that is, v, w ∈ Yi−1, implying cwσ

i−1 ≥ rwσ
i−1 +2).

Then RWσ
i = RWσ

i−1 ∪{u} and, thus, cw (σ) ≥ cwσ
i−1 ≥ rwσ

i−1 +2 ≥ rwσ
i +1.

Case 3: Exactly one of v and w (w.l.o.g. v) has a parent in σ[i + 1..], that is, v ∈ Yi−1, imply-
ing cwσ

i−1 ≥ rwσ
i−1 +1. Then, RWσ

i = (RWσ
i−1 \{w}) ∪ {u} and, thus, cw (σ) ≥ cwσ

i−1 ≥ rwσ
i−1 +1 =

rwσ
i +1.

Since, by Lemma 2 and Corollary 1 there are cutwidth-optimal and register width-optimal extensions of
G that are stable, we conclude that cw (G) = rw (G) + 1, thus proving Theorem 1.

Scanwidth. Let σ be an extension for G and let i ∈ N. We define SWσ
i as the set of all arcs uv ∈ CWσ

i

for which v and σ(i) are weakly connected in G[σ[1..i]] (see Figure 3(left)). swσ
i is defined as |SWσ

i |, while
the scanwidth of σ is sw (σ) := maxi swσ

i and the scanwidth of G, denoted by sw (G), is the minimum of
sw (σ) over all extensions σ for G. Again, in our notations we allow i to be a vertex instead of a position,
as σ is a bijection between the two.

Alternatively, sw (G) can be defined as follows. For a tree extension Γ for G, we define GWΓ
v

as the set of arcs (x, y) ∈ E(G) with x >Γ v ≥Γ y. Further, we let γw (Γ) := maxv |GWΓ
v | and

γw (G) := minΓ γw (Γ). Although a tree extension is defined independently of a (full) extension for G,
there is a link between the two notions. Indeed, the sets GWΓ

v in an optimal tree extension correspond
to the sets SWσ

v in one or several optimal extensions σ (see Figure 3).
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Figure 3: Illustration of the two definitions of scanwidth. Left: Lower part of a graph G where gray
zones represent the weakly connected components induced by σ[1..i] for σ = (a, b, c, x, y, z, v, w, . . .) and
i ≤ 8. Here, SWσ

v = {rx, uv, wy} since x, y, and v are weakly connected in G[a, b, c, x, y, z, v]. Middle:
table indicating SWσ

i for i ≤ 8 corresponding to σ. Right: part of a tree Γ with GWΓ
σ(i) = SWσ

i for all
i ≤ 8. For the extension π = (c, a, z, b, y, x, v, w, . . .), we also have GWΓ

π(i) = SWπ
i for all i ≤ 8.

Proposition 1. Let G be a network. Then, (a) γw (G) = sw (G), (b) if G has only one leaf, then
sw (G) = cw (G). (c) If G is also binary, then sw (G) = rw (G) + 1.

To prove the equivalence of the two definitions of the scanwidth, we first define an auxiliary graph
associated to a network and then show some results linking the structure of both graphs.

Definition 1. Given an extension σ for a network G, we define Γσ as the transitive reduction of

(V (G), {vu | u <σ v ∧ u and v are weakly connected in G[σ[1..v]]})

and we call Γσ canonical for σ.

Note that Γσ may contain arcs not present in G (cf. the tree in Figure 3 which is in fact canonical and
it contains wv /∈ E(G)). It turns out that Γσ has some convenient properties.

Lemma 5. Let σ extend G and let Γσ be canonical for σ. Then,
(a) For any u, v ∈ V (G), we have u ≤σΓ v if and only if u and v are weakly connected in G[σ[1..v]],
(b) each u ∈ V (G) has a path in Γσ from the last vertex of σ (implying that Γσ is weakly connected),
(c) each u ∈ V (G) is a leaf of G if and only if it is a leaf of Γσ,
(d) σ is an extension of Γσ,
(e) Γσ is a tree extension for G,
(f) For any v ∈ V (G), the set C := {u | u ≤σΓ v} forms a weakly connected component in G−GWΓ

v .
(g) for each child v of any vertex u in Γσ there is a child w of u in G with w ≤σΓ v, and
(h) for each vertex u, deg+

Γσ (u) ≤ deg+
G(u).

(i) for each extension π of Γσ and each v ∈ V (G), it holds that SWπ
v = GWΓσ

v .

Proof. (a) follows from the definition of Γσ and the fact that being weakly connected is a transitive
property.

(b): Since G is weakly connected, the last vertex of σ is weakly connected to all vertices in G[σ] = G.
(c) Let u ∈ V (G). Since σ is an extension of G, we know that σ[1..u] contains all descendants and

no ancestors of u. Thus, u is a leaf of G if and only if σ[1..u] contains no vertex adjacent to u in G and,
this holds if and only if u is not weakly connected to any vertex in σ[1..u] which, by (a) is equivalent to
u being a leaf of Γσ.

(d): Directly follows from the definition of Γσ, since u <σ v for all arcs vu of Γσ.
(e): First, to prove that Γσ respects G, consider any arc vu of G. Since σ respects G, we have u <σ v.

Further, as u and v are weakly connected in G[σ[1..v]], by (a) we have u <σΓ v.
Second, by (b) and (d), we know that Γσ is weakly connected and acyclic. It remains to show that

Γσ is a tree. Towards a contradiction, assume that there is a reticulation r in Γσ with parents x and y.
Without loss of generality, let x <σ y. Then, x and y are weakly connected to r in G[σ[1..y]] and, by
transitivity of weak connectivity, to each other. By (a), this implies x ≤σΓ y. But then, Γσ contains a
directed path from y to r via x as well as the arc yr, contradicting Γσ being a transitive reduction.

(f): As, by (a), C is weakly connected in G−GWΓσ

v , it suffices to show that no node x /∈ C is weakly
connected to C in G−GWΓσ

v . To this end, let x /∈ C (that is, x 6≤σΓ v) and assume towards a contradiction
that the undirected graph underlying G contains an x-v-path p avoiding GWΓσ

v . Then, there is a first

5



vertex z with z ≤σΓ v on p. Let y be its predecessor on p and note that yz or zy is an edge of G. Since,
by (e), Γσ extends G but y 6≤σΓ v by minimality of z, we know that G contains the edge yz. Again, by
(e), we have y ≤σΓ v <σΓ z, implying that yz ∈ GWΓσ

v , which contradicts p surviving in G−GWΓσ

v .
(g): By definition of Γσ, we know that u and v are weakly connected in G[σ[1..u]], that is, there is a

u-v-path p in the undirected graph underlying G[σ[1..u]]. As no parent of u is in σ[1..u], the vertex w
following u on p is a child of u in G. Let x be the maximum (wrt. σ) of V (p)− u and note that, by (d),
u �σΓ x. Further, G[σ[1..x]] contains the w-v-subpath of p which contains an x-v-subpath. Thus, v and
x are weakly connected in G[σ[1..x]], implying v ≤σΓ x by (a). Now, if v <σΓ x, then u ≤σΓ x since u is the
parent of v in Γσ, contradicting u �σΓ x. Thus, x = v, implying that v and w are weakly connected in
G[σ[1..v]] and, by (a), w ≤σΓ v.

(h): Follows directly from (g) and the fact that Γσ is a tree (see (e)).
(i): First, consider some xy ∈ GWΓσ

v , implying, y ≤σΓ v <σΓ x. Since π extends Γσ, we have y ≤π
v <π x, implying xy ∈ CWπ

v . By (a), y and v are weakly connected in G[σ[1..v]], so the undirected
graph underlying G[σ[1..v]] contains an undirected v-y-path p. Clearly, each vertex z on p is weakly
connected to v in G[σ[1..v]], so z ≤Γσ v by (a) and, thus, z ≤π v since π extends Γσ. Thus, p also exists
in G[π[1..v]], implying xy ∈ SWπ

v . Second, consider some xy ∈ SWπ
v , implying that xy ∈ CWπ

v and y
and v are weakly connected in G[π[1..v]]. Let p denote an undirected v-y-path in the undirected graph
underlying G[π[1..v]]. Towards a contradiction, assume that there is a first vertex w on p with w 6≤Γσ v
and let u precede w on p (that is, u ≤σΓ v). Thus, G contains either the arc uw or the arc wu and, by (e),
either w <Γσ u or u <Γσ w. However, since u ≤Γσ v, but w 6≤Γσ v, we know that v <Γσ w. Since π is an
extension of Γσ, we also have v <π w, contradicting that p lives in G[π[1..v]]. Thus, all vertices of p are
descendants of v in Γσ, in particular y ≤σΓ v. To show that xy ∈ GWΓσ

v , it remains to show that v <σΓ x.
Clearly, x 6≤σΓ v since, otherwise, x ≤π v (since π extends Γσ), contradicting xy ∈ SWπ

v . However, y <σΓ x
since y <G x and, by Item e, Γσ is a tree extension for G. Thus, v <σΓ x, implying xy ∈ GWΓσ

v .

Proof of Proposition 1. (a): “≥”: Let Γ be an extension tree for G with γw (Γ) = γw (G) and let σ be any
extension for Γ. Towards a contradiction, assume that γw (Γ) < sw (σ), that is, there is some v ∈ V (G)
with γw (Γ) < swσ

v . In particular, |GWΓ
v | < |SWσ

v |, implying that there is an arc xy ∈ SWσ
v \GWΓ

v .
Since xy ∈ CWσ

v , we have y ≤σ v <σ x and, as σ is an extension of Γ, we have y 6>Γ v �Γ x. Further, as
y <G x and Γ is an extension tree for G, we have y <Γ x. Then, v and y are incomparable in Γ since,
otherwise, y ≤Γ v, implying y ≤Γ v <Γ x (since y <Γ x, x �Γ v and Γ is a tree), which contradicts
xy /∈ GWΓ

v . Since xy ∈ SWσ
v , we know that y and v are weakly connected in G[σ[1..v]], that is, there is

a v-y-path p in the undirected graph underlying G[σ[1..v]]. For all j, let pj be the jth vertex of p. Since
p0 = v ≤Γ v, but y �Γ v, there is some j with pj ≤Γ v but pj+1 �Γ v. Moreover, Γ extends G and G
contains an arc between pj and pj+1, we know that pj and pj+1 are not incomparable in Γ. But then,
as pj ≤Γ v and pj+1 �Γ v, we have pj <Γ pj+1 and v <Γ pj+1. As σ extends Γ, we have v <σ pj+1,
contradicting pj+1 ∈ σ[1..v]. Thus γw (G) = γw (Γ) ≥ sw (σ) ≥ sw (G).

“≤”: Let σ be an extension for G with sw (σ) = sw (G) and let Γσ be its canonical extension tree.
Then, by Lemma 5(e) and (i), γw (G) ≤ γw (Γσ) = sw (σ) = sw (G).

(b): This holds since all vertices in σ[1..i] are weakly connected in G[σ[1..i]] for all i.
(c): This follows from Theorem 1.

Observe that the scanwidth differs largely from the directed path-width [1], which is always zero for
DAGs. To relate the scanwidth to established parameters, let us mention that the scanwidth of any level-
k network cannot exceed k+ 1 but it might even be constant. Regarding width-measures, the scanwidth
is bounded by the cutwidth from below and the treewidth (of the underlying undirected graph) from
above.
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3 NP-completeness
To compute the value of a given algebraic expression such as (cx + b)x + a using a computer, we need
to store the values of a, b, c, and x in registers which can then be processed
by the CPU. As registers can be overwritten, expressions involving more

+

∗
a+

∗

bc x

variables than the number of available registers can be evaluated. The problem
of deciding whether a given expression can be evaluated on a CPU with k
registers (without recomputing sub-expressions or relying on the costly spilling
technique) is called Register Sufficiency. We suppose that the input
expression is given as a rootedDAG of necessary computations. For example, to compute (cx+b)x+a,
we need to compute cx+ b, for which we need to compute cx (see figure on the right).

Register Sufficiency [PO1 in [7]] (RS)

Input: a rooted DAG G of an expression to be computed, k ∈ N
Question: Can G be computed using at most k registers?

Register Sufficiency can be interpreted as a game played on G, where the player has k stones that
have to be placed progressively on all vertices, using the following operations [13]:
1. remove a stone from any vertex
2. for a vertex p whose every child contains a stone,

2a. place an available stone on p or
2b. move a stone from a child of p to p,

so that each vertex receives a stone exactly once during these operations.
Stones represent registers and putting a stone on a vertex of the graph corresponds to computing the

vertex and storing the result in that register (this is why we need stones on all children of a vertex when
computing it). Removing a stone from a vertex corresponds to forgetting the value of the vertex, which
should then be done only if we do not need it in other computations (as vertices cannot be recomputed),
i.e. when all its parent vertices have already received a stone.

Winning the game means successfully computing the algebraic expression encoded in the graph while
using at most k registers. In this context, an extension σ for a graph G indicates in which order the
vertices receive stones. Note that the first stone enters G via applying Rule 2a to a leaf of G. Then, solving
the optimization problem associated to Register Sufficiency can be seen as finding an extension of
G that minimizes the number k of stones (registers) needed to win the game (compute the expression).
As suggested by our formulation, this number equals the previously introduced “register width”, rw (G).

Proposition 2. A DAG G can be computed using ≤ k registers if and only if rw (G) ≤ k.

Proof of Proposition 2. “⇒”: Let π′ be a sequence of moves in the Register Sufficiency game using
at most k stones, let π be the result of removing all moves of type 1 from π′, and let σ be the sequence
of vertices that receive a stone in a move of type 2, in order. Since each vertex receives a stone exactly
once, we know that σ is a permutation of V (G). First, note that, by Rule 2 and transitivity of ≤σ, we
have u ≤σ v ⇒ u ≤G v, implying that σ extends G. Second, consider an index j and indices i, and `
such that i ≤ j < ` and σ(i) is a child of σ(`) in G. Then, by Rule 2, σ(i) keeps its stone at least until
σ(`) receives a stone. Thus, at step j (right after σ(j) receives a stone), there is a stone on σ(i). Since
this holds for all such triples, we conclude that each vertex in σ[1..j] with a parent in σ[j + 1..] holds a
stone at step j for all j. By definition, this number is rwσ

j .
“⇐”: Let σ be an extension of G such that rw (σ) ≤ k. Let f be a function mapping each index

j ∈ [|V (G)|] to a move in the Register Sufficiency game as follows: If σ(j) has a child v in G such
that σ[j + 1..] does not contain a parent of v, then move the stone on v to σ(j) (Rule 2b), otherwise,
introduce a new stone to σ(j) (Rule 2a). Then, construct a sequence π of moves by, for each j ∈ [|V (G)|],
first executing f(j) and then removing all stones from vertices u whose every parent has a stone (Rule 1).
Note that each vertex receives a stone exactly once during the execution of π since σ is a permutation
of V (G). Now, assume towards a contradiction that a move of π is not valid, that is, there is an index j
such that f(j) puts/moves a stone to a vertex σ(j) who has a child σ(i) without a stone at that point.
Since σ is an extension of G, we know i <σ j, implying that σ(i) received a stone before step j. Thus,
there is some ` with i < ` < j such that σ(i) lost its stone between the execution of f(`) and f(`+ 1) in
π. But this happens only if all parents of σ(i) have a stone at step ` which, since σ(j) is such a parent,
contradicts the fact that each vertex receives a stone exactly once in π.

With Proposition 2, the Register Sufficiency problem can be formulated as: given a rooted DAG G
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and some integer k, decide if rw (G) ≤ k. Following Sethi [13], we will use a special, “initial” vertex in
our reduction.

Definition 2. Let (G, k) be an instance of Register Sufficiency such that G has k leaves and all
leaves have a common parent ψ. Then, we say that ψ is an initial vertex and that (G, k) has the initial
vertex property.

Lemma 6 (See [13]). Let (G, k) be a yes-instance of Register Sufficiency with an initial vertex ψ.
Let σ be an extension of G with rw (σ) ≤ k. Then, σ(k + 1) = ψ and σ[1..k] contains the k leaves of G
in any order. Moreover, there is a leaf whose only parent is ψ.

Proof of Lemma 6. Let i := σ−1(ψ). Let L be the set of all k leaves of G and recall that ψ is parent of all
of them, implying RWσ

i−1 ⊇ L. Since rwσ
i−1 ≤ rw (σ) ≤ k = |L|, we know that RWσ

i−1 = L and i− 1 ≥ k.
To show that i − 1 ≤ k, assume that σ[1..i − 1] contains non-leaf vertices of G and let u be maximal
(wrt. <σ) among them. Let p be a parent of u. By maximality of u, p /∈ σ[1..i−1]. But then, u ∈ RWσ

i−1,
contradicting RWσ

i−1 = L (by definition p /∈ L). Thus, σ[1..i − 1] = L, implying i − 1 ≤ k and, thus,
i = k+ 1. Further, since RWσ

j ⊆ L for all j ≤ k, choosing any order among the leaves in σ[1..k] preserves
rwσ

j (and, thus, rw (σ)). Finally, if all leaves have a second parent, then |RWσ
i | = |L ∪ {ψ}| = k + 1

contradicting rw (σ) ≤ k (unless ψ is the root of G; but then, as σ−1(ψ) = k + 1, G contains only leaves
and ψ, and the claim trivially holds).

A corollary of Lemma 6 is that, in a yes-instance (G, k) with the initial vertex property, all children of
the initial vertex are leaves. Thus, rwσ

k = k for all extensions σ with rw (σ) ≤ k and, thus, rw (G) = k for
such yes-instances. Note that 3-SAT reduces to instances (G, k) of Register Sufficiency that have
the initial vertex property [13].

Theorem 2 ([13]). It is NP-hard to decide Register Sufficiency for instances (G, k) that have the
initial vertex property.

Below, we reduce Register Sufficiency on instances with the initial vertex property to Register
Sufficiency on rooted, binary, single-leaf DAGs. To this end, we reduce from Weighted 2-Satisfia-
bility instead of 3-Satisfiability and modify parts of the reduction in order to obtain a network that
is already bifurcating in some crucial spots. Then, we present a number of polynomial-time executable
transformation rules that take one such instance (G, k) of Register Sufficiency having the initial
vertex property and replace all remaining high-degree vertices with binary ones without changing the
answer for the instance. Finally, a reduction rule is given to ensure that the resulting DAG has a single leaf.

3.1 An Adaptation of a known NP-hardness Proof
As we will modify the construction of Sethi [13], we first quickly restate it here.

Construction 1 ([13]). Given a formula ϕ in 3-CNF on variables x1, . . . , xn and clauses C1, . . . , Cm,
let yi,j denote the jth literal in Ci. Construct the instance (G, k∗), where k∗ = 6n + 2m + 1 and G is a
DAG on the vertex set A]B]C]F ]M ]R]S]T ]U ]W ]X]Z where R =

⋃
i∈[n]R

i, S =
⋃
i∈[n] S

i,
T =

⋃
i∈[n] T

i and

A = {ai | i ∈ [2n+ 1]} C = {ci | i ∈ [m]} F = {fi,1, fi,2, fi,3 | i ∈ [m]}
B = {bi | i ∈ [2n−m]} M = {ψ, d, ρ} Ri = {ri,j | j ∈ [2n− 2i+ 2]}
U = {ui,1, ui,2 | i ∈ [n]} W = {wi | i ∈ [n]} Si = {si,j | j ∈ [2n− 2i+ 1]}
X = {xi, xi | i ∈ [n]} Z = {zi | i ∈ [n]} T i = {ti,j | j ∈ [2n− 2i+ 1]}

and the arc set
⋃
i∈[10]Ei where

E1 = {ψv | v ∈ A ]B ] F ] U} E7,1 = {zi+1wi, zi+1zi | i ∈ [n− 1]}
E2 = {vψ | v ∈ C ]R ] S ] T ]W} E7,2 = {ciwn, cizn | i ∈ [m]}
E3 = {ρv | v ∈W ]X ] Z ] {ψ, d}} E8 = {cifi,j | i ∈ [m], j ∈ [3]}
E4 = {xizi, xizi, xiui,1, xiui,2 | i ∈ [n]} E9 = {dv | v ∈ B ] C}
E5 = {wiui,1, wiui,2 | i ∈ [n]} E10 = {yi,jfi,j , yi,jfi,` | i ∈ [m], j ∈ [3], j < ` ≤ 3}.
E6 = {ziri,j , xisi,j , xiti,j | i ∈ [n], ri,j ∈ Ri, si,j ∈ Si, ti,j ∈ T i}

where yi,j ∈ X is the jth literal appearing in clause ci, and yi,j ∈ X is its negation.
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Sethi [13] makes several observations on Construction 1 and on any extension σ for G with rw (σ) = k.
First, G has exactly k leaves (the vertices in A ] B ] F ] U) which are all children of ψ and, thus,
rw (G) ≥ k, implying that σ is optimal. Second, by Definition 2, ψ is initial for (G, k) and, by Lemma 6,
σ starts with these leaves (in any order), followed by ψ. Third, the vertices wi appear in order (that is,
wi <σ wj iff i < j), as well as the vertices zi. Further, the true literals in X appear in order of their
index. Finally, Sethi [13] shows that RWσ

d ∩X contains exactly one of xi and xi for each i and that the
corresponding literals form a satisfying assignment for ϕ.

For our result, we will strengthen Construction 1 to construct a binary DAG with a single leaf and
without degree-two vertices. The hardest part to make G binary is to deal with the polytomies at vertices
in C. Apart from being parent of ψ, each of these vertices is parent of wn, zn (see E7,2 in Construction 1)
and of three vertices of F (see E8). To remedy this, we will instead reduce from an NP-hard 2-SAT variant
called Monotone Weighted 2-Satisfiability (also known as Vertex Cover). In this variant, all
variables occur non-negated in the instance formula ϕ, each variable is used at least once, and we ask for an
assignment that satisfies ϕ while setting at most k variables to true. Our modifications to Construction 1
come in two stages. First, we modify it to work for Monotone Weighted 2-Satisfiability and
replace the degree-two vertices in R ] S ] T , then we show how to “binarize” all remaining polytomies
and establish a single leaf.

Construction 2 (See Figure 4). Given an integer k and a formula ϕ in monotone 2-CNF on variables
x1, . . . , xn and clauses C1, . . . , Cm, construct the DAG G by following Construction 1 and make the
following modifications:

1. remove fi,3 from G for all i ∈ [m], thus obtaining the set F ′ ⊂ F ,
2. add k new leaves ai to A, thus forming A′,
3. add n new leaves bi to B, thus forming B′, and replace E9 by E′9 = {dv | v ∈ B′ ] C},
4. add new leaves H := {hi,1, hi,2 | i ∈ [m]},
5. add k new vertices to each Ri, Si, and T i and modify E6 accordingly, forming R′i, S′i, T ′i and E′6,
6. for each i ∈ [n], turn Ri into a path by adding the arcs ri,jri,j+1 for each j ∈ [2n− 2i+ k+ 1], and

do the same with Si and T i,
7. replace E2 by E′2 := {vψ | v ∈ R′i ] S′i ] T ′i},
8. add new vertices X ′ := {x′i | i ∈ [n]} with arcs E11 = {x′ixi | i ∈ [n]},
9. add a new vertex zn+1 to Z, forming Z ′, and add arcs zn+1zn and zn+1wn to E7,1, forming E′7,1

and replace E7,2 by E′7,2 := {cizn+1 | i ∈ [m]},
10. add a new leaf α as child of zn+1,
11. for all new leaves v, add ψv to E1, forming E′1,
12. add new vertices P := {pi | i ∈ [m]},
13. add new vertices P ′ := {p′i, p′′i , p′′′i | i ∈ [m]},
14. replace E8 by E′8 := {cipi, pifi,1, pifi,2, p′′′i fi,2, p′′′i p′′i , p′′i p′i, p′′i hi,2, p′ihi,1 | i ∈ [m]},
15. add to E3 all arcs ρv with v ∈ X ′ ∪ {p′i, p′′′i | i ∈ [m]} ∪ {zn+1}, forming E′3, and
16. letting xi,j denote the jth variable in Ci (and its corresponding vertex with the same name), letting

xi,j denote the negation of xi,j (and its corresponding vertex with the same name) and letting x′i,j
denote the vertex in X ′ such that x′i,jxi,j ∈ E11, replace E10 by E′10 = {x′i,1fi,1, x′i,2hi,2, xi,1hi,1 |
i ∈ [m]}.

Finally, return the instance (G, k′) with k′ = |A′|+ |B′|+ |F ′|+ |U |+ |H|+ |{α}| = 7n+ 3m+ k + 2.

The idea behind Construction 2 is that the “variable-assignment phase” of Sethi [13] still works as
before (with k more stones in each step to account for the k additional vertices in R′i \Ri, S′i \ Si, and
T ′i \T i). Note that Sethi’s observations to explain how the graph has to be processed still hold, up until
the moment wn is reached. In particular, if we computed both xi and xi, then we would not have enough
stones to complete S′i+1 or T ′i+1, and we would thus be stuck. The same holds if we computed both xi
and x′i: not enough stones would remain to complete S′i+1 or T ′i+1. In more detail, this process is as
follows: in the beginning, all k′ stones have to go to all the leaves, at which point ψ is computed using
one stone of a vertex in A′, while the other k+ 2n stones of A′ are now free (unlike stones on other leaves
still having other parents). These k + 2n stones need to go to R′1 (otherwise we will not have enough
stones later for this vertex), allowing to compute z1, who will keep one stone. The k + 2n − 1 other
stones from R′1 are free to go to either S′1 allowing to compute x1 or to T ′1 allowing to compute x1. The
chosen literal allows exactly one stone from U to move to w1 (e.g. u1,1 if x1 is chosen and u1,2, otherwise),
who will keep this stone. Thus, k + 2n− 2 stones (from either S′1 or T ′1) are now free to compute R′2,
followed by z2. This process continues until wn receives a stone, at which point we ended Sethi’s variable
assignment phase. Now, the stone on α moves to zn+1 and we are left with the k free stones, coming
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x1
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w1

R′1︸︷︷︸
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S′1︸︷︷︸
k+2n-1
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k+2n-1
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x′2
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u2,1 u2,2

w2

R′2︸︷︷︸
k+2n-2

S′2︸︷︷︸
k+2n-3

T ′2︸︷︷︸
k+2n-3
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x′n

xn

un,1 un,2

wn

R′n︸︷︷︸
k+2

S′n︸︷︷︸
k+1

T ′n︸︷︷︸
k+1

zn+1
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c7

d

B′︸︷︷︸
3n-m

p7

f7,1f7,2

p′′′7

p′′7

p′7

h7,1h7,2

x′4

x′9
x4

zn+1

Figure 4: Illustration of Construction 2; white circle vertices are children of the root ρ, gray triangles are
leaves and children of ψ. This allows us to omit drawing ψ and ρ. We also omit the leaves in A′. Left:
“variable-assignment” gadget (arcs of E′2 omitted). Right: clause gadget for the clause C7 = (x4 ∨ x9).
Note that all wi, pi and ci are bifurcating.

from either S′n or T ′n, that we can spend on vertices x′j ∈ X ′ whose corresponding xj ∈ X has received
a stone before.

Consider what happens if the described “variable assignment” phase chooses k vertices in X satisfying
the formula and the k corresponding vertices of X∗ receive a stone right after this phase. Consider the
gadget corresponding to clause Ci = (xj ∨ x`) and recall that fi,1, fi,2, hi,1, hi,2 already hold stones. In
analogy with Sethi [13], each ci receives a stone as follows:

• If Ci is satisfied by xj , then x∗j holds a stone, so the stone on fi,1 can move to pi (this is allowed
since pi’s children all hold stones).

• Otherwise, both xj and x∗` hold stones. The first one allows the stone on hi,1 to move to p′i. The
second one allows the stone on hi,2 to move to p′′i and then to p′′′i , allowing the stone on fi,2 to
move to pi.

Thus, in both cases pi gets a stone which it then passes to ci. Finally, when all ci have received a
stone, d receives a stone from one of them, freeing up |B′| = 3n −m stones on the vertices in B′ and
|C| − 1 = m− 1 stones on the vertices in C. Since k ≤ n, these 3n− 1 stones can then be placed on T ′1
(if x1 already holds a stone) or S′1 (if x1 already holds a stone) and one of them can then move to x1

or x1, respectively. In this way, all 2n vertices xi and xi progressively receive a stone. Since n of them
already got stones in the variable assignment phase, this leaves us with (3n−1)−n stones, n−k of which
are then put on the n − k remaining stoneless vertices of X ′ which immediately move to the remaining
vertices of X∗. At this point, all stones on all hi,1 and hi,2 move to p′i and p′′i followed by p′′′i if they did
not already do so before. Finally, ρ receives a stone from any of its children.

In order to prove Construction 2 correct, we observe that all leaves of G are children of ψ and there
are k′ many of them.

Observation 3. ψ is initial for (G, k′).

In the following, we call a path (w, . . . , `) in G critical for a vertex v if v <G w and ` is a leaf of G.
We often make use of the fact that, for each extension σ, and each vertex v, RWσ

v intersects each critical
path of v (but not in its first vertex). We omit mentioning v if its clear from context.
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Theorem 3. Let k ∈ N, let ϕ be a formula in monotone 2-CNF, and let (G, k′) be an instance of Reg-
ister Sufficiency constructed by Construction 2 on input (ϕ, k). Then, ϕ has a satisfying assignment
with ≤ k true variables if and only if rw (G) ≤ k′.
Proof of Theorem 3. “⇒”: Let Q be a size-k set of variables of ϕ that intersects all clauses. Let σ1 :=
(A′, B′, F ′, U,H, α, ψ). Let σ2,i := (ri,1, ri,2, . . . , ri,|Ri|, zi) ◦ Yi ◦ (qi, wi) for all i ∈ [n], where Yi =
(si,1, . . . , si,|Si|) and qi = xi whenever xi ∈ Q and otherwise Yi = (ti,1, . . . , ti,|T i|) with qi = xi. Abbreviate
σ2 := σ2,1 ◦ σ2,2 ◦ . . . ◦ σ2,n. Let X ′Q := {x′i | xi ∈ Q}, let X∗Q := {x∗i | xi ∈ Q}, and for all i ∈ [m],
let σ3,i := (p′i, p

′′
i , p
′′′
i ) if both hi,1 and hi,2 have a parent in σ2 ∪ X∗Q and σ3,i = (), otherwise. Let

σ4,i := (Y i, qi) for all i ∈ [n], where Y i = (si,1, . . . , si,|Si|) and qi = xi whenever xi /∈ Q otherwise
Y i = (ti,1, . . . , ti,|T i|) and qi = xi. Let σ5,i := (p′i, p

′′
i , p
′′′
i ) for all i ∈ [m] with σ3,i = () and σ5,i := (),

otherwise. Abbreviate σj := σj,1 ◦σj,2 ◦ . . . for all j ∈ {3, 4, 5}. Finally, let σ := σ1 ◦σ2 ◦ (zn+1, X
′
Q, X

∗
Q)◦

σ3 ◦ (P,C, d) ◦σ4 ◦ (X ′ \X ′Q, X∗ \X∗Q) ◦σ5 ◦ (ρ). It is tedious, but possible to verify that σ is an extension
for G. In the following, we show rwσ

v ≤ k′ for all vertices v of G.
Case v ∈ σ1: Note that |σ1| = k′ + 1 and ψ is its last vertex. However, since A′ avoids RWσ

ψ, we
have |RWσ

ψ | ≤ k′ + 1− |A′| = k′ − 2n− k. Thus, rwσ
v ≤ k′ for all v ∈ σ1.

Case v ∈ σ2: For each i ∈ [n], the only vertices in σ2,i that have a parent after wi in σ are zi, qi, and
wi. Then, by a simple induction, RWσ

wi ⊆ RWσ
ψ ∪

⋃
`≤i{z`, q`, w`} for all i ∈ [n], and, since RWσ

wi contains
both parents of either u1` or u2` for all ` ≤ i, we conclude rwσ

wi ≤ (k′−2n−k)+2i ≤ k′ for all i ∈ [n]∪{0}.
Aliasing w0 := ψ, it is easy to see that RWσ

ri,j ⊆ RWσ
wi−1
∪R′i and, thus, rwσ

ri,j ≤ (k′−2n−k)+2(i−1)+

(2n− 2i+ k+ 2) = k′, implying rwσ
zi ≤ k

′ since R′i ⊆ RWσ
ri,|R′i|

\RWσ
zi for all i. Similarly, for all γ ∈ Yi,

we have RWσ
γ ⊆ RWσ

wi−1
∪Yi ∪ {zi}, implying rwσ

γ ≤ (k′ − 2n− k) + 2(i− 1) + (2n− 2i+ 1 + k) + 1 = k′.
Further, RWσ

qi = RWσ
wi−1
∪{zi, qi}, implying rwσ

qi ≤ (k′ − 2n− k) + 2(i− 1) + 2 = k′ − 2(n− i)− k ≤ k′.
In summary, rwσ

v ≤ k′ for all v ∈ σ2,i and all i ∈ [n].
Case v ∈ (zn+1, X

′
Q, X

∗
Q): Note that RWσ

zn+1
= RWσ

wn ∪{zn+1} \ {α} and, thus, rwσ
zn+1

= rwσ
wn =

(k′− 2n−k) + 2n = k′−k ≤ k′. Since |X ′Q| ≤ k, we also have rwσ
x′i
≤ rwσ

zn+1
+|X ′Q| ≤ k′ for all x′i ∈ X ′Q.

Then, RWσ
x∗i
−x∗i = RWσ

x′i
−x′i, implying rwσ

x∗i
= rwσ

x′i
≤ k′ for all x∗i ∈ X∗Q.

Case v ∈ σ3: For each i ∈ [m], let v′i−1 be the predecessor of p′i in σ. Note that, for each i ∈ [m]
such that σ3,i 6= (), both hi,1 and hi,2 have one of their two parents in σ2 ∪ X∗Q (the other one being
p′i, resp. p′′i ). This implies RWσ

p′i
= RWσ

v′i−1
∪{p′i} \ {hi,1}, RWσ

p′′i
= RWσ

p′i
∪{p′′i } \ {hi,2}, and RWσ

p′′′i
=

RWσ
p′′i
∪{p′′′i } \ {p′′i }. Thus, rwσ

p′′′i
= rwσ

p′′i
= rwσ

p′i
= rwσ

v′i−1
≤ k′ for all i ∈ [n] with σ3,i 6= (). As we

already showed rwσ
v′0
≤ k′, a simple induction shows rwσ

v ≤ rwσ
v0 ≤ k

′ for all v ∈ σ3.
Case v ∈ (P,C): Let γ denote the last vertex of σ3, let i ∈ [m], and let (xj ∨ x`) be any clause of

ϕ. Since Q covers it, we have xj ∈ Q (implying that the parent x∗j of fi,1 precedes pi in σ) or x` ∈ Q
(implying that the parent p′′′i of fi,2 precedes pi in σ). In either case, pi is the last parent in σ of some
leaf which, thus, is not in RWσ

pi . By a simple induction, rwσ
pi ≤ rwσ

γ for all i ∈ [m]. Further, as ci is the
only parent of pi for all i ∈ [m], we have rwσ

ci ≤ rwσ
pi ≤ rwσ

γ .
Case v = d: With γ denoting the predecessor of d in σ, we have B′ ] C ⊆ RWσ

γ \RWσ
d , so rwσ

d ≤
k′ − |B′| − |C|+ 1 = k′ − (3n−m)−m+ 1 = k′ − 3n+ 1.

Case v ∈ σ4: Let q0 := d. For each i ∈ [n], we have RWσ
qi
\RWσ

qi−1
= {qi} as only vertices in

Y i are between qi−1 and qi in σ and vertices in Y i have qi as unique parent. However, RWσ
qi−1
\RWσ

qi

contains either ui1 or ui2, and, thus rwσ
qi

= rwσ
qi−1

= rwσ
d ≤ k′ − 3n + 1 ≤ k′. Further, if v ∈ Yi, then

rwσ
v ≤ rwσ

qi−1
+|Yi| ≤ k′.

Case v ∈ X ′ \X ′Q, X∗ \X∗Q:As |X ′ \X ′Q| ≤ n, we have rwσ
x′i
≤ rwσ

qn
+n ≤ k′ − 3n + 1 + n ≤ k′ for

each x′i ∈ X ′ \X ′Q. Further, RWσ
x∗i
−x∗i = RWσ

x′i
−x′i, implying rwσ

x∗i
= rwσ

x′i
≤ k′ for all x∗i ∈ X∗Q.

Case v ∈ σ5: This case is analog to the case that v ∈ σ3. For each i ∈ [m], let v′i−1 be the pre-
decessor of p′i in σ. Since X ∪ X∗ ∪ P <σ v, p′i is the last parent of hi,1 in σ for all i ∈ [m], implying
hi,1 /∈ RWσ

p′i
and the same holds for p′′i (with respect to hi,2) and p′′′i (with respect to fi,2). Thus,

rwσ
p′′′i

= rwσ
p′′i

= rwσ
p′i

= rwσ
v′i−1
≤ k′.

“⇐”: Let σ be an extension for G with rw (σ) = k′ and note that, by Observation 3 and Lemma 6, σ
begins with A′, B′, F ′, U , H and α in any order, followed by ψ.
Claim 1. Let j ∈ [m] and let v be such that |σ[1..v] ∩ {xi, xi}| ≤ 1 for all i ∈ [n]. Then, RWσ

v contains
at least four of {fj,1, fj,2, hj,1, hj,2, p′j , p′′j , p′′′j , cj}.

Proof of Claim 1. If pj �σ v, then RWσ
v contains fj,1, fj,2 and one in each of the paths (ρ, p′j , hj,1) and

(ρ, p′′′j , p
′′
j , hj,2) and, thus, the claim holds. Hence, suppose that pj ≤σ v. Then, RWσ

v contains at least
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one of {fj,1, hj,1} (as at most one of their parents in X ∪X∗ precedes v by our choice of v) and at least
one in the path (d, cj , pj). If p′′′j ≤σ v, then RWσ

v further contains p′j , p′′′j . Otherwise, RWσ
v further

contains fj,2 and one in the path (p′′′j , p
′′
j , hj,2). �

Claim 2. Let v ∈ σ[ψ..d]. Then, |σ[1..v] ∩ {xi, xi}| ≤ 1 for all i ∈ [n].

Proof of Claim 2. Note that, since xi and xi are children of the root ρ for each i, they are in RWσ
v if

and only if they are in σ[1..v]. We prove Claim 2 by induction on the index of v in σ. Clearly, the
claim holds for v = ψ. Assume Claim 2 is false for v (that is, xi, xi ∈ RWσ

v for some i ∈ [n]) but holds
for its predecessor w in σ. Then, v = xi or v = xi. Without loss of generality, let v = xi, implying
RWσ

w ⊇ T ′i ] {xi}. Further, w <σ d, ρ, zi ≤σ w and w 6<G zi as σ extends G. Thus, RWσ
w contains, B′,

uj,3 for all j ∈ [n], ψ, T ′i and xi, along with
• ui,2 and zi (the other children of xi),
• one of the path (ρ, wi, ui,1)
• one of the path (ρ, zn+1, α),
• four of {fj,1, fj,2, hj,1, hj,2, p′j , p′′j , p′′′j , pj , cj} for all j (by Claim 1)
• z` and w` for all ` < i (since z`, w` <G w and both are children of ρ)
• one of each of the critical paths (ρ, x`, u`,1) and (ρ, x`, u`,2)

Thus,

rwσ
w ≥ |B′|+ n|{ψ}|+ |T ′i|+ |{xi}|+ |{ui,2, zi}|+ 1/2|{ui,1, wi}|+ 1/2|{zn+1, α}|

+ 4/9|{fj,1, fj,2, hj,1, hj,2, p′j , p′′j , p′′′j , pj , cj | j ∈ [m]}+ |{z`, w` | ` < i}|
+ 2/4|{xl, ul,1, xl, ul,2 | l ∈ [n]− i}|
= (3n−m) + n+ 1 + (2n− 2i+ k + 1) + 1 + 2 + 1 + 1 + 4m+ 2(i− 1) + 2(n− 1)

= 8n+ 3m+ k + 3 = k′ + 1

(1)

contradicting rw (σ) = k′. �

In the following, consider the predecessor v of d in σ and call an index ` dirty if

|RWσ
v ∩{f`,1, f`,2, p`, c`, h`,1, h`,2, p′`, p′′` , p′′′` }| ≥ 5.

Denote XQ := X ∩ σ[1..v] = X ∩ RWσ
v and let Q be the result of, for each dirty index j, adding an

arbitrary variable of Cj to XQ.
Claim 3. |Q| ≤ k.

Proof of Claim 3. Let Y be the set of dirty indices. Then, RWσ
v \X∗ contains

• B′, {uj,3 | j ∈ [n]}, ψ, zn+1,
• zi and wi for all i ∈ [n],
• at least four of {fj,1, fj,2, hj,1, hj,2, p′j , p′′j , p′′′j , pj , cj} for each j ∈ [m] \ Y (by Claim 1),
• at least five of {fj,1,, fj,2, hj,1, hj,2, p′j , p′′j , p′′′j , pj , cj} for each j ∈ Y , and
• one of each of the critical paths (ρ, xi, ui,1) and (ρ, xi, ui,2)

Note that those are at least 8n + 3m + 2 + |Y | = k′ − (k − |Y |) vertices. To obtain the full set
RWσ

v , it remains to count the vertices in RWσ
v ∩X∗ = XQ. Since rwσ

v ≤ rw (σ) ≤ k′, we have
k′ ≥ |RWσ

v | ≥ |XQ| + (k′ − (k − |Y |)), implying |XQ| ≤ k − |Y |. As |Q| = |XQ| + |Y | we obtain
|Q| ≤ k. This also implies that at most k − |Y | vertices of X∗ precede zn+1 in σ (because of arcs in E′3,
all vertices of X∗ preceding zn+1 ≤σ d are still in RWσ

v ). �

In order to show that Q covers all clauses of ϕ, assume that a clause C` = (xi, xj) is not covered by
Q. Then, x∗i , x∗j /∈ σ[1..v] and, thus, f`,1, h`,2 ∈ RWσ

v . Further, c` ∈ RWσ
v since c` is a child of d in G.

Finally, (ρ, p′′′` , f`,2) and (ρ, p′`, h`,1) are critical paths for v. Thus, ` is dirty and, by definition of Q, one
of xi and xj is in Q, contradicting Q not covering C`.

Note that networks G created by Construction 2 contain non-binary vertices, as well as many leaves.
However, all non-binary vertices of G have nice properties that allow us to “binarize” them using reduction
rules that we present in Section 3.2.

Observation 4. Let (G′, k′) result from Construction 2 and let u ∈ V (G′).
(a) If u is a non-leaf with deg+(u) ≥ 3, then u has a child with in-degree 1.
(b) If u is a non-leaf with at least 3 parents, then the root ρ is a parent of u.
(c) If u is a leaf with at least 3 parents, then u has exactly 3 parents and ψ is one of them.
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u

xy

⇒
u

xy
w

r′
r

u

p0 p1 pt. . .

⇒
u

p0 p1 pt

v′

w

v

. . .

Figure 5: Illustration of Rule 3 (left) and Rule 4 (right). Triangles are leaves and children of the initial
vertex ψ, white vertices are children of the root ρ. Note that, on the left, u has a tree-vertex child before
and after the modification.

3.2 Reducing Nice Polytomies and Leaves
The following reduction rule is used to turn all leaves binary since many leaves constructed in Construc-
tion 2 have in-degree three.

Rule 1. Let (G, k) have an initial vertex ψ and let u be a leaf in G with
at least three parents, one of which is ψ. Then, add a new parent v to
u, add the arc vψ, and replace all xu by xv except ψu. u

ψ⇒
u

v ψ

The next rule splits vertices of in- and out-degree at least two into a reticulation and a tree-vertex.

Rule 2. Let u be a vertex of G, let P and C be its parents and children, respectively, and let |P | > 1
and |C| > 1. Then, “split” u, i.e. add a new vertex v, add the arc uv and, for all c ∈ C, replace the arc
uc by the arc vc.

Rule 3 (See Figure 5(left)). Let u be a vertex with at least three children, let x and y be children of u
such that y is a tree-vertex and x is either a tree-vertex or x has a parent q 6= u that is comparable to u
in G. Then, “split” u into ru (that is, create a new parent r for u and make all parents of u parents of
r instead), subdivide ru with a new vertex r′, for all parents q of x with q >G u replace qx with qr′, add
the arc rx, subdivide uy with a new vertex w, remove the arc ux and, unless x has a parent q <G u in
G, add the arc wx.

Correctness proofs of Rules 1–3 are deferred to the full version of this paper. Note that Rule 3 only
increases deg−G(x) if x has no parents q <G u in G. But then, either x is a tree-vertex in G, in which case
no new polytomies are created, or x has a parent q >G u, in which case this parent becomes a parent
of r′ instead. Further, although Rule 3 may introduce degree-two vertices, all of them are parents of
tree-vertices and can thus be removed using the following:

The following rule turns polytomous reticulations into binary ones. We make use of the fact that G
has a root and an initial vertex (see Def. 2).

Rule 4 (see Figure 5, right). Let (G, k) have an initial vertex ψ, let ρ be the root of G, let u be a non-leaf
with parents p0, p1, . . . , pt, pt+1 = ρ (t ≥ 1). Then, add a new leaf w, increase k by one, subdivide p0u
with a vertex v, replace arc ρu by ρv, add a new parent v′ of u, replace arc piu by piv′ for all i ∈ [t+ 1],
and add the arcs ρv′, vw, ψw.

Note that Rule 4 effectively turns a vertex of in-degree t+ 2 (for t ≥ 1) into a vertex of in-degree t+ 1.
Further, note that the instance (G′, k′) constructed by Construction 2 has an initial vertex ψ.

Rule 5. Let (G, k) have an initial vertex ψ, let X be the set of leaves of
G and let Y ⊆ X contain the leaves that have more than one incoming
arc. Let Y 6= ∅ and let x1, x2, . . . , xk be an arbitrary total order of X
with xk ∈ Y . Then, turn X into a path by adding the arc xi+1xi for all i.
Further, for all y ∈ Y −xk, subdivide ψy with a new vertex z, and replace
all arcs uy occurring in G by uz.

ψ

⇒

ψ

Note that the graphs produced by Construction 2 satisfy ∅ ( Y ( X.
Note that Rule 5 destroys the initial vertex property, preventing any further use of Rule 4 and Rule 5.
However, Rule 5 does not create new polytomies and, for turning ψ binary by applying Rule 3, it is
sufficient that ψ is “primal” (a weaker condition than being initial).
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Lemma 7. Let u be a vertex of G, let P and C be the set of parents and children, respectively, of u. Let
G′ be the result of removing all arcs in {u}×C, adding a new vertex v as only child of u, and adding the
arcs {v} × C. Then, rw (G′) = rw (G).

Proof. “≤”: Let σ be an extension for G and let σ′ be the result of inserting v right before u in σ. By
Lemma 10, σ′ is an extension for G′. Towards a contradiction, assume that rwσ′

x > rw (σ) for some x. If
x <σ′ v or x ≥σ′ u, then RWσ′

x = RWσ
x . Thus, x = v and, by Observation 2, rwσ′

u ≥ rwσ′

v −deg+
G(u)+1 =

rwσ′

v , contradicting rwσ′

u = rwσ
u ≤ rw (G).

“≥”: Let σ′ be an extension for G′, let σ := σ′v→ , and note that σ is an extension for G. Then, for
all x <σ′ v and all x ≥σ′ u, we have RWσ′

x = RWσ
x . Finally, RWσ

u is the result of swapping v for u in
RWσ′

v . Thus, rwσ
x ≤ rw (σ′) for all x.

Lemma 8. Let G′ be the result of applying Rule 1 to a leaf u in G. Then, rw (G′) = rw (G).

Proof of Lemma 8. Since ψ is initial for both G and G′, we assume all extensions for G and G′ correspond
to Lemma 6.

“≤”: Let σ be an extension for G with rw (σ) = rw (G) and let σ′ result from σ by inserting v right
after ψ. Clearly, σ′ is an extension for G′. Now, for all x <σ′ v, we have RWσ′

x = RWσ
x . Further,

u ∈ RWσ′

ψ \RWσ′

v , implying RWσ′

v −v ⊆ RWσ′

ψ −u. Finally, for all x >σ′ v, we have v ∈ RWσ′

x if and only
if u ∈ RWσ

x and, thus, RWσ′

x −v = RWσ
x −u. In all cases, rwσ′

x ≤ rw (σ).
“≥”: Let σ′ be an extension for G′ with rw (σ′) = rw (G′) and let σ := σ′v→ (which is clearly an

extension for G). Then, for all x >σ′ v, RWσ
x results from RWσ′

x by replacing v with u. Further, for all
x <σ′ v, RWσ

x = RWσ′

x . In both cases, rwσ
x ≤ rwσ′

x .

In the following, we call a vertex u primal if there is an optimal extension σ for G such that, for all
children v of u and all parents q of v, we have u ≤σ q (u ≥σ q). While, in general, it may not be easy to
decide if a vertex is primal or not, primality is implied by being initial.

Lemma 9. Let G′ be the result of applying Rule 3 to G. Then, rw (G′) = rw (G). Further, if u is primal
in G, then u is primal in G′.

To show correctness of Lemma 9, we use the following lemma.

Lemma 10. Let G be a DAG containing an arc uv, but no other u-v-path, and let σ be a permutation of
V (G) extending (v, u). Let G′ be the result of contracting v onto u and let σ′ := σv→ . Then, σ′ extends
G′ if and only if σ extends G.

Proof of Lemma 10. Note that, by construction, G′ is a DAG. Further, for all x, y ∈ V (G′), we have
x <σ y ⇐⇒ x <σ′ y.

“⇒”: Let σ′ extend G′ and assume towards a contradiction that G contains an arc xy with x <σ y.
Then xy 6= uv since σ extends (v, u). If x = v, then G′ contains the arc uy and, thus, y <σ′ u, implying
y <σ v, contradicting x <σ y. If y = v and x 6= u, then G′ contains xu and, thus, u <σ′ x, implying
v <σ x, contradicting x <σ y. Finally, if {x, y} ∩ {u, v} = ∅, then xy is also an arc of G′ and, thus,
x <σ′ y implying x <σ y again.

“⇐”: Let σ extend G and assume towards a contradiction that G′ contains an arc xy with x <σ′ y.
If xy is an arc of G, then y <σ x, implying y <σ′ x. Thus, x = u and G contains an arc vy and, thus,
y < σv, implying y < σu and y <σ′ u.

Observation 5. Let σ be an extension of G and let u and v be vertices such that v has in-degree one
and v <G u. Then, v /∈ RWσ

u.

Observation 6. Let v be a tree vertex and let u be its parent. Then, there is an extension σ of G such
that rw (σ) = rw (G) and v is the predecessor of u in σ.

Proof of Lemma 9. “≤”: Let σ be an extension of G with rw (σ) = rw (G). Let σ′ be the result of
replacing u by (w, u, r′, r) in σ. First, we show that σ′ extends G′. To this end, consider the result G∗ of
making all parents q of x with q >G u parents of u in G. If σ extends G∗ then, by Lemma 10, σ′ extends
G′. Clearly, any counter example must be an arc of G∗ that is not in G, so let qu be such an arc (where
q is a parent of x in G). If x is a tree-vertex, then qu does not exist. Otherwise, we know u <σ q by our
choice of q. Thus, qu is not a counter example.
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Second, we show that rw (σ′) ≤ rw (σ). Assume towards a contradiction that there is some z with
rwσ′

z > rw (σ) and let γ ∈ RWσ′

z \RWσ
z . Observe that, if z <σ′ w and γ has a parent in σ′[w..] in

G′, then γ has a parent in σ[u..] in G. Thus, z ≥σ′ w. Suppose that z >σ′ r. If r′ ∈ RWσ′

z , then
x ∈ RWσ

z \RWσ′

z and if r ∈ RWσ′

z , then u ∈ RWσ
z \RWσ′

z . Thus, rwσ′

z ≤ rwσ
z in this case. Hence,

z ∈ {w, u, r′, r}. Let v denote the predecessor of u in σ (which is also the predecessor of w in σ′) and note
that RWσ

v contains all children of u in G. Then, by Observation 5, y /∈ RWσ′

w , w /∈ RWσ′

u , and u /∈ RWσ′

r′ .
Thus, RWσ′

w −w ⊆ RWσ
v −y, RWσ′

u −u ⊆ RWσ′

w −w, RWσ′

r′ −r′ ⊆ RWσ′

u −u, and RWσ′

r −r ⊆ RWσ′

r′ −x.
Together, we have rwσ′

r ≤ rwσ′

r′ ≤ rwσ′

u ≤ rwσ′

w ≤ rwσ
v ≤ rw (σ), contradicting z ∈ {w, u, r′, r}. Finally,

since w and y are tree vertices in G′, we conclude that, for all parents q of children of u in G, q ≤σ u
implies q ≤σ′ u. Thus, if u is primal in G (witnessed by σ), then it is also primal in G′ (witnessed by σ′).

“≥”: Let σ′ be an extension of G′ such that rw (σ′) = rw (G′) and w is the predecessor of u in σ′ (σ′
exists by Observation 6). Let σ := σ′{w,r′,r}→ . First, σ is an extension for the result G∗ of contracting
{w, r′, r} onto u in G′. Since x <G′ u (even if wx has been removed), we have x <σ′ u and, thus, x <σ u,
σ is also an extension for any graph resulting from replacing any arcs qu with qx in G∗. Since G is such
a graph, σ extends G. Second, we show that rw (σ) ≤ rw (σ′). Assume towards a contradiction that
there is some z with rwσ

z > rw (σ′) and let γ ∈ RWσ
z \RWσ′

z . Note that γ ∈ {x, u} because otherwise
γ ∈ RWσ′

z . Observe that, if z <σ u and γ has a parent in σ[u..] in G, then γ has a parent in σ′[w..] in G′.
Thus, z ≥σ u. Suppose that z >σ u. Then, if x ∈ RWσ

z , then r′ ∈ RWσ′

z \RWσ
z and if u ∈ RWσ

z , then
r ∈ RWσ′

z \RWσ
z . Thus, rwσ

z ≤ rwσ′

z in this case. Thus, z = u. But we have RWσ
u−u ⊆ RWσ

y −y since
y /∈ RWσ

u by Observation 5 and, thus, rwσ
u ≤ rwσ

y . In all cases, rwσ
z ≤ rw (σ′).

Lemma 11. Let (G′, k + 1) be the result of applying Rule 4 to a reticulation u in (G, k). Then, (G, k)
is a yes-instance if and only if (G′, k + 1) is. Further, ψ is an initial vertex of (G′, k + 1).

Proof. First, since u is not a leaf, the children of ψ in G′ are exactly the children of ψ in G, plus w, which
is a leaf. Thus, ψ is initial for (G′, k + 1).

“⇒:” Let σ be an extension for G with rw (σ) ≤ k. We construct σ′ by adding w as first element to σ
and adding v and v′ (in that order) after u. Clearly, σ′ is an extension for G′ and rwσ′

x ≤ rwσ
x +1 ≤ k+1 for

all x ≤σ u as RWσ
x = RWσ′

x −w. Further, rwσ′

x ≤ rwσ
x +1 for all u <σ x <σ ρ as RWσ

x −u = RWσ′

x \{v, v′}.
Finally, RWσ′

v = (RWσ′

u ∪{v})− w and RWσ′

v′ = (RWσ′

v ∪{v})− u. Thus, rwσ′

v′ = rwσ
v = rwσ′

u ≤ k + 1.
“⇐:” Let σ′ be an extension for G′ with rw (σ) ≤ k+ 1 and let σ := σ′{v,v′,w}→ . Then, rwσ

x ≤ k for
all x <σ′ w since |σ′[1..w]− w| ≤ k. Further, rwσ

x ≤ k for all w <σ′ x ≤σ′ u by construction. Towards a
contradiction, assume that there is some x with rwσ

x > k. Clearly, u <σ′ x <σ′ ρ. If {v, v′} ≤σ′ x, then
v, v′ ∈ RWσ′

x and RWσ
x ⊆ (RWσ′

x ∪{u})\{v, v′}, implying rwσ
x ≤ rwσ′

x −1 ≤ k. Otherwise, u ∈ RWσ′

x and,
since G′ contains the path (ρ, v, w), we know that RWσ′

x intersects {v, w}, implying RWσ
x ⊆ RWσ′

x \{v, w}
and, thus, rwσ

x ≤ rwσ′

x −1.

The following observation helps show correctness of the next reduction rule. Consider a fixed ordering
σ of some G and note that the only effect that removing any arc uv from G has on rw (σ) is that rwσ

v

decreases.

Observation 7. Let G′ be a subgraph of G with V (G) = V (G′). Then, rw (G′) ≤ rw (G).

Lemma 12. Let (G′, k) be the result of applying Rule 5 to (G, k). Then, rw (G′) = rw (G). Furthermore,
ψ is primal in G′.

Proof. “≥”: Let G∗ be the result of removing the arcs xi+1xi for all i from G′. Then, G∗ is isomorphic
to the result of adding, to G, a new leaf child to all vertices of Y − xk. By Lemma 7, rw (G∗) = rw (G).
Then, rw (G′) ≥ rw (G∗) by Observation 7, as G∗ is the result of deleting arcs from G′.

“≤”: Let σ be an extension for G with rw (σ) = rw (G). Since ψ is initial for (G, k), Lemma 6 allows
us to suppose without loss of generality that σ[1..ψ] = (x1, x2, . . . , xk, ψ). Then, let σ′ result from σ by,
for all y ∈ Y − xk, adding the parent of y in G′ that is not in X right after y. We show that rwσ′

xi < k
for all i < k. To this end, for all i < k, let Xi := {xj | j ≤ i}, let Yi := {xj ∈ Y | j < i} and let
Zi denote the set of parents z of vertices y ∈ Yi with z /∈ Xi (note that |Zi| = |Yi|). Then, all y ∈ Yi
have both their parents in σ′[1..xi]. Thus, RWσ′

xi = (Xi ] Zi) \ Yi, implying rwσ′

xi = i < k. Further,
RWσ′

xk
= RWσ′

xk−1
∪{xk}, implying rwσ′

xk
≤ k. Then, rwσ′

ψ ≤ k since X \ Y contains some xj , implying
xj /∈ RWσ′

ψ . Also, for each parent z /∈ X of each xi ∈ Y , we have RWσ′

z −xi = RWσ′

xi+1
−xi+1, implying

rwσ′

z ≤ k. Since, for all q >σ ψ, RWσ′

q results from RWσ
q by replacing all y ∈ Y with their parent outside
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X in G′, we conclude rw (σ′) ≤ rw (σ). Finally, since σ′ is optimal, we conclude that ψ is primal in
G′.

Theorem 4. Register Sufficiency is NP-complete on rooted, single-leaf binary DAGs.

Proof of Theorem 4. Given an instance (G, k) of Register Sufficiency produced by Construction 2,
we employ the following algorithm:
1. use Rule 3 to binarize all tree vertices (except ψ and ρ)
2. use Rule 1 to turn all leaves binary (no non-binary leaf is created in the following steps)
3. use Rule 4 to reduce all in-degrees to at most two
4. use Rule 5 to establish a single leaf (none of the following steps creates leaves)
5. subdivide the two arcs incoming to the unique leaf with vertices χ and φ such that χ is a child of ψ

and add the arc χφ
6. use Rule 3 to turn ψ and ρ binary
7. use Rule 2 to ensure that each non-leaf vertex is either a reticulation or a tree vertex
We let Gi denote the resulting graph after Step i. By correctness of the rules, the resulting instance
(G7, k

′) is a yes-instance if and only if the input instance (G, k) is.
In the following, we verify that G′ := G7 is indeed binary and has a single leaf. To this end, notice

that G contains the following tree polytomies with their children (ρ and ψ missing; tree-vertex children
boxed; children of ψ or ρ underlined or underwaved).
d → B′, C
zn+1 → α ,wn, zn

::

zi → zi−1
:::

, wi−1, ri,1 , ri,2, ri,3, . . .

xi → ui,1, zi
:
, si,1 , si,2, si,3, . . .

xi → zi
:
, ui,2, some hj,1 ∈ H, ti,1 , ti,2, ti,3, . . .

x∗i → x′i , some fj,1 ∈ F ′, some hj,2 ∈ H
Notice that all these tree polytomies are ancestors of ψ and children of ρ. Further, all parents of all ri,j
are descendants of zi, all parents of all si,j are descendants of xi, and all parents of all ti,j are descendants
of xi. Thus, in Step 1, Rule 3 turns all of them binary. Further, each of these tree polytomies has at
most one non-binary non-leaf reticulation child (underwaved). In applying Rule 3, we can afford to never
touch this child and just “merge” all other children into one. Since Rule 3 does not create vertices with
higher in-degree than that of the child it is applied for, we can be sure that all non-binary reticulations
in G1 have already been non-binary reticulations in G. They are ψ, zi, the leaves in U , F ′ and H. The
leaves in U , F ′, and H have in-degree at most three in G (in fact, all leaves do) and applying Rule 3
to some of their parents does not increase their in-degree. Thus, in Step 2, Rule 1 turns each of them
into a binary leaf and a vertex of in- and out-degree two. Further, Rule 1 keeps ψ initial for (G2, k). In
Step 3, we use Rule 4 to reduce the in-degree of ψ and all zi. Note that this increases k (and we let k′
denote this new number) and Again, no non-binary vertices are created in this process and ψ is initial
for (G3, k

′). Thus, in Step 4, we can use Rule 5 to establish a unique leaf in the graph without creating
non-binary vertices. Note, however, that (G4, k

′) no longer has the initial-vertex property. Further, ψ
does not have a tree child in G4, which is required to turn ψ binary using Rule 3. To remedy this, we
install a new tree vertex χ below ψ in Step 5. It can be readily seen that this does not affect the register
width, that is, rw (G5) = rw (G4). Now, in Step 6, we apply Rule 3 to ψ, using χ as tree vertex. This
requires all other children of ψ (except one) to have a parent that is comparable to ψ in G5. In G4, many
of these children are no longer leaves. However, for each child v of ψ in G4, there is a leaf in G3 whose
parents are exactly the parents of v in G4. Thus, it suffices to show that all leaves in G3 have a parent
in G3 that is an ancestor of ψ in G3 (note that all ancestors of ψ in G3 are also ancestors of ψ in G4).

• All leaves in A′ ∪ {α} have, in G4, a parent that is a leaf in G3 and, thus, comparable to ψ.
• All leaves with in-degree three in G (that is, U , F ′, H) have received a parent that is also a parent

of ψ in Step 2. This vertex is still an ancestor of ψ in G3 and, thus, is G4.
• All leaves in B′ have d as their other parent in G3, which is an ancestor of ψ in G3 and, thus, in
G4.

• All leaves that were added in Step 3 have a parent that is an ancestor of either ψ or zi in G3 (as
they were added when applying Rule 4 to ψ or zi, respectively). As zi is an ancestor of ψ in G3

and, thus, in G3, all these leaves have an ancestor of ψ as parent in G3.
As this covers all leaves of G3, we conclude that Step 6 succeeds at turning ψ binary. Finally, Rule 3 can
be used to turn ρ binary since it has a leaf child (for example, p′′′1 ) and all vertices are descendants of
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ρ (which does not change during the repeated application of Rule 3 to it). However, this turns all tree
vertices that are children of ρ into vertices with both in- and out-degree two, so we need to remember to
apply Rule 2 in the end (which also splits the nodes created when binarizing U , F ′, and H in Step 2 and
the nodes in R′, S′ and T ′, as they all have both in- and out-degree two in G6).

Finally, with Proposition 1, Theorem 4 implies NP-hardness of deciding the scanwidth for binary
networks with a single leaf. Further, since a vertex-ordering is a polynomial-size certificate and its
scanwidth can be checked in linear time, we conclude that the problem is complete for NP.
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