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Abstract 

 

Near β-titanium alloys like Ti-5553 or Ti-1023 often exhibit bimodal phase constituents 

embedded in a retained β-phase matrix, which represents up to 40% of the volume. The highly 

elastic anisotropic β-phase may strongly influence the mechanical behavior of these alloys. The 

present work models the effect of the coupled role of β-phase elastic and plastic anisotropies on 

the local and overall responses of a fully β-phase polycrystalline aggregate like the Ti-17 alloy. 

The model is based on an advanced elasto-viscoplastic self-consistent (EVPSC) homogenization 

scheme solved by the “translated field” method together with an affine linearization of the 

viscoplastic flow rule. The effects of elastic anisotropy, crystallographic texture and grain 

morphology are theoretically studied during uniaxial tensile tests, tension-compression tests as 

well as multiaxial plastic yielding.  

First, it is shown that different sets of elastic constants taken from literature give rise to similar 

effective responses but to widely scattered incompatibility stresses. During uniaxial tensile loading, 

the highest local incompatibility stresses are achieved in <111> oriented grains at the end of the 

elastic regime. Likewise, the effect of the β-grain morphology for realistic grain aspect ratios is 

seen to be weak on the overall behavior but strong on incompatibility stresses. In addition, the 

elastic anisotropy can have a significant influence on yield surfaces for β-forged textured 

polycrystals. Finally, the simulated Bauschinger stress monotonically increases with the elastic 

anisotropy coefficient for a random texture while it may be reduced in case of β-forged texture due 

to a competition between elastic and plastic sources of incompatibility stresses. 

Keywords: polycrystalline -Ti; elastic anisotropy; elastic/plastic incompatibilities; Elasto-Visco-

Plastic Self-Consistent (EVPSC) scheme; affine approximation; translated fields method 
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1. Introduction 

 

In the last decades, near-β titanium alloys have benefit from a growing interest and are now 

competing with quasi-α or α/β titanium alloys for airframe forging applications like landing gears, 

turbine engines and rotor systems. Today, near-β Ti-5553 and Ti-1023 alloys have become major 

candidates for landing gears under sever operating conditions (Nyakana et al., 2005). For these 

industrial alloys, high specific strength is achieved thanks to the building up of complex and 

multiscale β microstructures. A typical microstructure is schematized in Fig. 1 (Chini et al. 

(2016)). It is composed of hexagonal closed packed (HCP) α phase with two different 

morphologies (primary nodules and secondary platelets) embedded in a retained β (BCC) matrix 

which represents up to 40% of the volume fraction. The HCP α phase is known to display plastic 

anisotropy (Cazacu et al., 2006; Khan et al., 2012; Meredith and Khan, 2012; Ghosh and Anahid, 

2013). The β phase is constituted of millimeter sized prior β-grains (approximately 1 to 2 mm long 

and  0.5 mm thick) fragmented into equiaxed β sub-grains (5 to 10µm of diameter) of close 

orientations as shown at the meso-scale in Fig.1.  

The mechanical behavior of these alloys is strongly dependent on their microstructures, especially 

on the nature and proportion of the phases, their morphologies and spatial distributions, their 

crystallographic texture and their chemical composition (Aeby-Gautier et al., 2011; Clément et al., 

2007; Duval et al., 2011). The in-service microstructures often contain a large volume fraction of 

retained β-phase reported to exhibit high elastic anisotropy. However, the contribution of this 

elastically anisotropic β-phase on the mechanical behavior is still not well understood. A major 

difficulty relies on the determination of the true Single-crystal Elastic Constants (SEC) for the 

retained β phase in the final microstructure. The published Single-crystal Elastic Constants (SEC) 

in the literature for β-Ti span over a large range of values (Fisher and Dever, 1970; Reid et al., 

1973; Petry et al., 1991; Ledbetter et al., 2004; Fréour et al., 2005, 2011; Raghunathan et al., 

2007; Tane et al., 2008; Kim and Rokhlin, 2009; Martin, 2012; Nejezchlebová et al., 2016; 

Hounkpati et al., 2016). In these studies, the Zener cubic anisotropy factor ranges from 1 to 8. On 

the one hand, the SEC discrepancies found in the literature are due to the chemical composition of 

the β-phase in the different Ti-alloys studied by these authors. On the other hand, the SEC 

discrepancies come from the difficulties to measure the real SEC for near β-titanium alloys in the 

presence of α-phase. First of all, ab initio calculations show the variation of the elastic properties of 

β-Ti alloys as a function of the chemical composition of the β-phase (Raabe et al., 2008) but these 

calculations give only the SEC at 0K, which does not correspond to the temperature range for the 

β-phase stability. Clément (2010) used tensile test to measure Young’s modulus of Ti-LCB and Ti-
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5553 alloys with fully equiaxed β-phase microstructure and random texture. The Young’s modulus 

of LCB ( 92GPa) was found much stiffer than the one of Ti-5553 alloy ( 68GPa). This is mainly 

due to the differences of the β-phase chemical composition. Nejezchlebová et al. (2016) measured 

with an ultrasonic technique the full tensor of elastic constants of the single crystal of Ti-LCB and 

found a Zener anisotropy coefficient of 2.37. Fréour et al. (2005) identified the SEC using X-ray 

diffraction measurements on a Ti-17 alloy and an inverse method based on a self-consistent 

model for elastic polycrystals (Hershey, 1954; Kröner, 1958). Later, a more refined self-consistent 

scheme was reported by Fréour et al. (2011) to account for needle-shaped α-phase grains 

elastically interacting with assumed spherical β-phase grains. Therefore, Fréour et al. (2005, 2011) 

reported two different sets of SEC whose anisotropy coefficients are 1.4 and 1.7, respectively. 

However, the inverse multiscale approach applied to multiphase polycrystalline alloys may give 

rise to multiple solutions. In addition, the micromechanical elastic strain concentration step 

contains approximations about the spatial distribution and morphologies of the phases.  

 

 

 

Figure 1- Schematization of the multiscale microstructure of near-β Ti alloys (reproduced from Chini et al. 
2016a). 

 

The mechanical behavior of the β-phase may have a large influence on the elasto-viscoplastic 

behavior. Using crystal plasticity finite element modeling (CPFEM) with strain gradient plasticity, 

recent studies were performed on α/β titanium alloys such as forged Ti-6242 to study the effect of 

the β-phase in α/β colonies on dwell fatigue resistance (Anahid et al., 2012; Ashton et al., 2017). A 

viscoplastic self-consistent (VPSC) model was recently used by Mandal et al. (2017) to reproduce 
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the stress/strain responses of Ti-5553 alloy based on uniaxial compression tests across a range of 

temperatures and strain rates. However, only a few studies aimed to describe the effect of β-

phase elastic anisotropy in near β-titanium alloys on the local and overall elasto-(visco)plastic 

responses (Martin et al., 2011; Martin, 2012; Raghunathan et al., 2007; Hounkpati et al., 2016). In 

the case of Ti-1023 alloys, Raghunathan et al. (2007) applied a rate-independent EPSC (Elasto-

Plastic Self-Consistent) model (Turner and Tomé, 1994) in order to study the responses of an as 

forged and forged and aged Ti-1023 alloy. In particular, these authors used the EPSC model to fit 

the SEC of the β-phase by comparison with macroscopic curves and lattice strain measurements 

obtained from in situ synchrotron X-ray diffraction. Very different elastic constants were found in 

the as forged and in the aged alloys with Zener anisotropy coefficients of 1.9 and 8.3 respectively. 

This suggests that with enrichment in β-stabilizer, the β elastic anisotropy increases in a huge 

range. In situ neutron measurements and modeling using an EPSC model of the inter-granular 

strains in the near-beta titanium alloy Ti-β21S were recently performed by Hounkpati et al. (2016). 

Martin et al. (2011) studied the elasto-viscoplastic responses of Ti-5553 and Ti-17 alloys, using the 

classic Hill’s (1965) interaction law in a rate-dependent form. In Martin (2012), an EVPSC model 

(Elasto-Visco-Plastic Self-consistent model) based on the “translated field” method earlier 

developed by Paquin et al. (1999, 2001), Sabar et al. (2002), Berbenni et al. (2004, 2007), Nicaise 

et al. (2011), was also employed for the same alloys to analyze the effect of different α/β volume 

fractions. The SEC of β-phase were chosen to fit the elastic stage of the tensile responses of Ti-

5553 alloy with 100% β-phase. The Zener anisotropy coefficient proper to his SEC is 2.4. 

However, in these mentioned studies, the uncertainties of the β SEC and the effect of its elastic 

anisotropy on the mechanical properties is not considered. 

This contribution focuses on the role of the β-phase elastic anisotropy in the mechanical behavior 

of near-β Ti alloys. The main objective is to theoretically investigate the coupled role of the β-

phase elastic and plastic anisotropies on the elasto-viscoplastic local and overall responses of 

near β-titanium alloys with an advanced elasto-viscoplastic self-consistent scheme (EVPSC). The 

simulations are performed for a fully β-phase polycrystalline titanium aggregates and compared to 

the experimental tensile curves of Ti-5553 and Ti-17 provided by Settefrati (2012). The EVPSC 

model is applied to capture the elastic and plastic incompatibilities in β alloys during tensile and 

tension-compression loadings for different β grain morphologies and crystallographic textures. The 

proposed EVPSC scheme is based on the “translated field” method with affine linearization of the 

viscoplastic flow rule as recently developed by Mareau and Berbenni (2015). This advanced 

EVPSC scheme was successfully applied to pure α-Ti to study its three-stage tensile hardening 

behavior (Amouzou et al., 2016). 
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Hence, it is thought that the self-consistent approximation through an advanced EVPSC scheme is 

well suited to the modeling of disordered materials like fully β-phase titanium polycrystalline 

aggregates. While the original approaches of Paquin et al. (2001, 1999), Sabar et al. (2002), 

Berbenni et al. (2004) were derived from a classical secant approximation, this work adopts the 

first order affine linearization (Masson et al., 2000) of the viscoplastic flow rule, i.e. a first order 

Taylor expansion of the viscoplastic strain rate at the local scale. It has been observed that the 

first order affine formulation yields softer responses than the secant formulation (Masson et al., 

2000; Masson and Zaoui, 1999; Molinari, 2001). Using the Mori-Tanaka scheme, a first order 

affine extension for elasto-viscoplastic two-phase composite materials was proposed by Berbenni 

and Capolungo (2015). In Mercier et al. (2012), it was shown that the predictions of the “translated 

field” method are very close to the ones obtained with the “additive interaction” law (Mercier and 

Molinari, 2009; Molinari, 2001). The “additive interaction law” was later adapted to build a finite 

strain elasto-viscoplastic self-consistent (EVPSC) model for polycrystals with “affine”-type 

approximation (Wang et al., 2010; Wang et al. 2013). In Berbenni and Capolungo (2015), good 

numerical results were obtained with the “translated field” method with affine linearization in 

comparison with the incremental variational approach developed by Lahellec and Suquet (2007) 

for two-phase fiber-reinforced composites. For polycrystals, incremental variational approaches 

were developed in the case of non-linear viscoplastic polycrystals (Liu et al., 2003). According to 

Berbenni and Capolungo (2015), Mareau and Berbenni (2015), the use of the first order affine 

formulation improves the estimate of the effective behavior which is in agreement with the full-field 

calculations (FEM, FFT), even when the viscoplastic flow rule is highly nonlinear.  

     The paper is organized as follows: Sections (2) and (3) are devoted to the description of the 

EVPSC model. In Section (2), the governing field equations of the elasto-viscoplastic problem are 

reviewed, and then the single crystal behavior with local viscoplastic flow rule for the -phase is 

described. In Section (3), the “translated field” method to simplify the integral equation and the 

self-consistent approximation are described. Section (4) is dedicated to the selection of material 

parameters and discussion of the SEC considered in this study. Results and discussion are 

reported in Section (5). Numerical results account for the effects of the -phase elastic anisotropy, 

the crystallographic texture and grain morphology during uniaxial tensile tests, cyclic loading as 

well as multiaxial plastic yielding. Finally, concluding remarks and prospects of this work are 

summarized in Section (6). 

 



[Titre du document] 
 

6 
 

2. Constitutive equations and affine formulation  

In this paper, the scale transition from single- to poly-crystal is assessed through the EVPSC 

scheme first introduced in Mareau and Berbenni (2015) for thermo-elasto-viscoplastic 

heterogeneous materials. Here, thermal effects (i.e. thermal strains) are disregarded. 

 

2.1. Field equations  

In homogenization theory, the macroscopic stress rate and strain rate tensors     and     of a 

Representative Volume Element (RVE) with volume   are obtained by volume averaging the local 

stress rate and strain rate tensors     and     as follows: 

   
 

 
        
 

         
 

 
        
 

       (1) 

Within the infinitesimal strain framework, the total local strain rate relative to an elasto-viscoplastic 

behavior (of Maxwell type) is decomposed into: 

            (2) 
 

with          from the generalized Hooke’s law where          is the local elastic compliance 

tensor, and           is the nonlinear viscoplastic constitutive law (plastic flow rule). Moreover, 

     is a nonlinear tensorial function dependent on the Cauchy stress  . In the absence of body 

force, the balance of linear momentum imposes the following stress and the stress rate equilibrium 

equations: 

          

           
(3) 

 

The kinematical compatibility condition for the total local strain rate yields: 

        (4) 

where    is the velocity vector field and    denotes the symmetric part of the gradient operator. On 

the boundary    of  , a homogeneous velocity vector     is imposed as follows: 

           on      (5) 

2.2. Single crystal behavior 

The behavior of the β single crystal is supposed to be elastic-viscoplastic where plastic distortion 

results from crystallographic slips on specific systems   defined by a plane normal    and a slip 
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direction    . The slip systems considered for the BCC structure of the β single crystal are specified 

in section 4.2. The phenomenological model with hardening variables developed by Méric et al. 

(1991); Méric and Cailletaud (1991) is used to describe the viscoplastic shear strain rate    : 

     
          

 
 

 

             (6) 

where              and    is the resolved shear stress,         with    the symmetric Schmid 

orientation tensor     
  

  
   

    
   
 

 
 .    and    are, respectively, the kinematic and the isotropic 

hardening shear stresses given by: 

                                         (7) 

and 

     
       

     

 

   

                                 (8) 

 

In the above equations,   and   are two material coefficients characterizing the viscous effect,  , 

 ,   and   are hardening parameters,    is an     matrix describing the interactions between the 

different slip systems, where   is the total number of the slip systems of the β single crystal (here 

     for the BCC slip systems). Therefore, at the grain level, the viscoplastic strain rate is given 

by: 

         
          

 
 

 

            

 

   

 (9) 

 

2.3.  Affine formulation 

As mentioned previously, the viscoplastic strain rate is a nonlinear function of  . As in Mareau and 

Berbenni (2015), its affine linearization can be written as follows at a given reference stress:  

                  (10) 

 

where    (respectively      
    is the tangent viscoplastic compliance tensor (respectively the 

tangent viscoplastic modulus tensor) defined by: 
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 (11) 

   corresponds to the back-extrapolated viscoplastic strain rate tensor. Similar to the viscoplastic 

strain rate, the stress could be expressed as a nonlinear function    of      and then could be 

written in its linearized form (at a given reference viscoplastic strain) as: 

                
     (12) 

 

    is the back-extrapolated stress tensor related to the back-extrapolated viscoplastic strain rate by 

         . Therefore, the final linearized form of the constitutive law is: 

                (13) 

According to the viscoplastic constitutive model used in this study (Eqs. (6-9)),             and 

   write in index notation, as 

         
 

 
 
          

 
 

   

   
    

 

 

   

 (14) 

 

         
  

          

 
 

 

            

 

   

  
 

 
 
          

 
 

   

   
   

 

   

 (15) 

 

3. Scale transition: Elasto-Visco-Plastic Self-Consistent model (EVPSC) 

based on the Translated Field Method 

 

3.1. Integral equation 

To recast the heterogeneous problem given by the assuming field equations in the form of an 

integral equation, a homogeneous reference medium -with uniform elastic moduli   (respectively, 

uniform elastic compliances      ), uniform tangent viscoplastic moduli    (respectively, uniform 

tangent viscoplastic compliances      
  ) and uniform back-extrapolated strain rates   , is 

introduced. The local quantities            and    can then be expressed as the sum of a uniform 

reference quantity (respectively,           and   ) and a spatial fluctuating part (respectively, 

              and    ) as follows: 
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(16) 

Introducing both the elastic and tangent viscoplastic modified Green operators (see Kröner 

(1990)), denoted    and     respectively, in combination with field equations and 1st order affine 

formulation, the integral equation of the heterogeneous problem is obtained (Berbenni and 

Capolungo, 2015; Mareau and Berbenni, 2015): 

                             
                          

   (17) 

where   denotes the spatial convolution product. Note that the choice of the modified Green 

operators is due to their interesting properties for any compatible strain or strain rate field and any 

balanced stress or stress rate field –not detailed here- but for details, the reader is encouraged to 

refer back to the paper of Kröner (1990).  

 

3.2. Translated fields (TF) method  

The integral equation shows how the local strain rate depends on the macroscopic strain rate, the 

pure instantaneous elastic behavior, the pure time dependent viscoplastic behavior and the 

interactions between the two mechanisms. To deal with the differential nature (space-time 

coupling) of the integral equation –where analytical solutions do not exist, the translated fields (TF) 

method is introduced for heterogeneous nonlinear elasto-viscoplastic materials. The integral 

equation (Eq. 17) can be simplified using the solutions of the purely elastic and purely viscoplastic 

heterogeneous problem. So, the translated field decomposition applied to the total strain rate 

(Mareau and Berbenni, 2015; Paquin et al., 1999) writes: 

                (18) 

where     (resp.     ) are pure linear elastic (resp. pure nonlinear viscoplastic) compatible fields 

subjected to the same stress state as the elasto-viscoplastic heterogeneous material.     is 

naturally chosen as the solution of the purely elastic heterogeneous problem, whereas      is 

naturally chosen as the solution of the purely viscoplastic heterogeneous problem, considered as 

a “thermo-elastic” linear comparison material (using the aforementioned affine extension). The 

solutions for the pure elastic problem and the pure viscoplastic problem with affine formulation are 

recalled in Appendix A, section (A.1). The last term     of the decomposition is the translated strain 

rate field which is a compatible field and represents the complexity of the space-time interactions 
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due to the elastic and viscoplastic couplings. This one is associated to residual balanced stress 

(rate) fields     and     defined as: 

               
   (19) 

 

From the definitions of compatible fields     and     , their solutions write: 

                      (20) 

 

                       
          (21) 

 

Based on the translated field properties and following equation (17), the associated integral 

equation is now considered: 

                                   
                       

    (22) 

 

where     is the macroscopic strain rate field from which boundary conditions are prescribed on   . 

Following Eq. (A13) in Appendix (A.1), we have            . 

 

3.3. Self-Consistent (SC) approximation  

 

In order to solve the TF problem given by Eqs. (20-22), the one-site self-consistent approximation 

is used. The main idea of the self-consistent model is to weaken the non-local parts of the 

modified Green operators -which are difficult to estimate-, that decrease as           (Kröner, 

1990) by imposing averaging self-consistency conditions such that non-local interactions can be 

neglected. So for this reason, we introduce in the integral equations (20-22) the decomposition of 

the modified Green operator    (respectively    ) associated with the elastic (respectively 

viscoplastic) reference homogeneous medium into a local part   
  (respectively   

  ) and a non-

local part    
  (respectively    

  ). Note that the decomposition of the modified Green operators is 

accompanied by the introduction of four unknown uniform tensors          and   , which are 

chosen later to fulfill both the self-consistency conditions and the properties deduced from the 

averaging relations (Eq. 1) (see Appendix A.1). The explicit expressions of the integral equations 

(20-22) accounting for the decomposition of the modified Green operators into local and non-local 

parts, and the solutions of the four tensors          and    when neglecting the non-local terms 
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are given in Appendix (A.2). Hence, the EVPSC solution of the associated problem is given by 

reducing the modified Green tensors to their local parts (Mareau and Berbenni, 2015): 

            
           (23) 

 

              
          

           
       (24) 

 

          
                             

            
       

     
        

    
      

            
    

(25) 

where         
     

  
 and           

       
  

 (with   the fourth order unit tensor) are the 

strain rate concentration tensors associated, respectively, with the elastic and viscoplastic 

reference media. The tensors                   ,   
          

    
     and     are the effective 

elastic compliance tensor, the effective tangent viscoplastic compliance tensor and the effective 

back-extrapolated strain rate tensor, respectively. For the purely elastic and purely viscoplastic 

heterogeneous problem using the self-consistent approximation, we need to choose            

          ),               
         

   and       , to ensure that averaging relations are 

verified. Combining equations (23-25) and using the properties deduced from the averaging 

relations (see Appendix A), the strain rate concentration is obtained (see Eq. (65) in Mareau and 

Berbenni (2015) without thermal strains): 

              
            

            
                                

      
          

       
      

                

       
       

     
                    

       
       

     
          

            
        

(26) 

Substituting the strain rate Eq. (26) in the local constitutive law (Eq. 13) gives the stress rate 

concentration equation, which is consistent with Eq. (66) in Mareau and Berbenni (2015) without 

thermal strains: 
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(27) 

where the expressions of the effective viscoplastic strain rate       , which is chosen to impose the 

condition          ), and the effective back-extrapolated strain rate     are recalled in the section 

(A.3) of Appendix A, see Eqs. (A26-A29). In Eqs. (26, 27), the Eshelby tensors associated to    

and   
  are given by   

       
     

  respectively. 

 

4. Material parameters 

4.1. Choice of the Single-crystal Elastic Constants (SEC) of the β-Ti phase 

As seen in the introduction, the SEC of the β-phase reported in the literature for near-β Ti alloys 

are widely different from one set to another. We give in Table (1) a selection of the three 

independent cubic elastic constants (           ). These SEC are classified by increasing 

anisotropy coefficient (A) as defined by Zener: 

  
    

       
 (28) 

As one can see, the anisotropy coefficient is widely different from one set to another. Note that 

these differences are related to the chemical composition of the β phase present in the tested 

alloys but originate also from the measurement methods. The effective Young’s modulus of the β 

phase with random texture and equiaxed grains was computed for each set of SEC (see Table 1) 

and compared to the one measured on a quenched Ti-5553 alloy to retain 100% of β phase 

(Clément, 2010; Settefrati, 2012 - no presence of  phase was reported by the authors). The 

effective Young’s modulus was computed using the elastic self-consistent solution (Hershey, 

1954; Kröner, 1958), for which an analytic expression exists (deWit, 2008) in case of an isotropic 

distribution of crystallographic orientations.  

It is found that the Young moduli computed using the SEC given by Martin (2012), Petry et al. 

(1991) and Raghunathan et al. (2007) are close to the measured modulus for Ti-5553 alloy, which 

is about 68GPa. We highlight that these three sets give very different Zener anisotropy coefficients 

with respective values of 2.4, 3 and 8.3. Therefore, the corresponding single crystal Young’s 
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moduli are different from each other’s (see Fig. 2). As expected, the gap between the directional 

Young’s moduli of single crystals along the directions <100> and <111> increases with the 

anisotropy coefficient A (see blue curve in Fig. 2).  

Since the three sets of SEC given in Martin (2012), Petry et al. (1991) and Raghunathan et al. 

(2007) successfully reproduce the effective Young’s modulus of 100% β Ti-5553 alloy, we keep 

them all in the next part of the paper to study the effect of the elastic anisotropy of the β-phase on 

the elasto-viscoplastic behavior of this alloy. 
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References Ti-based alloy 

SEC (GPa) 

  

Effective 
Young’s 

modulus (GPa) 
of 100%β 

Computed in 
this study 

            

Fréour et al. (2005) Ti-17 174 116 41 1.4 98.6 

Fréour et al. (2011) Ti-17 167 115 44 1.7 98.4 

Nejezchlebova et al. 

(2016) 
LCB 138 102.2 42.5 2.37 83.8 

Martin( 2012) 
Ti-17 

Ti-5553 
100 70 36 2.4 69.4 

Petry et al. (1991) Pure 134 110 36 3 66.6 

Brandes et al. (1992) Pure 134 110 55 4.6 85.8 

Fisher & Dever (1970) Pure 99 85 33.6 4.8 52.8 

Kim et al. (2009) Ti-6242 135 113 54.9 5 83.7 

Ledbetter et al. (2004) Pure 97.7 82.7 37.5 5 57.5 

Raghunathan et al. 

(2007) 
Ti-1023 140 128 50 8.3 67.2 

Table 1- A selection from the literature of Single-crystal Elastic Constants (SEC) for the β-phase. The 
values are classified by increasing Zener anisotropy coefficient given by                 . For each 
SEC, the effective Young’s modulus is computed with the elastic self-consistent solution (Hershey, 1954; 
Kröner, 1958) for a 100% β Ti alloy assuming equiaxed grains and random crystallographic texture. 
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Figure 2- Directional Young’s modulus of a single crystal for tensile direction parallel to crystallographic 
<100> (minimum) and <111> (maximum) directions obtained using the three selected β-phase SEC. The 
corresponding Zener anisotropy coefficient (A) is also reported (blue curve). 

 

4.2. Single crystal plasticity parameters 

The β single crystal plasticity parameters of the constitutive law of Méric et al. (1991) as 

introduced in section 2.2 were already studied and discussed by Martin et al. (2011, 2012) on Ti-

5553 100% β and Ti-17 100% β. Here, the elastic parameters corresponding to A=3 are used to 

identify the material parameters reported in Table 2 and associated with the viscoplastic flow rule 

and the strain-hardening model to be in good agreement with the experimental result (see Fig. 3). 
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Table 2- Viscoplastic flow rule and hardening parameters of the β-phase for each slip system family 
(Martin, 2012). 

The procedure to identify the hardening and viscoplastic parameters is obtained from two tensile 

stress/strain curves at two different strain rates (                         ) for the 100% β Ti-

17 as reported on Fig. 3. First of all, the initial critical resolved shear stresses (CRSS) for the three 

slip system families denoted r0 are reported in Table 2. The experimental yield strengths and the 

elastic-viscoplastic transition on the tensile stress-strain curves at both applied strain rates are 

used to find the best values for r0 in the crystal plasticity model. The best fitted value for the CRSS 

associated with both {110}<111> and {112}<111> slip systems (i.e. the major active slip modes) 

was found to be r0=113MPa while the CRSS for {123}<111> slip mode is a bit higher (r0=123MPa) 

in agreement with Martin et al. (2011,2012). It is noteworthy that Raghunathan et al. (2007) and 

Hounkpati et al. (2016) also discussed the CRSS values in the β-phase from in-situ synchrotron 

and neutron diffraction measurements respectively. Their numerical values were different in 

magnitude because these authors used a different crystal plasticity model and rate-independent 

EPSC schemes, but the CRSS for {110}<111> and {112}<111> slip systems were also found to be 

lower than the one for the {123}<111> slip system. Furthermore, it was shown that a linear intra-

granular kinematic hardening model is sufficient to model the small hardening rate for such tensile 

monotonic responses then     and     in Eq. (7). No isotropic hardening (and hardening 

matrix) was needed to make the hardening model more complex since both linear intra-granular 

kinematic hardening and inter-granular hardening originating from grain to grain interactions (Eq. 

(27)) were sufficient to well reproduce the overall hardening response up to 4% strain. As in the 

previous numerical study performed by Martin et al. (2011, 2012), a linear kinematic hardening at 

the scale of slip system is chosen with a c parameter for each slip system (Eq. (7)) identified from 

the stress/strain curve after the yield point. The c parameter was identified as c=200MPa for the 

{110}<111> and the {112}<111> slip systems and twice higher for {123}<111> (c=400MPa), which 

is consistent with a low slip activity for this mode due to higher evolving flow strength with plastic 

 
                             

{110} <111> 
12 slip systems 

20 300 113 200 

{112} <111> 
12 slip systems 

20 300 113 200 

{123} <111> 
24 slip systems 

20 300 123 400 
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deformation. After an overall strain of 4% at room temperature, it was observed that the β phase 

transforms into the α’’ phase through precipitation (Aeby-Gautier et al., 2011; Settefrati, 2012). 

Therefore, a phase transformation induced hardening is present in the β phase, which is out of the 

scope of the present model so that the parameters were identified on the tensile stress/strain 

curves up to 4% strain (see Fig. 3). Lastly, both material parameters n and K (see Table 2) 

describe the strain rate sensitive behavior of the material. They were identified to reproduce the 

low strain rate sensitive behavior between 1% and 4% strains using the experimental points in Fig. 

3. Then, the increase of flow stress between both tensile responses at strain rates          and 

           is fully consistent with the available experimental data for n=20 and K=300           

4.3. Polycrystal description  

A fully β-phase microstructure with either (i) a random crystallographic texture (i.e. an isotropic 

grain orientation distribution) or (ii) an anisotropic one composed of 60% of <111> and 40% <100> 

fibers parallel to the loading direction (with a maximal disorientation of 5° in both cases) is 

considered. This latter is typical of a β-forged material (Chaussy and Driver, 1996). In the following 

figures, we refer to the random and β-forged textures by the “No texture” and “With texture” 

terminologies, respectively. After forging, the β grains shapes are ellipsoidal with different aspect 

ratios. In order to account for the grain shape effect on the overall behavior, grains are considered 

to be either spheres, oblate ellipsoids (a=b>>c) or prolate ellipsoids (a=b<<c), a, b and c are the 

half-axes of the ellipsoids. In the following figures, when not specified, the grains are supposed to 

be spherical. In the model, the Eshelby tensors (Eshelby, 1957) associated with anisotropic 

effective moduli tensors      
  and the different ellipsoidal morphologies have been numerically 

computed using Gauss-Legendre numerical integration. 

 

5. Results and discussion 

Numerical results focus on the effect of the β-phase elastic anisotropy on the elasto-viscoplastic 

behavior with a special attention to the elastic-viscoplastic transition and to the development of 

incompatibility stresses. Several main classes of results are presented here considering the three 

selected sets of SEC. 

First, the following simulations are made assuming spherical grains:  

- Macroscopic stress-strain tensile test curves predicted for a random texture, compared to 

experimental data at two strain rates.  

- Macroscopic stress-strain tensile test curves predicted for β-forged texture. 
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Then, for both the random and β-forged textures, 

- Incompatibility stresses are plotted for representative <111> and <100> grains oriented 

parallel to the loading direction, 

- Yield surfaces obtained with different multiaxial loadings and, 

- Strain-controlled cyclic stress-strain curves up to an applied strain amplitude of 5%. 

Finally, the effect of the β grain ellipsoidal shape on the elastoviscoplastic behavior and on the 

incompatibility stresses is shown. 

 

5.1. Influence of elastic anisotropy on macroscopic tensile elasto-viscoplastic 

responses  

5.1.1. Equiaxed β microstructure with random texture 

Fig. 3 compares the tensile stress-strain curves obtained on Ti-17 (Settefrati, 2012) and the 

present model using the three selected sets of SEC and crystal plasticity parameters identified 

using SEC with A=3. For comparison, we plot in the same figure the stress-strain curves obtained 

for the elastic isotropic case A=1. As the texture is random, the computed macroscopic elastic 

tensor is isotropic. The considered Young’s modulus and Poisson ratio are 69.4GPa and 0.35, 

respectively. In all figures, we refer to each set of SEC by its own anisotropy coefficient A (see 

Table 1). 

The three plotted stress-strain curves that use elastic anisotropy A=2.4, 3 and 8.3 predict all the 

macroscopic elasto-viscoplastic response as well as the elastic-viscoplastic transitions for both 

strain rates           and           compared to the experimental data.  For A=1, the 

predicted transition from the elastic domain to the viscoplastic one starts for much smaller 

stresses. For the four A values, the elastic-viscoplastic transitions are gradual because the texture 

is random. As expected by the self-consistent model, the stress-strain curves achieve the same 

viscoplastic asymptotic behavior when elastic strains become negligible (i.e. at large strains). 

However, the viscoplastic asymptotic state for A=1 is reached for higher strain, showing a longer 

transition between elastic and viscoplastic states contrary to the anisotropic cases (A≠1). The 

asymptotic state is only reached at macroscopic strains of 15% and at 10%  when strain rates 

are equal to           and to          , respectively.   
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Figure 3- Tensile macroscopic stress (   ) vs macroscopic strain (   ) estimated by the Affine EVPSC 

model at two strain rates:                          using four anisotropy factors (A). The numerical 

results are compared to the experiments of Settefrati (2012) (red circles) (equiaxed β microstructure with 

random texture). 

 

5.1.2.  Equiaxed β microstructure with β-forged texture  

The theoretical tensile stress-strain curves predicted by the present model for the β-forged texture 

(see Fig. 4) are plotted in Fig. 5 for the three anisotropy coefficients A= 2.4, 3 and 8.3. Again A=1 

is added for comparison. The effective elastic moduli obtained using these anisotropy coefficients 

are similar. Unlike the results obtained for the random texture, the elastic-viscoplastic transition is 

sharper due to the nature of the texture characterized by <100> and <111> fibers aligned to the 

loading direction. The peculiar transition of the curve obtained with A=8.3 arises from the big 

differences of local behaviors (elastic and plastic incompatibilities) between <100> and <111> 

grains, due to the strong elastic anisotropy. These incompatibilities are explained in details in the 

following sections. 

For A=1, the viscoplastic asymptotic state is reached earlier (macroscopic strains of 3.2% and 

2.5% when strain rates are equal to            and to          , respectively) compared to 

the random texture. This is mainly due to the strong plastic anisotropy induced by the β-forged 

texture.   
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Figure 4- Stereographic (111) and (100) pole figures illustrating the β-forged crystallographic texture. The 
Texture Index measuring the degree of anisotropy of the texture (Bunge, 1982) is 10.25. These pole figures 
were generated using the ATEX-software (Beausir and Fundenberger, 2018). 
 

 

 

 

 

 

 

 

 

 

 

Figure 5- Tensile macroscopic stress (   ) vs macroscopic strain (   ) estimated by the Affine EVPSC 

model at two strain rates:          and           using four anisotropy coefficients (A) (equiaxed β 
microstructure with β-forged texture). 
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5.2. Effect of elastic anisotropy on elastic-plastic incompatibility stresses for <111> 

and <100> grains 

5.2.1.  Equiaxed β microstructure with random texture 

 

Incompatibility stresses are defined as the difference between the local mean stress       in a 

grain and the macroscopic one      . The predicted incompatibility stresses in <111> and <100> 

grains for random texture are plotted as a function of the macroscopic strain for A=1, 2.4, 3 and 

8.3 (Fig. 6(a)). Several important results are reported:  

(i) Incompatibility stresses increase linearly with the macroscopic strain in the elastic domain, then 

decrease progressively when plastic strain begins. Incompatibility stresses have a positive 

contribution in <111> grains and a negative one in <100> grains. This means that the highest 

local stresses are achieved in <111> grains at the end of the elastic loading. 

(ii) The development of incompatibility stresses during the elastic domain arises from the elastic 

anisotropy of the β-phase. As shown in Fig. 6(a) they depend on the value of A: incompatibility 

stresses obtained for A=8.3 are the largest in magnitude for both <100> and <111> grains. For 

comparison, no incompatibility stresses are observed for A=1 in the elastic domain (see Fig. 

5(a)). These latter develop later due to viscoplastic incompatibilities. Unlike the similar predicted 

macroscopic elasto-viscoplastic responses obtained for A=2.4, 3, 8.3 (as shown in Fig. 3), the 

predicted incompatibility stresses are different from each other during the elastic-viscoplastic 

transition even between A=2.4 and A=3.  

(iii)Specifically for <100> grains, the incompatibility stresses predicted for A=8.3 stabilize only at 

4.5% macroscopic strain compared to A=2.4 and A=3 which stabilize earlier at 1.5% strain. 

Incompatibility stresses do not stabilize before <100> grains become plastic as shown in Fig. 

6(b). For A=8.3, the plastic strain starts only at 4.5% macroscopic strain while for A=2.4 and 

A=3, it starts earlier at 1.5%. Regarding the <111> grain, it is shown in Fig. 6(c) that its plastic 

strain starts at the same macroscopic strain of 1.3% for the three anisotropy coefficients 

A=2.4, 3, 8.3 but the one for A=8.3 increases a little faster. However, the plastic strain rate 

changes and becomes similar to that observed with A=2.4 and A=3 when plasticity occurs in the 

<100> grain. Thus, the plastic strain of <111> grain is only slightly more important for A=8.3 

compared to A=2.4 and A=3. This explains why predicted incompatibility stresses generated in 

<111> grains quickly converge to the same viscoplastic asymptotic state for all A values 

compared to those predicted in <100> grains.  

 

5.2.2. Equiaxed β microstructure with β-forged texture 
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The incompatibility stresses predicted for the β-forged texture are more important compared to 

those obtained for the random texture and increase with the anisotropy coefficient (Fig. 7(a)). The 

strain for which the incompatibility stresses in <100> and <111> grains reach the viscoplastic 

asymptotic state highly depends on A and on the texture. For the low A values (2.4 and 3), the 

asymptote is reached at lower strains in presence of texture and inversely for the high A value 

(8.3).  As in the random texture case, the plastic strain evolution of <100> and <111> grains for 

A=8.3 is different from that of A=2.4 and 3. The effect is however much more marked in the β-

forged texture case. The difference of plastic strain with A=2.4 and A=3 is very significant: 

1) the plastic strain of <100> grain starts only at 7.4% macroscopic strain while it starts at 

1.4% for A=2.4 and A=3 (Fig. 7(b)).  

2) the plastic strain of <111> grain evolves much faster before slowing down at the onset of 

plastic strain in the <100> grain (Fig. 7(c)). It is 1.4 times larger than those obtained with 

A=2.4 and A=3. 
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Figure 6- Incompatibility stresses (       ) (a) and local plastic strain     
  
  (b and c) as a function of the 

macroscopic strain (   ) of a <100> grain and a <111> grain. The numerical results are given for different 

anisotropy coefficients   (equiaxed β microstructure with random texture). 

 

 

  

(a) 

(b) (c) 
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Figure 7- Incompatibility stresses (       ) (a) and local plastic strain     
  
  (b and c) as a function of the 

macroscopic strain (   ) of a <100> grain and a <111> grain. The numerical results are given for different 

anisotropy coefficients   (equiaxed β microstructure with β-forged texture). 

  

(a) 

(b) (c) 
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5.3. Influence of elastic anisotropy on multiaxial plastic yielding  

In this part, we investigate through the plastic yield surfaces the influence of the elastic 

anisotropy on the overall plastic flow stress response for different multiaxial loading paths. Fig. 8 

represents in the case of random texture the overall plastic yield loci in the (   ,    ) plane at the 

onset of macroscopic plasticity, i.e. for a macroscopic equivalent viscoplastic strain of      

    . The yield surfaces are close to Von Mises ones. For A=2.4, 3 and 8.3, the yield surfaces 

are close from each other but undergo an expansion in size compared to the isotropic case 

(A=1). Note that for isotropic elasticity, the yield surface is bounded by the grain having the 

strongest Schmid factor while for anisotropic elasticity, the yield surface is expanded because the 

grain with the strongest Schmid factor does not necessarily initiate the plasticity due to elastic 

incompatibilities (Cailletaud and Coudon, 2016; Sauzay, 2006). 

We show for A=3 (Fig. 9(a)) and  A=8.3 (Fig. 9(b)) that the obtained yield surfaces for the β-

forged texture are strongly asymmetric with respect to the first diagonal axis (   =    ) and this 

effect is the most pronounced for A=8.3. Elastic and plastic incompatibilities can have a 

predominant influence on the initial yield loci. By examining Fig. 9(a) and 9(b), it is observed that 

the yield stresses in the case of equibiaxial tensile or compressive loadings (i.e. along the first 

diagonal axis:    =    ) obtained for a strongly anisotropic texture (β-forged texture) are lower 

than those obtained for the random texture. In contrast, for “shear-type” loadings corresponding 

to    =     , there is only a little difference between random and β-forged textures. 

Hence, it is also interesting to notice that the yield surface is less sensitive to the β-forged texture 

when crystal elasticity is isotropic (A=1). The initial yield surfaces obtained for the random texture 

and for the β-forged one are indeed close to each other (Fig. 9(c)). In this case, only the effect of 

plastic anisotropy on the yield loci at the onset of slip is demonstrated. Therefore, because of the 

low overall plastic strain (          , only a slight modification of the isotropic Von Mises-like 

yield surface is observed. For a β-forged texture, the yield stresses obtained for A=1 are more 

important than thoses for A=3 and A=8.3 in the case of equibiaxial tensile or compressive 

loadings.This was never observed when comparing the yield surfaces obtained for the random 

texture (Fig. 8). This effect is thus related to the combination of the anisotropic texture with 

heterogeneous elasticity. 
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Figure 8- Simulated yield surfaces (yield loci) in the plane           at macroscopic equivalent viscoplastic 

strain          . The yield surfaces are plotted for different anisotropy coefficients (A) (equiaxed β 
microstructure with random texture). 
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Figure 9- Initial yield surfaces in the plane (       ) at macroscopic equivalent viscoplastic strain 
     0.2%. The yield loci are given for different anisotropy coefficients (A) and for both random and β-
forged textures. 

 

 

5.4.  Effect of elastic anisotropy and crystallographic texture on cyclic responses: 

discussion on the Bauschinger effect 

The strong stress incompatibilities induced by the β-elastic anisotropy during unidirectional loading 

also affect the macroscopic β-Ti behavior under cyclic loading, as demonstrated in this section. 

Cyclic tension-compression loading simulations are performed at an applied strain rate of   

       , see Fig. 10. The cyclic test is strain-controlled with applied uniaxial strain     between -

0.05 and +0.05 strain. One cycle is simulated with the affine-based EVPSC for the different SEC 

(a) (b) 

(c) 
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and for random texture (Fig. 10(a)) and β-forged texture (Fig. 10(b)). The objective is to study the 

effect of elastic and plastic anisotropies on the Bauschinger effect in -Ti, which is of importance 

for metal forming operations of Ti alloys (Beal et al., 2006). For example, the Bauschinger effect 

was recently studied using reverse loading in-plane continuous tension-compression and 

compression-tension tests at room temperature on Ti-6Al-4V (Badr et al., 2016). The presence of 

the Bauschinger effect is at the origin of “kinematic hardening” during cyclic plasticity (Armstrong 

and Frederick, 1966; Cailletaud, 1992; Khan et Huang, 1995; Chaboche et al., 2012; Smith et al., 

2018). The macroscopic “Bauschinger stress” characterizing the Bauschinger effect is a 

macroscopic signature of incompatibility stresses due to elastic and plastic inter-granular 

accommodation during tensile stage and their progressive rearrangement during subsequent 

compression stage. The Bauschinger effect originates from inter-granular strain/stress 

incompatibilities and from the c parameter used in the linear intra-granular kinematic hardening 

model. These incompatibility strains/stresses and the “Bauschinger stress” can be experimentally 

extracted and validated from lattice strain measurements using in situ neutron/synchrotron 

diffraction (Huang et al., 2012, 2015; Taupin et al., 2013; Hounkpati et al., 2016) and macroscopic 

tension-compression test (Taupin et al., 2013; Badr et al., 2016). This “Bauschinger stress” is 

usually defined as the difference between the forward tensile flow stress    
  and the yield stress 

on reverse flow in compression    
 as shown in Fig. 10(c), see e.g. Sowerby et al. (1979). Then, 

the equation defining the Bauschinger stress is    
     

 . Let us note that other definitions may 

exist in the literature (Lemoine and Aouafi, 2008).  

From Fig. 10(a and b), the Bauschinger stress is calculated for random and β-forged textures and 

described in Fig. 11(a and b), respectively. Two important results arise from theses simulations: 

1) For a random texture, the Bauschinger stress monotonically increases with the β-elastic 

anisotropy coefficient A (Fig. 11(a)). This increase reaches 100MPa between the two 

extreme A values at a loading level of 850MPa (238MPa for A=1 to 338MPa for A=8.3). 

2) The β-forged texture reduces the Bauschinger stress for all considered A(≠1) values (Fig. 

11(b)). This results from a compensation effect between elastic and plastic sources of 

incompatibility stresses. Only in case of isotropic elasticity where no elastic stress 

incompatibilities arise, the β-forged texture increases the Bauschinger stress from 238MPa 

(random texture) to 435MPa (see A=1, Fig. 11(a, b)). This value is about twice higher than 

for the anisotropic elastic cases for which    
     

 =170MPa, 226MPa and 217MPa for 

A=2.4, 3 and 8.3, respectively. For A=1, the strong crystallographic texture is at the origin of 

the increase of the Bauschinger stress. 
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Figure 10- Influence of β elastic anisotropy on stress-strain curves under strain controlled cyclic loadings 
with strain amplitude of -/+ 5%. Results are given for different anisotropy coefficients (A). (a) Random 

texture, (b) β-forged texture. (c) Schematic picture defining the overall Bauschinger stress as    
  

   
  from the macroscopic stress-strain curve. 

 

 

 

(a) (b) 

(c) 
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Figure 11- Predicted Bauschinger stress (   
     

   for A=1, 2.4, 3 and 8.3 for (a) random and (b) β-forged 

textures after one cycle of +/-0.05 strain controlled tensile/compression loading  

 

 

5.5. Effect of the β-phase grain morphology and SEC on elastic-plastic 

incompatibilities in <100> and <111> grains 

 

The prior β-grain shape in titanium alloys exhibits often an ellipsoidal shape induced by the hot 

forging process as illustrated in Fig. 12. An EBSD (Electron Back Scattered Diffraction) map 

obtained from Scanning Electron Microscope (SEM) is reported showing the elongated shape of β 

grains in the axial direction (AD) of the forged product (Chini et al., 2016b). From this figure, it is 

shown that ellipsoidal grains with an average aspect ratio of 3 are realistic for prior β grains. 

Therefore, oblate and prolate spheroids with an aspect ratio of 3 are studied with the present 

crystal plasticity based EVPSC scheme. 
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Figure 12- EBSD map showing prior β grains with an ellipsoidal shape in a forged titanium alloy (data from 
Chini et al. 2016b). The orientation color code is given by the attached Inverse Pole Figure//Axial Direction 
(AD) of the forged product. 

 

The simulations show that the β-grain morphology has a negligible effect on the overall elasto-

viscoplastic response for all coefficients A (curves are not shown here). However, again it strongly 

modifies the local grain incompatibility stresses and thus may affect the final mechanical behavior 

of β-Ti alloys. This is illustrated in Fig. 13 that gives the incompatibility stresses predicted for 

<111> and <100> grains taken from our set of randomly oriented grains subjected to uniaxial 

tension. Three grain shapes are considered in the EVPSC model: (i) spheres (b/a=c/a=1), (ii) 

oblate spheroids (a/c=b/c=3) or (iii) prolate spheroids (c/a=c/b=3) (a, b and c are the half-axes of 

the ellipsoidal inclusions and the major axes are either oriented parallel (“LONG”) or perpendicular 

(“TRANS”) to the loading direction).  

The highest magnitude of incompatibility stresses between <111> and <100> grains are reported 

for 'LONG'-oriented prolate spheroidal grains and the lowest for 'TRANS'-oriented oblate and 
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prolate spheroidal grains, whatever the elastic anisotropy (spherical β-grains constitute an 

intermediate case). For example, the incompatibility stresses obtained with “LONG”-oriented 

prolate spheroids are about two to three times those obtained with “TRANS”-oriented oblate 

spheroids for A=2.4 and A=3 and up to four times for A=8.3 at the end of the elastic regime. 

Again, the higher the elastic anisotropy coefficient, the higher the magnitude of incompatibility 

stresses between <111> and <100> grains. 
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Figure 13- Incompatibility stresses in <100>  and <111> grains computed for different grain shapes and 
anisotropy coefficients (A). The simulations are performed with our set of randomly oriented grains 
subjected to uniaxial tension. 

 

 

(a) 

Grains <111> 

(b) 

Grains<100> 
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6. Conclusions and perspectives 

 

The β-phase of titanium is known to exhibit an anisotropic elastic behavior. However, the way how 

this elastic anisotropy impacts the mechanical behavior in fully β-microstructures or in more 

complex α/β microstructures is still an open question. This topic is even complicated by the 

uncertainties on the β phase SEC:    ,     and     with published values corresponding to a large 

set of anisotropy coefficients.  

In this contribution, a recent affine elasto-viscoplastic self-consistent (EVPSC) model (Mareau and 

Berbenni, 2015) was applied to theoretically investigate the elastic-viscoplastic behavior of β-

phase titanium (such as Ti-17 or Ti-5553) and to capture elastic/viscoplastic incompatibilities. The 

model is based on the affine linearization of the viscoplastic flow rule. This allows a good 

description of the overall and the mean local responses of elastically anisotropic -titanium 

polycrystals with highly nonlinear viscoplastic flow rule at the scale of slip systems. The EVPSC 

model was especially applied to capture coupled effects of β elastic anisotropy, β- grain shape and 

texture on overall stress response and inter-granular incompatibility stresses. Three different sets 

of the SEC extracted from the literature and corresponding to Zener coefficients A=2.4, 3 and 8.3 

were considered in the simulations as they all give the experimental Young’s modulus of the 

studied alloy (Ti-17). The following conclusions can be drawn from this work: 

1. The experimental macroscopic tensile elasto-viscoplastic transition of a random oriented and 

equiaxed β Ti-17 is well predicted by the model for two strain rates. This demonstrates the ability 

of the model to capture the elastic-viscoplastic transition of this strain rate sensitive alloy and its 

reliability for further predictive simulations. 

2. Whatever the considered SEC, the macroscopic predicted responses are similar for randomly 

oriented β phase grains, equiaxed or ellipsoidal in shape. This clearly indicates that considering 

only the macroscopic behavior is not discriminant to evaluate the elastic anisotropy of the β phase. 

On contrary, the model indicates that in presence of a sharp β-forged texture, differences are 

observed. 

3. As a major result, the three considered sets of SEC imply strong variations in incompatibility 

stresses between differently oriented β-grains with lowest and highest values obtained 

respectively for <100> and <111> grains (fiber orientation parallel to the loading direction). This 

magnitude increases with the Zener anisotropy coefficient, with the β-forged texture and with the 

ellipsoidal (non spherical) grain shape where major axis is oriented parallel to the loading 

direction.  
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4. These incompatibility stresses are also of major importance to understand the low-cycle fatigue 

behavior of near β-Ti alloys. The effect of anisotropy coefficient A was seen to be important on the 

overall Baushinger stress reported from one cycle simulations. This Baushinger stress is a 

macroscopic signature of incompatibility stress development and inter-granular accommodation for 

the studied β-Ti alloy. 

5. The plastic yield loci described for the three sets of SEC and coupled with a β-forged texture are 

remarkably modified for specific multiaxial loading directions (e.g., equibiaxial tension) compared 

to the ones obtained for the random texture. This was not observed when comparing the two yield 

surfaces in the context of isotropic elasticity only.  

Finally, we draw attention to the major role of elastic anisotropy of β-phase in building up of 

incompatibility stresses that finally control the material’s behavior during uniaxial, reverse and 

cyclic loadings. Consequently, determining or refining the real SEC of the β-phase are 

fundamental to predict the local incompatibility stresses and in use effective properties of near β-Ti 

alloys with simple β microstructures or more complex α/β microstructures in a future work. The 

simulations demonstrate also the coupled effects of texture and grain shape with the β elastic 

anisotropy. They may serve to design optimized -grain shape (spheres, oblate ellipsoids, prolate 

ellipsoids) and crystallographic orientation distributions for reducing stress concentrations for given 

loading directions. 
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Appendix A 

A.1. Cases of pure elasticity and pure viscoplasticity with affine formulation 

 

The properties obtained from the averaging equations of homogenization theory (       ,          

and       ) are given in the following but let us recall at first the expressions of the quantities 

  ,    ,  ,    and   : 

             for pure elasticity (A1)  

 

                              for pure viscoplasticity with affine approximation (A2) 

 

 The macroscopic constitutive laws display the same structure as the local constitutive ones, so: 

             for pure elasticity (A3) 

 

    
               for pure viscoplasticity with affine approximation (A4) 

 

The stress (stress rate) concentration rules are deduced from relations (12) and (13): 

                    for pure elasticity (A5) 

 

      
     

        
           

                          for pure viscoplasticity     
                                                                                                 with affine approximation 

(A6) 

 
The properties deduced from the averaging conditions are: 

          (A7) 

 

  
       

    (A8) 

 

       (A9) 

 

        (A10) 

 

                     (A11) 

 

          
           

                 (A12) 

 

In addition, from averaging conditions over the RVE applied to equations (19-22), we obtain: 

            (A13) 
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          (A14) 
 

     
      (A15) 

Subsequently, the following averaging relations are verified from averaging equations of the 

homogenization scheme (       ,          and       ) and from equations (A7-A12): 

 

                                   (A16) 

 
  

          
               (A17) 

 

A.2. Application of the self-consistent condition on the TF solution 

 

Using the decomposition of the modified Green operators into local and non-local parts and 

introducing unknown uniform tensors (   to     in the integral equations (20-22) leads to: 

            
              

           (A18) 

  

              
          

                   
          

                (A19) 

 

          
                        

                    

   
            

       
          

            
       

      

    
      

            
               

       
      

      
           

(A20) 

 
Imposing the self-consistency conditions by neglecting the non-local terms and using equations 

(A7-A17) leads to: 

                  (A21) 

 

       
                           

      (A22) 

 

                                  (A23) 

 

         
       

                
        (A24) 

 
     

                    (A25) 
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A.3. Expressions of the effective viscoplastic strain rate        and back-

extrapolated strain rate     

The effective viscoplastic strain rate        which is chosen to impose the condition          is 

obtained as follows: 

                            
            

       

           
                        

           
          

       
      

                 

            
       

     
                     

            
       

     
          

            
         

(A26) 

with: 

                
        

  
    (A27) 

From Eq. (A12) and Eq. (A22), the effective back-extrapolated strain rate     is given by: 

  
                 

     
            

        (A28) 

then: 

      
        

     
      

  
      

     
                (A29) 
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