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Modeling other minds: Bayesian inference explains 
human choices in group decision-making
Koosha Khalvati1, Seongmin A. Park2,3, Saghar Mirbagheri4, Remi Philippe3, Mariateresa Sestito3, 
Jean-Claude Dreher3*, Rajesh P. N. Rao1,5*†

To make decisions in a social context, humans have to predict the behavior of others, an ability that is thought to 
rely on having a model of other minds known as “theory of mind.” Such a model becomes especially complex 
when the number of people one simultaneously interacts with is large and actions are anonymous. Here, we present 
results from a group decision-making task known as the volunteer’s dilemma and demonstrate that a Bayesian 
model based on partially observable Markov decision processes outperforms existing models in quantitatively 
predicting human behavior and outcomes of group interactions. Our results suggest that in decision-making tasks 
involving large groups with anonymous members, humans use Bayesian inference to model the “mind of the group,” 
making predictions of others’ decisions while also simulating the effects of their own actions on the group’s dy-
namics in the future.

INTRODUCTION
The importance of social decision-making in human behavior has 
spawned a large body of research in social neuroscience and decision-
making (1, 2). Human behavior relies heavily on predicting future 
states of the environment under uncertainty and choosing appro-
priate actions to achieve a goal. In a social context, the degree of 
uncertainty about the possible outcomes increases drastically as the 
behavior of others is much less predictable than the physics of the 
environment.

One approach to handling uncertainty in social settings is to act 
based on a belief about others. This approach includes inferring the 
consequences of one’s own behavior under uncertainty as opposed 
to “belief-free” models (3) that simply select the action that has been 
rewarding in the past, given current observations (4, 5). The differ-
ence between “belief-based” and belief-free models in social decision-
making is closely related to “model-based” and “model-free” approaches 
(6, 7) in nonsocial decision-making but with a greater emphasis on 
uncertainty due to the greater unpredictability of human behavior 
in social tasks.

In belief-based decision-making, the subject learns a model of 
the environment, updates the model based on observations and re-
wards, and chooses actions based on a probabilistic “belief” about 
the current state of the world (5, 8, 9). As a result, the relationship of 
the current action with rewards received and current observations 
is indirect. Besides the history of rewards received and the current 
observation, the learned model can also include other factors such 
as potential future rewards and more general rules about the envi-
ronment. Therefore, the belief-based (model-based) approach is more 
flexible than belief-free (model-free) decision-making (10, 11). How-
ever, belief-based decision-making requires more cognitive resources, 
for example, for simulation of future events. Thus, there is an inherent 
trade-off between the two types of approaches, and determining 

which approach humans adopt for different situations is an impor
tant open area of research (12).

Several studies have presented evidence in favor of the belief-
based approach by quantifying the similarity between probabilistic 
model-based methods and human behavior when the subject inter-
acts with or reasons about another human (5, 13–18). Compared to 
reasoning about a single person, decision-making in a group with a 
large number of members can get complicated. On the one hand, 
having more group members disproportionately increases the cog-
nitive cost of tracking minds compared to the cost of only tracking 
the reward history of each action given the current observations. On 
the other hand, consistent with the importance that human society 
places on group decisions, a belief-based approach might be the 
optimal strategy.

How does one extend a belief-based approach for reasoning about 
a single person to the case of decision-making within a large group? 
Group decision-making becomes even more challenging when the 
actions of others in the group are anonymous (e.g., voting as part of 
a jury) (19, 20). In such situations, reasoning about the state of mind 
of individual group members is not possible but the dynamics of 
group decisions do depend on each individual’s actions.

To investigate these complexities that arise in group decision-
making, we focused on the volunteer’s dilemma task, wherein a few 
individuals endure some costs to benefit the whole group (21). Ex-
amples of the task include guarding duty, blood donation, and step-
ping forward to stop an act of violence in a public place (22). To 
mimic the volunteer’s dilemma in a laboratory setting, we used the 
thresholded binary version of a multiround public goods game (PGG) 
where the actions of each individual are hidden from others (21, 23).

Using an optimal Bayesian framework based on partially observ-
able Markov decision processes (POMDPs) (24), we propose that in 
group decision-making, humans simulate the “mind of the group” 
by modeling an average group member’s mind when making their 
current choices. Our model incorporates prior knowledge, current 
observations, and a simulation of the future based on the current 
actions for modeling human decisions within a group. We compared 
our model to a model-free reinforcement learning approach based 
on the reward history of each action as well as a previous descriptive 
method for fitting human behavior in the PGG. Our model predicts 
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human behavior significantly better than the model-free reinforcement 
learning and descriptive approaches. Furthermore, by leveraging 
the interpretable nature of our model, we are able to show a poten-
tial underlying computational mechanism for the group decision-
making process.

RESULTS
Human behavior in a binary PGG
The participants were 29 adults (mean age, 22.97 years old ± 0.37; 
14 women). We analyzed the behavioral data of 12 PGGs in which 
participants played 15 rounds of the game within the same group of 
N players (N = 5).

At the beginning of each round, 1 monetary unit (MU) was 
endowed (E) to each player. In each round, a player could choose 
between two options: contribute or free-ride. Contribution had 
a cost of C = 1 MU, implying that the player could choose between 
keeping their initial endowment or giving it up. In contrast to the 
classical PGG where the group reward is a linear function of total 
contributions (25), in our PGG, public goods were produced as a 
group reward (G = 2 MU to each player) if and only if at least k players 
each contributed 1 MU. k was set to two or four randomly for each 
session and conveyed to group members before the start of the ses-
sion. The resultant amount after one round is therefore E − C + G = 
2 MU for the contributor and E + G = 3 MU for the free-rider when 
public goods were produced (the round was a SUCCESS). On the 
other hand, the contributor has E − C = 0 MU and the free-rider has 
E = 1 MU when no public goods were produced (the round was a 
FAILURE).

Figure 1 depicts one round of the PGG task. After the subject 
acts, the total number of contributions, free-rides, and the overall 
outcome of the round is revealed (success or failure in securing the 
2 MU group reward), but each individual player’s actions remained 
unknown. In addition, as shown in the figure, the value of k for the 
current session was always presented on the screen to ensure that 
the subjects had it in mind when making decisions. Although sub-
jects were told that they were playing with other humans, in reality, 
they were playing with a computer that generated the actions of all 
the other N − 1 = 4 players using an algorithm based on human data 
(see Methods). In each session, the subject played with a different 
group of players.

As shown in Fig. 2A, subjects contributed significantly more 
when the number of required volunteers was higher with an average 
contribution rate of 55% (SD = 0.31) for k = 4 in comparison to 33% 
(SD = 0.18) for k = 2 {two-tailed paired sample t test, t(28) = 3.94, 
P = 5.0 × 10−4, 95% confidence interval (CI) difference = [0.11,0.33]}. 
In addition, Fig. 2B shows that the probability of generating public 
good was significantly higher when k = 2 with a success rate of 87% 
(SD = 0.09) compared to 36% (SD = 0.29) when k = 4 {two-tailed 
paired sample t test, t(28) = 10.08, P = 8.0 × 10−11, 95% CI difference = 
[0.40,0.60]}. All but six of the subjects contributed more when k = 4 
(Fig. 2C). Of these six players, five chose to free-ride more than 95% 
of the time. In addition, success rate was higher when k = 2 for all 
players (Fig. 2D).

The contribution rate of the subjects dropped during the course 
of the trial on average, especially for k = 4, but remained above 
zero. Figure 2E shows the average contribution rate across all sub-
jects as a function of round number (1 to 15). We also compared 
the average contribution for the first five rounds with that for the 
last five rounds. For k = 4, the average contribution probability 
across all subjects for the first five rounds was 0.6 (SD = 0.20) and 
significantly higher than that for the last five rounds (average across 
subjects = 0.49, SD = 0.19) {two-tailed paired sample t test, t(28) = 
3.65, P = 0.001, 95% CI difference = [0.05,0.17]}. For k = 2, the 
difference between the first five rounds (average = 0.53, SD = 0.32) 
and the last five rounds (average = 0.50, SD = 0.33) was insignifi-
cant {two-tailed paired sample t test, t(28) = 1.51, P = 0.14, 95% CI 
difference = [ − 0.01,0.06]}.

The average contribution probability did not change significant-
ly as subjects played more games (Fig. 2F). In each condition, most 
of the players played at least five games (27 players for k = 2 and 26 
for k = 4). For k = 2, in their first game, the average contribution rate 
of players was 0.37 (SD = 0.25), while in their fifth game, it was 0.30 
(SD = 0.24) {two-tailed paired sample t test, t(26) = 1.34, P = 0.19, 
95% CI difference = [ − 0.03,0.17]}. When k = 4, the average contri-
bution rate was 0.57 (SD = 0.30) in the first game and 0.61 (SD = 0.35) 
in the fifth game {two-tailed paired sample t test, t(25) = − 0.69, 
P = 0.50, 95% CI difference = [ − 0.16,0.08]}.

Probabilistic model of theory of mind for the group in the PGG
Consider one round of the PGG task. A player can be expected to 
choose an action (contribute or free-ride) based on the number of 

Fig. 1. Multiround PGG. The figure depicts the sequence of computer screens a subject sees in one round of the PGG. The subject is assigned four other players as partners, 
and each round requires the subject to make a decision: Keep 1 MU (i.e., free-ride) or contribute 1 MU. The subject knows whether the threshold to generate public 
goods (reward of 2 MU for each player) is two or four contributions (from the five players). After the subject acts, the total number of contributions and overall outcome 
of the round (success or failure) are revealed.
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contributions they anticipate the others to make in that round. Be-
cause the actions of individual players remain unknown through the 
game, the only observable parameter is the total number of contri-
butions. One can therefore model this situation using a single random 
variable , denoting the average probability of contribution by any 
group member. With this definition, the total number of contribu-
tions by all the other members of the group can be expressed as a 
binomial distribution. Specifically, if  is the probability of contri-
bution by each group member, the probability of observing m contri-
butions from the N − 1 others in a group of N people is

	​​ P(m∣ ) = ​(​​​N − 1​ m  ​​)​​ ​​​ m​ ​(1 − )​​ N−1−m​​​	 (1)

Using this probability, a player can calculate the expected num-
ber of contributions from the others, compare it with k, and decide 
whether to contribute or free-ride accordingly. For example, if  is 
very low, there is not a high probability of observing k − 1 contribu-
tions by the others, implying that free-riding is the best strategy.

There are two important facts that make this decision-making 
more complex. First, the player does not know .  must be estimated 
from the behavior of the group members. Second, other group 
members also have a theory of mind. Therefore, they can be expect-
ed to change their strategy based on the actions of others. Because 
of this ability in other group members, each player needs to simu-
late the effect of their action on the group’s behavior in the future.

To model the uncertainty in , we assume that a probability dis-
tribution over  is maintained in the player’s mind, representing 
their belief about the cooperativeness of the group. Each player 
starts with an initial probability distribution, called the prior belief 
about , and updates this belief over successive rounds based on the 
actions of the others. The prior belief may be based on the prior life 
experience of the player, or what they believe others would do 
through fictitious play (26). For example, the player may start with 
a prior belief that the group will be a cooperative one but change 
this belief after observing low numbers of contributions by the others. 
Such belief updates can be performed using Bayes’ rule to invert the 
probabilistic relationship between  and the number of contribu-
tions given by Eq. 1.

A suitable prior probability distribution for estimating the pa-
rameter  of a binomial distribution is the beta distribution, which 
is itself determined by two (hyper) parameters  and 

	​​
  ∼  Beta(, )

​  
Beta(,  ) : P(x∣,  ) ∝ ​x​​ −1​ ​(1 − x)​​ −1​

​​	 (2)

Starting with a prior probability Beta(1, 1) for , the player up-
dates their belief about  after observing the number of contributions 
from the others in each round through Bayes’ rule. This updated 
belief is called the posterior probability of . The posterior probability 
of  in each round serves as the prior for the next round.

A B C

D E F
Fig. 2. Human behavior in the PGG Task. (A) Average contribution probability across subjects is significantly higher when the task requires more volunteers (k) to gen-
erate the group reward. (B) Average probability of success across all subjects in generating the group reward is significantly higher when k is lower. Error bars indicate 
within-subject SE (52). (C) Average probability of contribution for each subject for k = 2 versus k = 4. Each point represents a subject. Subjects tend to contribute more 
often when the task requires more volunteers. (D) Average success rate for each subject was higher for k = 2 versus k = 4. (E) Average probability of contribution across 
subjects decreases throughout a game, especially for k = 4. Dotted lines are linear functions showing this trend for each k. (F) Average contribution probability across 
subjects as a function of number of games played. The contribution probability does not change significantly as subjects play more games.
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In economics, the ability to infer the belief of others is sometimes 
called sophistication (27, 28). Here, we consider a simple form of 
sophistication: We assume that each player thinks other group 
members have the same model as themselves ( and ). This is justi-
fiable due to computational efficiency and more importantly anonymity 
of players. As a result, with a prior of Beta(t, t) after observing 
c contributions (including one’s own when made) in round t, the 
posterior probability of  for the subject becomes Beta(t + 1, t + 1), 
where t + 1 = t + c and t + 1 = t + N − c. Technically, this follows 
because the beta distribution is conjugate to the binomial distribution 
(29). Note that we include one’s own action in the update of the belief 
because one’s own action can change the future contribution level 
of the others.

Intuitively,  represents the number of contributions made thus 
far, and  represents the number of free-rides. 1 and 1 (that define 
prior belief) represent the player’s a priori expectation about the 
relative number of contributions versus free-rides, respectively, 
before the session begins. For example, when 1 is larger than 1, the 
player starts the task with the belief that people will contribute more 
than free-ride. Large values of 1 and 1 imply that the subject thinks 
that the average contribution probability will not change significantly 
after one round of the game when updated with the relatively small 
number c as above.

Decision making in the PGG task is also made complex by the 
fact that the actual cooperativeness of the group itself (not just the 
player’s belief about it) may change from one round to the next: 
Players observe the contributions of the others and may change their 
own strategy for the next round. For example, players may start the 
game making contributions but change their strategy to free-riding 
if they observe a large number of contributions by the others. We 
model this phenomenon using a parameter 0 ≤  ≤ 1, which serves 
as a decay rate: The prior probability for round t is modeled as 
Beta(t, t), which allows recent observations about the contribu-
tions of other players to be given more importance than observa-
tions from the more distant past. Thus, in a round with c total 
contributions (including the subject’s own contribution when made), 
the subject’s belief about the cooperativeness of the group as a whole 
changes from Beta(t, t) to Beta(t + 1, t + 1) where t + 1 = t + c and 
t + 1 = t + N − c.

Action selection
How should a player decide whether to contribute or free-ride in 
each round? One possible strategy is to maximize the reward for the 
current round by calculating the expected number of contributions 
by the others based on the current belief. Using Eq. 1 and the prior 
probability distribution over , the probability of seeing m contri-
butions by the others when the belief about the cooperativeness of 
the group is Beta(, ) is given by

	​​

P(m∣,  ) = ​∫0​ 
1
 ​​P(m∣ ) P(∣,  ) d

​   ​∝ ​∫0​ 
1
 ​​​(​​​N − 1​ m  ​​)​​ ​​​ m​ ​(1 − )​​ N−1−m​ ​​​ −1​ ​(1 − )​​ −1​ d​​    

​∝ ​(​​​N − 1​ m  ​​)​​​∫0​ 
1
 ​​ ​​​ +m−1​ ​(1 − )​​ +N−m−2​ d​

  ​​	 (3)

One can calculate the expected reward for the contribute versus 
free-ride actions in the current round based on the above equation. 
Maximizing this reward, however, is not the best strategy. As alluded 

to earlier, the actions of each player can change the behavior of 
other group members in future rounds. Specifically, our model as-
sumes that its own contribution in the current round increases the 
average contribution rate of the group in the future rounds. Equa-
tion 10 in Methods shows the exact assumptions of our model (with 
updates of t + 1 = t + c and t + 1 = t + N − c for its belief) about 
the dynamics of the actual (hidden) state of the environment. The 
optimal strategy therefore is to calculate the cooperativeness of the 
group through the end of the session and consider the reward over 
all future rounds in the session before selecting the current action. 
Thus, an optimal agent would contribute for two reasons. First, con-
tributing could enable the group to reach at least k volunteers in the 
current round. Second, contributing encourages other members to 
contribute in future rounds. Specifically, a contribution by the sub-
ject increases the average contribution rate for the next round by in-
creasing  in the next round (see the transition function in Methods).

Long-term reward maximization (as discussed above) based on 
probabilistic inference of hidden state in an environment (here, , 
the probability of contribution of group members) can be modeled 
using the framework of POMDPs (24). Further details can be found 
in Methods, but briefly, to maximize the total expected reward, 
our model starts from the last round, the reward is calculated for 
each action and state, and then the model steps back one time step 
to find the optimal action for each state in that round. This process 
is repeated in a recursive fashion. Figure 3A shows a schematic of 
the PGG experiment modeled using a POMDP, and Fig. 3B illus-
trates the mechanism of action selection in this model.

As an example of the POMDP model’s ability to select actions 
for the PGG task, Fig. 4 (A and B) shows the best actions for a given 
round (here, round 9) as prescribed by the POMDP model for k = 2 
and k = 4, respectively (the number of minimum volunteers needed). 
The best actions are shown as a function of different belief states the 
subject may have, expressed in terms of the different values possible 
for belief parameters t and t. This mapping from beliefs to actions 
is called a policy.

Our simulations using the POMDP model showed that consider-
ing a much longer horizon (e.g., 50 rounds) instead of just 15 rounds 
gave a better fit to the subjects’ behavior, suggesting that human 
subjects may be inclined to use long horizons for group decision-
making tasks (see Discussion). Such a long horizon for determining 
the optimal policy makes the model similar to an infinite horizon 
POMDP model (30). As a result, the optimal policy for all rounds 
in our model is very similar to the policy for round 9 shown in 
Fig. 4 (A and B).

In summary, the POMDP model performs two computations 
simultaneously. The first computation is probabilistic estimation of 
the (hidden) average contribution rate through belief updates. The 
average contribution rate changes during the course of the game as 
players interact with each other. The second computation involves 
selecting actions to influence this average contribution rate and to 
maximize total expected reward. This is the action selection component, 
which is performed by backward reasoning from the last round.

POMDP model predicts human behavior in volunteer’s 
dilemma task
The POMDP model has three parameters, 1, 1, and , which deter-
mine the subject’s actions and belief in each round. We fit these 
parameters to the subject’s actions by minimizing the error, i.e., the 
difference between the POMDP model’s predicted action and the 
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subject’s action in each round. The average percentage error across 
all rounds is then the percentage of rounds that the model incor-
rectly predicts (contribute instead of free-ride or vice versa). We 
defined accuracy as the percentage of the rounds that the model 
predicts correctly.

We also calculated the leave-one-out cross-validated (LOOCV) 
accuracy of our fits (29), where each “left out” data point is one whole 
game and the parameters were fit to the other 11 games of the subject. 
Note that our LOOCV accuracy is a prediction of the subject’s 
behavior in a game without any parameter tuning based on this game. 
In addition, while different rounds of each game are highly correlated, 
the games of each subject are independent from each other (given 
the parameters of that subject) as the other group members change 
in each game.

We found that the POMDP model had an average fitting accuracy 
across subjects of 84% (SD = 0.06), while the average LOOCV accu-
racy was 77% (SD = 0.08). Figure 5A compares the average fitting 
and LOOCV accuracies of the POMDP model with two other models. 
The first is a model-free reinforcement learning model known as 
Q-learning: Actions are chosen on the basis of their rewards in pre-
vious rounds (31), with the utility of group reward, initial values, 
and learning rate as free parameters (five parameters per subject; 
see Methods).

The average fitting accuracy of the Q-learning model was 79% 
(SD = 0.07), which is significantly worse than the POMDP model’s 
fitting accuracy given above {two-tailed paired t test, t(28) = −6.75, 
P = 2.52 × 10−7, 95% CI difference = [−0.06, −0.03]}. In addition, 
the average LOOCV accuracy of the POMDP model was significantly 
higher than the average LOOCV accuracy of Q-learning, which was 
73% (SD = 0.09) {two-tailed paired t test, t(28) = 2.20, P = 0.037, 
95% CI difference =[0.004,0.08]}.

We additionally tested a previously explored descriptive model 
in the PGG literature known as the linear two-factor model (32), which 
predicts the current action of each player based on the player’s own 
action and contributions by the others in the previous round (this 
model has three free parameters per subject; see Methods). The 
average fitting accuracy of the two-factor model was 78% (SD = 0.09), 
which is significantly lower than the POMDP model’s fitting accu-
racy {two-tailed paired t test, t(28) = −4.86, P = 4.1 × 10−5, 95% CI 

difference = [−0.08, −0.03]}. Moreover, the LOOCV accuracy of 
the two-factor model was 47% (SD = 20), significantly lower than 
the POMDP model {two-tailed paired t test, t(28) = −7.61, P = 2.7 × 
10−8, 95% CI difference = [−0.38, −0.22]}. The main reason for this 
result, especially the lower LOOCV accuracy, is that group success 
also depends on the required number of volunteers (k). This value 
is automatically incorporated in the POMDP’s calculation of expected 
reward. Also, reinforcement learning works directly with rewards 
and therefore does not need explicit knowledge of k (however, a 
separate parameter for each k is needed in the initial value function 
for Q-learning; see Methods). Given that the number of free parameters 
for the descriptive and model-free approaches is greater than or equal 
to the number of free parameters in the POMDP model, the higher 
accuracy of POMDP is notable in terms of model comparison.

We tested the POMDP model’s predictions of contribution 
probability for each subject for the two k values with experimental 
data (same data as in Fig. 2C; see Methods). As shown in Fig. 5 
(B and C), the POMDP model’s predictions match the pattern of 
distribution of actual data from the experiments.

The POMDP model, when fit to a subject’s actions, can also ex-
plain other events during the PGG task in contrast to the other 
models described above. For example, based on Eq. 3 and the action 
chosen by the POMDP model, one can predict the subject’s belief 
about the probability of success in the current round. This predic-
tion cannot be directly validated, but it can be compared to actual 
success. If we consider actual success as the ground truth, the average 
accuracy of the POMDP model’s prediction of success probability 
across subjects was 71% (SD = 0.07). Moreover, the predictions 
matched the pattern of success rate data from the experiment 
(Fig. 5, D and E). The other models presented above are not capable 
of making such a prediction.

The POMDP model’s predictions also match experimental data 
when the data points are binned on the basis of round of the game. The 
model correctly predicts a decrease in contribution for k = 4 and lack 
of significant change in contribution rate on average for k = 2 (Fig. 5F). 
Moreover, the model’s prediction of a subject’s belief about group 
success matches the actual data round by round (Fig. 5G). Further 
comparisons to other models, such as the interactive-POMDP model 
(33), are provided in the Supplementary Materials.

A B
Fig. 3. POMDP model of the multiround PGG. (A) Model: The subject does not know the average probability of contribution of the group. The POMDP model assumes 
that the subject maintains a probability distribution (“belief,” denoted by bt) about the group’s average probability of contribution (denoted by t) and updates this belief 
after observing the outcome ct (contribution by others) in each round. (B) Action selection: The POMDP model chooses an action (at) that maximizes the expected total 
reward (∑ri) across all rounds based on the current belief and the consequence of the action (contribution “c” or free-ride “f”) on group behavior in future rounds.
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Distribution of POMDP parameters
We can gain insights into the subject’s behavior by interpreting 
the parameters of our POMDP model in the context of the task. As 
alluded to above, the prior parameters 1 and 1 represent the subject’s 
prior expectations of contributions and free-rides, respectively. 
Therefore, the ratio 1/1 characterizes the subject’s expectation of 
contributions by group members, while the average of these param-
eters, (1 + 1)/2, indicates the weight the subject gives to prior expe-
rience with similar groups before the start of the game. The decay 
rate  determines the weight given to past observations compared to 
new ones: The smaller the decay rate, the more weight the subject 
gives to new observations.

We examined the distribution of these parameter values for our 
subjects after fitting the POMDP model to their behavior (Fig. 6, 
A and B). The ratio 1/1 was in the reasonable range of 0.5 to 2 
for almost all subjects (Fig. 6C; in our algorithm, the ratio can be as 
high as 200 or as low as 1/200; see Methods). The value of (1 + 
1)/2 across subjects was mostly between 40 to 120 (Fig. 6D), sug-
gesting that prior belief about groups did have a significant role in 
players’ strategy, but it was not the only factor because observations 
over multiple rounds can still alter this initial belief. To confirm the 
effect of actions during the game, we performed a comparison with 
a POMDP model that does not update  and  over time and only 
uses its prior. The accuracy of this modified POMDP model was 
66% (SD = 0.17), significantly lower than our original model {two-tailed 
paired t test, t(28) = − 5.47, P = 7.64 × 10−6, 95% CI difference =[ − 0.23, 
− 0.11]}. The average t and t for each of the 15 rounds, as well as 
distributions of their difference with the prior values 1 and 1 are 
presented in the Supplementary Materials.

We also calculated the expected value of contribution by the others 
in the first round, which is between 0 and N − 1 = 4, based on the 
values of 1 and 1 for the subjects. For almost all subjects, this 
expected value was between two and three (Fig. 6E).

In addition, we calculated each subject’s prior belief about group 
success (probability of success in the first round) based on 1, 1, 
and the subject’s POMDP policy in the first round. As group suc-
cess depends on the required number of volunteers (k), probability 
of success is different for k = 2 and k = 4 even with the same 1 and 

1. Figure 6 (F and G) shows the distribution of this prior probability 
of success across all subjects for k = 2 and k = 4. For k = 2, all subjects 
expected a high probability of success in the first round, whereas 
most of the subjects expected less than 60% chance for success when 
k = 4. While these beliefs cannot be directly validated, the results 
point to the importance of the required number of volunteers in 
shaping the subjects’ behavior.

Additionally, the decay rate , which determines the weight accorded 
to the prior and previous observations compared to the most recent 
observation, was almost always above 0.95, with a mean of 0.93 and 
a median of 0.97 (Fig. 6H). Only three subjects had a decay rate less 
than 0.95 (not shown in the figure), suggesting that almost all sub-
jects relied on observations made across multiple rounds when com-
puting their beliefs rather than reasoning based solely on the current 
or most recent observations.

DISCUSSION
We introduced a normative model based on POMDPs for explain-
ing human behavior in a group decision-making task. Our model 
combines probabilistic reasoning about the group with long-term 
reward maximization by simulating the effect of each action on 
the future behavior of the group. The greater accuracy of our model 
in explaining and predicting the subjects’ behavior compared to 
the other models suggests that humans make decisions in group 
settings by reasoning about the group as a whole. This mecha-
nism is analogous to maintaining a theory of mind about another 
person, except that the theory of mind pertains to a group member 
on average.

This is the first time, to our knowledge, that a normative model 
has been proposed for a group decision-making task. Existing models 
to explain human behavior in the PGG, for example, are descriptive 
and do not provide insights into the computational mechanisms 
underlying the decisions (32). While the regression-based descrip-
tive method we compared our POMDP model to can potentially be 
seen as a “learned” model-free approach to mapping observations 
to choice in the next round, our model was also able to outperform 
this method.

A B
Fig. 4. Optimal actions prescribed by the POMDP policy as a function of belief state. Plot (A) shows the policy for k = 2 and plot (B) for k = 4. The purple regions 
represent those belief states (defined by t and t) for which free-riding is the optimal action; the yellow regions represent belief states for which the optimal action is 
contributing. These plots confirm that the optimal policy depends highly on k, the number of required volunteers. For the two plots, the decay rate was 1 and t was 9.
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In addition to providing a better fit and prediction of the subject’s 
behavior, our model, when fit to the subject’s actions, can predict 
success rate in each round without being explicitly trained for such 
predictions, in contrast to the other methods. In addition, as alluded 
to in Fig. 6 (C, D, and H), when fit to the subjects’ actions, the param-
eters were all within a reasonable range, showing the importance of 
prior knowledge and multiple observations in decision-making. 
The POMDP model is normative and strictly constrained by prob-
ability theory and optimal control theory. The beta distribution is 
used because it is the conjugate prior of the binomial distribution 
(29) and not due to better fits compared to other distributions.

The POMDP policy aligns with our intuition about action selec-
tion in the volunteer’s dilemma task. A player chooses to free-ride 
for two reasons: (i) when the cooperativeness of the group is low 
and therefore there is no benefit in contributing, and (ii) when the 

player knows there are already enough volunteers and contributing 
leads to a waste of resources. The two purple areas of Fig. 4A re
present these two conditions for k = 2. The upper left part represents 
large t and small t, implying a high contribution rate, while the 
bottom right part represents small t and large t, implying a low 
contribution rate. When k = 4, all but one of the five players must 
contribute for group success—this causes a significant difference in 
the optimal POMDP policy compared to the k = 2 condition. As seen 
in Fig. 4B, there is only a single region of belief space for which 
free-riding is the best strategy, namely, when the player does not 
expect contributions by enough players (relatively large t). On the 
other hand, as expected, this region is much larger compared to the 
same region for k = 2 (see Fig. 4A). The POMDP model predicts 
that free-riding is not a viable action in the k = 4 case (Fig. 4B) 
because not only does this action require all the other four players 

A B

C D E

F G

Fig. 5. POMDP model’s performance and predictions. (A) Average fitting and LOOCV accuracy across all models. The POMDP model has significantly higher accuracy 
compared to the other models (*P < 0.05 and ***P < 0.001). Error bars indicate within-subject SE (52). (B) POMDP model’s prediction of a subject’s probability of contribution 
compared to experimental data for the two k values [black circles: same data as in Fig. 2C). (C) Same data as (B) but the POMDP model’s prediction and the experimental 
data are shown for each k separately (blue for k = 2 and orange for k = 4]. (D) POMDP model’s prediction (blue circles) of a subject’s belief about group success in each 
round (on average) compared to actual data (black circles, same data as in Fig. 2D). (E) Same data as (D), but the POMDP model’s prediction and actual data are shown for 
each k separately (blue for k = 2 and orange for k = 4). (F) Same data as (B) and (C) but with the data points binned on the basis of round of the game. (G) Same data as 
(D) and (E) but with the data points binned based on round of the game.
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to contribute to generate the group reward in the current round but 
also such an action increases the chances that the group contribution 
will be lower in the next round, resulting in lesser expected reward 
in future rounds. The opposite situation can also occur especially 
when k = 2. A player may contribute not to gain the group reward 
in the current round but to encourage others to contribute in the 
next rounds. When an optimal player chooses free-riding due to low 
cooperativeness of the group, the estimated average contribution is 
so low that the group is not likely to get the group reward in the next 
rounds even with an increase in the average contribution due to the 
player’s contribution. On the other hand, when an optimal player 
chooses to free-ride due to high cooperativeness of the group, the 
estimated average contribution rate is so high that the chance of 
success remains high in future rounds even with a decrease in average 
contribution rate due the player free-riding in the current round.

In a game with a predetermined and known number of rounds, 
even if the player considers the future, one might expect the most 
rewarding action in the last rounds to be free-riding as there is little 
or no future to consider. However, our experimental data did not 
support this conclusion. Our model is able to explain these data using 
the hypothesis that subjects may use a longer horizon than the 
exact number of rounds in a game. Such a strategy provides a sig-
nificant computational benefit by making the policies for different 
rounds similar to each other, avoiding recalculation of a policy for 
each single round. Recent studies in human decision-making have 
demonstrated that humans may use such minimal modifications of 

model-based policies for efficiency (34, 35). More broadly, group 
decision-making occurs among groups of humans (and animals) that 
live together. Thus, any group decision-making involves practically 
an infinite horizon, i.e., there is always a future interaction even after 
the current task has ended, justifying the use of long horizons.

In the volunteer’s dilemma, not only is the common goal not 
reached when there are not enough volunteers but also having more 
than the required number of volunteers leads to a waste of resources. 
As a result, an accurate prediction of others’ intentions based on 
one’s beliefs is crucial to make accurate decisions. This gives the 
model-based approach a huge advantage over model-free methods 
in terms of reward gathering, thus making it more beneficial for the 
brain to endure the extra cognitive cost. It is possible that in simpler 
tasks where the accurate prediction of minds is less crucial, the brain 
adopts a model-free approach.

Our model was based on the binomial and beta distributions for 
binary values due to the nature of the task, but it can be easily ex-
tended to the more general case of a discrete set of actions using 
multinomial and Dirichlet distributions (36). In addition, the model 
can be extended to multivariate states, e.g., when the players are no 
longer anonymous. In such cases, the belief can be modeled as a 
joint probability distribution over all parameters of the state. This, 
however, incurs a significant computational cost. An interesting area 
for future research is investigating whether, under some circum-
stances, humans model group members with similar behavior as one 
subgroup to reduce the number of minds one should reason about.

A B C D

E F G H

Fig. 6. Distribution of POMDP parameters across subjects. (A) Histogram of 1 across all subjects. (B) Histogram of 1 across all subjects. (C) Histogram of the ratio 1/1 
shows a value between 0.5 and 2 for almost all subjects. (D) Histogram of (1 + 1)/2. For most subjects, this value is between 40 and 120. (E) Histogram of prior belief 
Beta(1, 1) translated into expected contribution by the others in the first round. Note that the values, after fitting to the subjects’ behavior, are mostly between 2 and 3. 
(F) When k = 2, all subjects expected a high probability of group success in the first round (before making any observations about the group). (G) When k = 4, almost all 
subjects assigned a chance of less than 60% to group success in the first round. (H) Box plot of decay rate  across subjects shows that this value is almost always above 
0.95. The median is 0.97 (orange line) and the mean is 0.93 (green line).
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Our POMDP framework assumes that each subject starts with 
the same prior about average group member contribution probability 
at the beginning of each game. However, subjects might try to esti-
mate this prior for a new group in the first few rounds, i.e., “explore” 
their new environment before seeking to maximize their reward 
(“exploit”) based on this prior (5). Such an “active inference” approach 
has been studied in two-person interactions (15, 16) and is an inter-
esting direction of research in group decision-making.

Mimicking human behavior does not guarantee that a POMDP 
model (or any model) is being implemented in the brain. However, 
the POMDP model’s generalizability and the interpretability of its com-
ponents, such as existence of a prior or simulation of the future, make 
it a useful tool for understanding the decision-making process.

The POMDP framework can model social tasks beyond economic 
decision-making, such as prediction of others’ intentions and ac-
tions in everyday situations (37). In these cases, we would need to 
modify the model’s definition of the state of other minds to include 
dimensions such as valence, competence, and social impact instead 
of propensity to contribute monetary units as in the PGG task (38).

The interpretability of the POMDP framework offers an oppor-
tunity to study the neurocognitive mechanisms of group decision-
making in healthy and diseased brains. POMDPs and similar Bayesian 
models have previously proved useful in understanding neural 
responses in sensory decision-making (39–41) and in tasks involving 
interactions with a single individual (13, 17, 18). We believe that the 
POMDP model we have proposed can likewise prove useful in inter-
preting neural responses and data from neuroimaging studies of 
group decision-making tasks. In addition, the model can be used for 
Bayesian theory-driven investigations in the field of computational 
psychiatry (42). For example, theory of mind deficits are a key fea-
ture of autism spectrum disorder (43), but it is unclear what compu-
tational components are impaired and how they are affected. The 
POMDP model may provide a new avenue for computational studies 
of such neuropsychiatric disorders (44).

METHODS
Experiment
Thirty right-handed students at the University of Parma were re-
cruited for this study. One of them aborted the experiment due to 
anxiety. Data from the other 29 participants were collected, analyzed, 
and reported. On the basis of self-reported questionnaires, none of 
the participants had a history of neurological or psychiatric disorders. 
This study was approved by the Institutional Review Board of the 
local ethics committee from Parma University (IRB no. A13-37030), 
which was carried out according to the ethical standards of the 2013 
Declaration of Helsinki. All participants gave their informed written 
consent. As mentioned in Results, each subject played 14 sessions of 
the PGG (i.e., the volunteer’s dilemma), each containing 15 rounds. 
In the first two sessions, subjects received no feedback about the 
result of each round. However, in the following 12 sessions, social 
and monetary feedback were provided to the subject. The feedback 
included the number of contributors and free-riders, and the sub-
ject’s reward in that round. Each individual player’s action, however, 
remained unknown to the others. Therefore, individual players could 
not be tracked. We present analyses from the games with feedback.

In each round (see Fig. 1), the participant had to make a decision 
within 3 s by pressing a key; otherwise, the round was repeated. Af-
ter the action selection (2.5 to 4 s), the outcome of the round was 

shown to the subject for 4 s. Then, players evaluated the outcome of 
the round before the next round started. Subjects were told that they 
were playing with 19 other participants located in other rooms. 
Overall, 20 players were playing the PGG in four different groups 
simultaneously. These groups were randomly chosen by a computer 
at the beginning of each session. In reality, subjects were playing 
with a computer. In other words, a computer algorithm was gener-
ating all the actions of others for each subject. Each subject got a final 
monetary reward equal to the result of one PGG randomly selected 
by the computer at the end of the study.

In a PGG with N = 5 players, we denote the action of player i in round t 
with the binary value of ​​a​i​ 

t​  (1  ≤  i  ≤  N ) ,​ with ​​a​i​ 
t​  =  1​ representing 

contribution and ​​a​i​ 
t​  =  0​ representing free-riding. The human sub-

ject is assumed to be player 1. We define the average contribution 

rate of others ​​​   a ​​2:N​ t  ​  = ​ ​∑ i=2​ N  ​ ​a​i​ 
t​​ _ N − 1 ​​ and generate each of the N − 1 actions of 

others in round t using the following probabilistic function

	​​ logit(​​   a ​​2:N​ t  ​ ) = ​e​ 0​​ ​a​1​ t−1​ + ​e​ 1​​​(​​ ​​(​​ ​ 1 − ​K​​ T−t+1​ ─ 1 − K  ​​)​​​​ 
​e​ 2​​

​ ​​   a ​​2:N​ t−1 ​ − K​)​​​​	 (4)

where K = k/N, in which k is the required number of contributors.
This model has three free parameters: e0, e1, and e2. These were 

obtained by fitting the above function to the actual actions of sub-
jects in another PGG study (45), making this function a simulation 
of human behavior in the PGG task. Specifically, to generate the 
actions of others, we fixed e2 to 1 for all games. e0 was drawn ran-
domly from the range of [0.15,0.35] for each game, and e1 was set to 
1 − e0. This combination and the random sampling of e0 in each 
game simulated different response strategies for the others in each 
game, simulating new sets of group members. Higher values of e0 
make the algorithm more likely to choose its next action based on the 
result of the group interaction in the previous round (especially 
the action of the subject). On the other hand, lower values of e0 make 
the algorithm more likely to stick to its previous action. For the first 
round of each game, we used the mean contribution rate of each 
subject as their fellow members’ decision.

Markov decision processes
A Markov decision process (MDP) is a tuple (S, A, T, R), where S 
represents the set of states of the environment, A is the set of actions, 
T is the transition function S × S × A → [0,1] that determines the 
probability of the next state given the current state and action, i.e., 
T(s′, s, a) = P(s′ ∣ s, a), and R is the reward function S × A → R representing 
the reward associated with each state and action (30). In an MDP with 
horizon H (total number of performed actions), given the initial state s1, 
the goal is to choose a sequence of actions that maximizes the total 
expected reward

	​​ ​​ *​  = ​ arg max​ 
​a​ 1​​,​a​ 2​​,…,​a​ H​​

​ ​ ​ ∑ 
t=1

​ 
H

 ​​ ​E​ ​s​ t​​​​ [ R(​s​ t​​, ​a​ t​​ ) ]​	 (5)

This sequence, called the optimal policy, can be found using the 
technique of dynamic programming (30). For an MDP with time 
horizon H, the Q value, value function V, and action function U at 
the last time step t = H are defined as

	​​ ∀ s ∈ S : ​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​​​
​Q​​ H​(s, a ) ←  R(s, a)

​  ​V​​ H​(s ) ← ​ max​ a​​ ​Q​​ H​(s, a)​  
​U​​ H​(s ) ←  arg ​max​ a​​ ​Q​​ H​(s, a)

​​​	 (6)
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For any t from 1 to H − 1, the value function Vt and action function 
Ut are defined recursively as

	​​ ​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​​​
​Q​​ t​(s, a ) ← R(s, a ) + ​∑ s′∈S​ ​​ T(s′, s, a ) ​V​​ t+1​(s′)

​    ​V​​ t​(s ) ← ​max​ a​​ ​Q​​ t​(s, a)​  
​U​​ t​(s ) ← arg ​max​ a​​ ​Q​​ t​(s, a)

 ​ ​​	 (7)

Starting from the initial state s1 at time 1, the action chosen by 
the optimal policy * at time step t is Ut(st).

When the state of the environment is hidden, the MDP turns into 
a partially observable MDP (POMDP) where the state is estimated 
probabilistically from observations or measurements from sensors. 
Formally, a POMDP is defined as (S, A, Z, T, O, R), where S, A, T, 
and R are defined as in the case of MDPs, Z is the set of possible 
observations, and O is the observation function Z × S → [0,1] that 
determines the probability of any observation z given a state s, i.e., 
O(z, s) = P(z∣s). To find the optimal policy, the POMDP model uses 
the posterior probability of states, known as the belief state, where 
bt(s) = P(s∣z1, a1, z2, …, at − 1). Belief states can be computed recur-
sively as follows

	​ ∀ s  ∈  S : ​b​ t+1​​(s ) ∝ O(​z​ t​​, s ) ​ ∑ 
s′∈S

​​​ T(s, s′, ​a​ t​​ ) ​b​ t​​(s′)​	 (8)

If we define R(bt, at) as the expected reward of at, i.e., Est[R(st, at)], 
starting from initial belief state, b1, the optimal policy for the POMDP 
is given by

	​​ ​​ *​  = ​ arg max​ 
​a​ 1​​,​a​ 2​​,…,​a​ H​​

​ ​ ​ ∑ 
t=1

​ 
H

 ​​ ​E​ ​s​ t​​​​ [ R(​b​ t​​, ​a​ t​​ ) ]​	 (9)

A POMDP can be considered an MDP whose states are belief 
states. This belief state space, however, is exponentially larger than 
the underlying state space. Therefore, solving a POMDP optimally 
is computationally expensive, unless the belief state can be represented 
by a few parameters as in our case (30). For solving larger POMDP 
problems, various approximation and learning algorithms have 
been proposed. We refer the reader to the growing literature on this 
topic (46–48).

POMDP for binary PGG
The state of the environment is represented by the average cooper-
ativeness of the group or, equivalently, the average probability  of 
contribution by a group member. Because  is not observable, the 
task is a POMDP, and one must maintain a probability distribution 
(belief) over . The beta distribution, represented by two free pa-
rameters ( and ), is the conjugate prior for binomial distribution 
(29). Therefore, when performing Bayesian inference to obtain the 
belief state over , combining the beta distribution as the prior 
belief and the binomial distribution as the likelihood results in 
another beta distribution as the posterior belief. Using the beta dis-
tribution for the belief state, our POMDP turns into an MDP with a 
two-dimensional state space represented by  and . Starting from 
an initial belief state Beta(1, 1) and with an additional free param-
eter , the next belief states are determined by the actions of all 
players at each round as described in Results. For the reward function, 
we used the monetary reward function of the PGG. Therefore, the ele-
ments of our new MDP derived from the PGG POMDP are as follows

• S = (, )
• A = {c, f }

• ​​T(s′, s, a ) : ​
{

​​​
​P((γα + k′+ 1, γβ + N − 1 − k′) ∣(α, β ) , c ) = ​(​​​N − 1​ k′ ​​ )​​ ​B(γα + k′, γβ + N − 1 − k′)  _______________ B(γα, γβ) ​​

​     
​P((γα + k′, γβ + N − k′) ∣(α, β ) , f ) = ​(​​​N − 1​ k′ ​​ )​​ ​B(γα + k′, γβ + N − 1 − k′)  _______________ B(γα, γβ) ​​

 ​ ​​

• ​​R(s, a ) : ​

⎧
 

⎪
 ⎨ ⎪ 

⎩
​​​
​R((,  ) , c ) = E − C + ​∑ k′=k−1​ N  ​​​(​​​N − 1​ 

k′
 ​​ )​​ ​B( + k′,  + N − 1 − k′)  _____________ B(, ) ​  G​

​     
​R((,  ) , f ) = E + ​∑ k′=k​ N  ​​​(​​​N − 1​ 

k′
 ​​ )​​ ​B( + k′,  + N − 1 − k′)  _____________ B(, ) ​  G​

 ​ ​​

B(, ) is the normalizing constant: ​B(,  ) = ​∫0​ 
1
 ​​ ​​​ −1​ ​(1 − )​​ −1​ d​.

The POMDP model above assumes that the hidden state, i.e. , 
is a random variable following a Bernoulli distribution, which changes 
with the actions of all players in each round. These actions serve as 
samples from this distribution, with 1 and 1 being the initial sam-
ples. Also, the decay rate  controls the weights of previous samples. 
Using maximum likelihood estimation, for any t, t equals t/(t + t). 
One can also estimate  in a recursive fashion

	​​ ​​ t+1​​  ← ​   1 ─ ​​ t​​ + ​​ t​​ + N ​​(​​(​​ t​​ + ​​ t​​ ) ​​ t​​ + ​ ∑ 
i=1

​ 
N

 ​​ ​a​i​ 
t​​)​​​​	 (10)

where ​​a​i​ 
t​​ is the action of player i in round t (​​a​i​ 

t​  =  1​ for contribution 
and 0 for free-ride).

According to the experiment, the time horizon should be 15 time 
steps. However, we found that a longer horizon (H = 50) for all players 
provides a better fit to the subjects’ data, potentially reflecting an 
intrinsic bias in humans for using longer horizons for social decision-
making. For each subject, we found 1, 1, and  that made our 
POMDP’s optimal policy fit the subject’s actions as much as possible. 
For simplicity, we only considered integer values for states (integer 
 and ). The fitting process involved searching over integer values 
from 1 to 200 for 1 and 1 and values between 0 and 1 with a preci-
sion of 0.01 (0.01,0.02, …,0.99,1.0) for . The fitting criterion was 
round-by-round accuracy. For consistency with the descriptive model, 
the first round was not included (despite the POMDP model’s capa-
bility of predicting it). Because the utility value for public good for 
a subject can be higher than the monetary reward due to social or 
cultural reasons (49), we investigated the effect of higher values for 
the group reward G in the reward function of the POMDP. This, 
however, did not improve the fit. A preliminary version of the above 
model but without the  parameter was presented in (50).

As specified above, the best action for each state in round t is Ut(s). 
The probability of contribution (choice probability) can be calculated 
using a logit function: 1/(1 + exp (z(Qt(s, f )  − Qt(s, c)) (19). For each 
k, we used one free parameter z across all subjects to maximize the 
likelihood of contribution probability given the experimental data 
[implementation by scikit-learn (51)]. Note that the parameter z does 
not affect the accuracy of fits and predictions because it does not 
affect the action with the maximum expected total reward.

In round t, if the POMDP model selects the action “contribution,” 
the probability of success can be calculated as ​​∑ m=k−1​ N−1 ​​ P(m∣​​ t​​, ​​ t​​)​ 
(see Eq. 3). Otherwise, the probability of success is ​​∑ m=k​ N−1 ​​ P(m∣​​ t​​, ​​ t​​)​. 
This probability value was compared to the actual success and failure 
of each round to compute the accuracy of success prediction by the 
POMDP model.

Model-free method: Q-learning
We used Q-learning as our model-free approach. There are two Q 
values in the PGG task, one for each action, i.e., Q(c) and Q(f) for 
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“contribute” and “free-ride,” respectively. At the beginning of each 
PGG, Q(c) and Q(f) are initialized to the expected reward for a sub-
ject for that action based on a free parameter p, which represents the 
prior probability of group success. As a result, we have

	​​ ​{​​​
​Q​​ 1​(c ) ← p(E − C + G ) + (1 − p ) (E − C)

​   
​Q​​ 1​(f ) ← p(E + G ) + (1 − p ) E

  ​​​	 (11)

We customized the utility function for each subject by making 
the group reward G a free parameter to account for possible prosocial 
intent (49). Moreover, as the probability of success is different for 
k = 2 and k = 4, we used two separate parameters p2 and p4 instead 
of p, depending on the value of k in the PGG.

In each round of the game, the action with the maximum Q value 
was chosen. The Q value for that action was then updated on the basis 
of the subject’s action and group success/failure, with a learning rate 
t. This learning rate was a function of the round number, i.e., 
​​​​ t​  = ​   1 _ ​​ 0​​ + ​​ 1​​ t​​, where 0 and 1 are free parameters, and t is the number of 
the current round. Let the subject’s action in round t be at, the 
Q-learning model’s chosen action be ​​​   a ​​​ t​​, and the reward obtained be rt. 
We have

	​​ 1  ≤  t  ≤  15 : ​{​​​
​​   a ​​​ t​  =  arg ​max​ a∈{c,f }​​ ​Q​​ t​(a)

​  
​Q​​ t+1​(​a​​ t​ ) ← (1 − ​​​ t​ ) ​Q​​ t​(​a​​ t​ ) + ​​​ t​ ​r​​ t​

​​​	 (12)

For each subject, we searched for the values of 0, 1, the group 
reward G, and the probability of group success p2 or p4 that maximize 
the round-by-round accuracy of the Q-learning model. Similar to the 
other models, the first round was not included in this fitting process.

Descriptive model
Our descriptive model was based on a logistic regression [implementa-
tion by scikit-learn (51)] that predicts the subject’s action in the current 
round based on their own previous action and the total number of 
contributions by the others in the previous round. As a result, this 
model has three free parameters (two features and a bias parameter). 
Let ​​a​1​ t ​​ be the subject’s action in round t and ​​a​2:N​ t  ​​ be the actions of 
others in the same round. The subject’s predicted action in the next 
round t + 1 is then given by

	​​ ​​   a ​​1​ t+1​  = ​ {​​​
c
​ 

​​​ 0​​ + ​​ 1​​ ​a​1​ t ​ + ​​ 2​​​(​​​∑ i=2​ N  ​​ ​a​i​ 
t​​)​​  >  0​

​   
f
​ 

otherwise
 ​ ​​	 (13)

We used one separate regression model for each subject. As the 
model’s predicted action is based on the previous round’s actions, the 
subject’s action in the first round cannot be predicted by this model.

Leave-one-out cross-validation
For all three approaches, LOOCV was computed on the basis of the 
games played by each subject. For each subject, we set aside one game, 
fitted the parameters to the other 11 games, and computed the error 
of the model with fitted parameters on the game that was set aside. 
We repeated this for all games and reported the average of the 
12 errors as LOOCV error for the subject.

Static probability distribution and greedy strategy
If a player does not consider the future and solely maximizes the 
expected reward in the current round (greedy strategy) or ignores 
the effect of an action on others, the optimal action is always free-

riding independent of the average probability of contribution by a 
group member. This is because free-riding always results in one 
unit more monetary reward (3 MU for success or 1 MU for failure) 
compared to contribution (2 or 0 MU), except in the case where the 
total number of contributions by others is exactly k − 1. In the latter 
case, choosing contribution yields one unit more reward (2 MU) 
compared to free-riding (1 MU). This means that the expected 
reward for free-riding is always more than that for contribution un-
less the probability of observing exactly k − 1 contributions by others 
is greater than 0.5. We show that this is impossible for any value of . 
First, note that the probability of exactly k − 1 contributions from 
N − 1 players is maximized when  = (k − 1)/(N − 1). Next, for any 
, the probability of k − 1 contributions from N − 1 players is

​​P(k − 1∣ ) = ​(​​​N − 1​ k − 1 ​​)​​ ​​​ k−1​ ​(1 − )​​ N−k​  ≤ ​ (​​​N − 1​ k − 1 ​​)​​ ​​(​​ ​ k − 1 ─ N − 1 ​​)​​​​ 
k−1

​ 

​​(​​ ​ N − k ─ N − 1 ​​)​​​​ 
N−k

​  = ​ 0.75​​ 3​  <  0.5​​	 (14)

for N = 5 and for either k = 2 or k = 4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/11/eaax8783/DC1
Supplementary Text
Fig. S1. Distribution and change in belief parameters over multiple rounds.
Fig. S2. Data generated by the POMDP model compared to experimental data.
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