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The precision of a quantum sensor can overcome its classical counterpart when its constituents are
entangled. In Gaussian squeezed states, quantum correlations lead to a reduction of the quantum projection
noise below the shot noise limit. However, the most sensitive states involve complex non-Gaussian
quantum fluctuations, making the required measurement protocol challenging. Here we measure the
sensitivity of nonclassical states of the electronic spin J ¼ 8 of dysprosium atoms, created using light-
induced nonlinear spin coupling. Magnetic sublevel resolution enables us to reach the optimal sensitivity
of non-Gaussian (oversqueezed) states, well above the capability of squeezed states and about half the
Heisenberg limit.

DOI: 10.1103/PhysRevLett.122.173601

The measurement of a physical quantity is fundamen-
tally limited in precision by the quantum nature of the
measurement apparatus, via the Heisenberg uncertainty
principle [1,2]. Similarly, to the mere averaging of N
independent measurements, a measurement device made
of N independent quantum probes allows reducing the
measurement uncertainty by a factor

ffiffiffiffi
N

p
compared to a

single realization, leading to the standard quantum limit of
precision (SQL). Conversely, a set of correlated quantum
probes may reach a better sensitivity [3,4], ultimately up to
the Heisenberg limit—a measurement uncertainty reduced
by a factor N [5]. However, reaching this precision limit
with large-size quantum systems remains challenging,
because it requires manipulating highly entangled quantum
states, whose increased measurement sensitivity comes
together with a higher fragility to environmental perturba-
tions [6].
A quantum sensitivity enhancement has been demon-

strated in various experimental settings, including photonic
systems [7–9], trapped ions [10–14], Rydberg atoms [15],
thermal atomic gases [16–21], or Bose-Einstein condensates
[22–31]. In squeezed quantum states described by Gaussian
statistics, fluctuations of the mean response of the N probes
are reduced below the shot noise limit, thus increasing the
measurement precision [3]. In the most common squeezing
protocols, the measurement uncertainty is decreased
by a factor N2=3 intermediate between the SQL and the
Heisenberg limit [32,33]. The precision can be further
improved using states with non-Gaussian quantum fluctua-
tions, characterized by high-order correlations between all
probes [34]. Quantum sensingwith such non-Gaussian states
has been demonstrated in Refs. [14,30]; yet, the reported
spectroscopic enhancement values remain limited, because

reaching optimal sensitivity typically requires single-particle
resolution [35,36] or nonlinear detection [37–40].
In this Letter, we use ultracold samples of atomic

dysprosium to study the magnetic-field sensitivity of
Gaussian and non-Gaussian quantum spin states, encoded
for each atom in its electronic spin of size J ¼ 8—
equivalent to a set of precisely N ¼ 2J ¼ 16 elementary
spin-1=2 particles [41]. We use spin-dependent light shifts
to induce nonlinear dynamics described by the one-axis
twisting Hamiltonian Ĥ ¼ ℏχĴ2x [32]. These dynamics
generate Gaussian squeezed states at short times, before
the stretching of spin distribution leads to non-Gaussian
“oversqueezed” states. Single magnetic sublevel resolution
gives us access to the magnetic sensitivity hidden in non-
Gaussian quantum fluctuations, yielding a spectroscopic
enhancement of 8.6(6) compared to the SQL, consistent
with the maximum sensitivity J þ 1=2 expected for over-
squeezed states and about half the Heisenberg limit. We
stress that our method is not based on correlations between
different atoms but rather exploits the spin degree of
freedom of individual atoms. A clear asset for our pro-
cedure robustness is the absence of effective constituents
number fluctuations N ¼ 2J.
The experimental protocol is pictured in Fig. 1. We first

prepare a gas of 1.0ð2Þ × 105 atoms of 162Dy at a temper-
ature T ¼ 1.1ð2Þ μK, using standard cooling techniques
[42]. The atoms are initially spin polarized in the absolute
ground state jm ¼ −J >z, under a quantization field
B ¼ Bẑ, with B ¼ 60.6ð3Þ mG. We shine on the atoms
an off-resonant laser beam inducing spin-dependent light
shifts thanks to the proximity to the narrow 626-nm optical
transition (natural linewidth Γ ≃ 0.85 μs−1). For a linear
light polarization along x̂, the light shift reduces (up to a
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constant) to a coupling ℏχĴ2x, where the rate χ is propor-
tional to the light intensity (in the range χ ∼ 1–10 μs−1)
[43,44]. Over the typical pulse duration, t ∼ 100 ns, the
Larmor rotation induced by the quantization magnetic field
is ∼3° only, and we neglect it hereafter. We thus expect the
dynamics to be well described solely by the one-axis
twisting Hamiltonian [see Fig. 1(c)]. After the nonlinear
spin dynamics, we apply time-dependent magnetic fields to
rotate the spin along arbitrary directions [see Fig. 1(d)]. We
finally perform a projective measurement along z using a
magnetic field gradient that spatially separates the jm >z
magnetic sublevels after a free expansion of 2.45 ms [see
Figs. 1(e) and 1(f)]. Combining rotation and projective
measurement gives us access to the projection probabilities
Πmðn̂Þ (−J ≤ m ≤ J) along any direction n̂ [45].
We first characterize the produced spin states by meas-

uring their first and second spin moments. We expect from
the symmetry of the one-axis twisting Hamiltonian that the
mean spin m≡ hĴi remains oriented along z. An example
of populations ΠmðẑÞ is shown in Fig. 2(a), from which we
extract the magnetization mz. We find that the magnetiza-
tion decreases with time in absolute value as expected from
the one-axis twisting model [see Fig. 2(b)]. We also plot in
Fig. 2(a) projection probabilities measured along directions
n̂⊥ẑ, from which we extract the minimum (maximum)
uncertainty ΔJmin (ΔJmax), for a projection direction n̂min
(n̂max) of azimutal angle ϕmin (ϕmax, respectively).
For t ¼ 0, the spin is polarized in j − Jiz, corresponding to

a coherent spin state. This state constitutes the best repre-
sentation of a classical state magnetized along −ẑ, with zero
magnetization along x and y, and projection uncertainties
ΔJx=J ¼ ΔJy=J ¼ 1=

ffiffiffiffiffi
2J

p
taking the minimum value

allowed for an isotropic distribution in the xy plane [48].
For this state, we find that for all directions n̂⊥ẑ the
population distributions remain identical, and the projection
variance ΔJ2n̂ ¼ 4.3ð2Þ, as expected [48]. For t > 0, we
measure a squeezing of the minimum projection uncertainty
down toΔJ2min ¼ 0.6ð1Þ, i.e., about seven times smaller than
the coherent state value [see Fig. 2(c)]. The maximum spin
quadratureΔJ2max increases with t up to a value≃37ð1Þ. This
behavior is consistent with a semiclassical picture of spin
“diffusion” over the entire yz meridian, leading to steady
asymptotic values ΔJ2min ¼ ΔJ2x ¼ J=2 and ΔJ2max ¼
ΔJ2y ¼ ΔJ2z ¼ JðJ þ 1

2
Þ=2 ¼ 34. We find this dynamics to

occur on the timescale of the diffusion time τ≡ ð ffiffiffiffiffi
2J

p
χÞ−1

expected within the one-axis twisting model [32]. We also
use thesemeasurements to quantify theGaussian character of
quantum fluctuations, characterized by a saturation of the
Heisenberg uncertainty relation ΔJmaxΔJmin ≥ jmzj=2 [49].
As shown in Fig. 2(d), we find that this inequality is saturated
for t < 0.5τ, while non-Gaussian states occur for longer
times.
We now discuss magnetic field sensing, i.e., the esti-

mation of small rotation angles ν around an axis b̂. In the
most basic scheme, one estimates the angle ν from a
measurement of the mean spin projection, giving access to
the magnetization mz up to the projection noise ΔJz. The
single-shot uncertainty on the estimation of ν then reads
Δν ¼ ΔJz

�jdmz=dνj [1]. For a set of N ¼ 2J uncorrelated
spins 1=2, optimal sensitivity ΔνSQL ¼ 1=

ffiffiffiffiffi
2J

p
is expected

(f)

(b)(a)

(c) (d) (e)

FIG. 1. (a) Scheme of the experimental setup. Starting with a
coherent state of the electronic spin of dysprosium atoms aligned
with the south pole (b), we induce nonlinear dynamics using an
off-resonant laser beam (c). We then perform a spin rotation (d)
followed by a projective measurement along z using a magnetic
field gradient (e). A typical absorption image is shown in (f).

(a)

(b) (c) (d)

FIG. 2. (a) Projection probabilitiesΠmðn̂Þ along n̂ ¼ ẑ and n̂⊥ẑ,
for an interaction time t ¼ 0.83ð1Þτ, with τ ¼ ð ffiffiffiffiffi

2J
p

χÞ−1. The
solid (dotted) red line indicates the magnetization mn̂ (values of
mn̂ � ΔJn̂). (b) Magnetization mz as a function of the interaction
time t. (c) Maximum and minimum spin projection variances
ΔJ2max and ΔJ2min (blue dots and red squares, respectively).
(d) Comparison between the uncertainty product ΔJmaxΔJmin
and the half mean spin length jmzj=2. The solid lines in (b)–(d)
correspond to the one-axis twistingmodel predictions. In all figures
of this Letter error bars represent the 1-σ statistical uncertainty
determined using a bootstrap sampling method.
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when all probes are aligned together, corresponding to a
coherent spin state [48], and for a rotation axis b̂⊥m. To
check this behavior, we measure the precession of the
coherent state jm ¼ −J >z around a direction b̂⊥ẑ, para-
metrized by the angle θ [see Fig. 3(a)]. We estimate the
sensitivity of the state obtained after a rotation θ0 ¼ π=2
byevaluating the slopedmz=dν ¼ −8.01ð4Þ at thevicinity of
θ0.We extract, at this angle, a value ofΔJ2z ¼ 4.3ð1Þ, leading
to Δν ¼ 1.04ð3ÞΔνSQL, which validates our procedure.
We extend this measurement to the states produced after

nonlinear dynamics. We observe a decrease of the mag-
netization oscillation amplitude corresponding to the reduc-
tion of the mean spin length [see Figs. 3(b) and 3(c)]. The
best magnetic sensitivity is achieved for a rotation axis b̂
coinciding with the direction n̂max of maximal spin pro-
jection variance ΔJmax and around θ ¼ π=2. We quantify
the increase of sensitivity with respect to the SQL by the
metrological gain Ḡ≡ ðΔνSQL=ΔνÞ2 [50]. For durations
0 < t < τ we observe a quantum enhancement Ḡ > 1, with
a maximum gain Ḡ ¼ 4.3ð4Þ reached for t ¼ 0.58ð2Þτ. As
shown in Fig. 3(d), our data are in good agreement with the
one-axis twisting model predictions [32]. We expect the
sensitivity to be related to the minimum spin projection
variance ΔJmin, as Ḡ ¼ 1=ξ2R, where we introduce the so-
called spin squeezing parameter ξR ≡ ffiffiffiffiffi

2J
p

ΔJmin=jmzj [4].
We verify this relation in Fig. 3(d), where the ξR values are
computed from the measuredmz and ΔJmin data. For t > τ,
we observe that the gain Ḡ drops below unity, as expected
from the mean spin length reduction.

To go beyond this “usual” metrological gain Ḡ, we now
exploit a key feature of our setup, i.e., the ability to resolve
individual sublevels. This allows us to unveil small-scale
structures in the measured projection probabilities ΠmðθÞ
that rapidly vary with θ, suggesting hidden phase sensi-
tivity in higher-order moments of the probability distribu-
tion, even when Ḡ < 1. In order to quantify this θ
dependence, we introduce the Hellinger distance between
probability distributions d2Hðθ; θ0Þ≡ 1

2

P
m½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΠmðθÞ

p
−ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Πmðθ0Þ
p �2. The phase sensitivity, expressed in terms of
metrological gain, is then related to the curvature of the
Hellinger distance as [30,51]

GðθÞ ¼ 2

J
∂2d2Hðθ; θ þ νÞ

∂ν2
����
ν¼0

: ð1Þ

This gain coincides with the usual gain Ḡ for states with
Gaussian quantum fluctuations.
We show in Figs. 4(a) and 4(b) the projection proba-

bilities ΠmðθÞ measured for an oversqueezed state [inter-
action time t ¼ 0.84ð1Þτ]. As theoretically shown in
Ref. [40], we expect, for this protocol, optimal sensitivity
around θ ¼ 0. We observe strong population variations

(a) (b)

(c)

FIG. 3. (a),(b) Evolution of the projection probabilities Πm
upon a Larmor rotation of angle θ around the direction n̂max of
maximum sensitivity, for a coherent state (a), a squeezed state (b)
[interaction time t ¼ 0.58ð2Þτ� and an oversqueezed state
[c, t ¼ 2.01ð1Þτ]. The solid (dotted) red line corresponds to
the magnetization mz (values of mz � ΔJz) computed from the
Πm values. (d) Usual metrological gain Ḡ and value of 1=ξ2R
deduced from the Figs. 2(b) and 2(c) data as a function of the
interaction time t. The solid line corresponds to the one-axis
twisting model prediction.

(a) (b) (c)

(d) (e)

FIG. 4. (a),(b) Projection probabilities Πm measured for
small rotation angles θ around b̂ ¼ cosϕx̂þ sinϕŷ, with ϕ ¼
0.10ð2Þπ ≃ ϕmin and 0.56ð2Þπ ≃ ϕmax, respectively, for an inter-
action time t ¼ 0.835ð5Þτ. Each probability is the average of
three independent experiments. (c) Hellinger distances d2Hðθ; 0Þ
deduced from (a),(b), together with a quadratic fit of the small-θ
data. (d) Metrological gain G deduced from the curvature of the
Hellinger distance as a function of the azimutal angle ϕ (gray
circles). The black line is a sine fit of the data. Gray
dots correspond to the upper bound 2ΔJ2

b̂
=J extracted from

the Fig. 2(a) data. (e) Measured metrological gainG (blue dots) as
a function of the interaction time t. The gray diamonds corre-
spond to the upper bound 2ΔJ2max=J [from Fig. 2(c)], and the red
squares are the Ḡ values from Fig. 3(d). The solid blue and
dashed red lines correspond to the gains G and Ḡ expected from
the one-axis twisting model.

PHYSICAL REVIEW LETTERS 122, 173601 (2019)

173601-3



when the rotation axis b̂ coincides with the direction n̂max
of maximal spin projection variance [Fig. 4(b)] and minor
variations for b̂ ¼ n̂min [Fig. 4(a)]. To extract the metro-
logical gain G, we calculate the Hellinger distances
d2Hðθ; θ0Þ from the measured ΠmðθÞ data and use a poly-
nomial fit to extract its curvature around θ ¼ θ0 ¼ 0 [45].
We show in Fig. 4(c) examples of cuts d2Hðθ; θ0 ¼ 0Þ,
together with the corresponding fits. As shown in Fig. 4(d),
we find that the measured gain agrees well for all rotation
axes b̂ with the quantum Cramér-Rao bound for a pure
state—the maximum achievable sensitivity—given by
2ΔJ2

b̂
=J [51]. The optimal character of this measurement

protocol has been demonstrated theoretically in Ref. [40]
and is based on the conservation of parity by the one-axis
twisting Hamiltonian.
We repeat this measurement for various interaction times

up to t ¼ 2τ [see Fig. 4(e)]. For t < 0.5τ, the measured gain
G remains close to the usual gain Ḡ deduced from the first
two moments, as expected in this regime of Gaussian
quantum fluctuations [50]. For longer times, the measured
gain G largely exceeds the gain Ḡ, reaching an almost
constant value G ¼ 8.6ð6Þ in the oversqueezed regime
(average value of t > τ data). This value is consistent with
G ¼ J þ 1=2 expected for a spin state uniformly spanning
the entire yz meridian. The measured sensitivity closely
follows the one-axis twisting model prediction, and it
remains close to the upper bound ð2=JÞΔJ2max in the whole
considered range of interaction times.
To get more physical insight we characterize the pro-

duced quantum states by their phase space representation
on the generalized Bloch sphere. We consider in the
following two quasiprobability distributions, the Wigner
functionW and the Husimi functionQ [52,53]. TheWigner
function, defined for a spin in [54], is an indicator of non-
classical behavior via its negative-value regions. The
Husimi function Qðn̂Þ, defined as the squared overlap
with a coherent spin state pointing along n̂ [53], corre-
sponds to a Gaussian smoothening of the Wigner function
[55]. We compute both functions from the measured
probabilities Πmðn̂Þ, using Qðn̂Þ ¼ Πm¼Jðn̂Þ and Wðn̂Þ ¼P

mð−1ÞJ−mamΠmðn̂Þ, with am ≡P
2J
k¼0ð2kþ 1ÞhJ;m; J;

−m; k; 0i= ffiffiffiffiffiffi
4π

p
[54]. As a reference, we measured the

Husimi function of a coherent spin state [see Fig. 5(a)].
We find an almost isotropic Gaussian distribution of rms
angular width δθ ¼ 0.351ð2Þ, close to the expected value
1=

ffiffiffi
J

p
≃ 0.354. For a short time t ¼ 0.48ð2Þτ, we recon-

struct a twisted Husimi function, well described by an
anisotropic Gaussian distribution [see Fig. 5(b)]. For
t ¼ 2.2ð1Þτ, in the oversqueezed regime, the distribution
has spread over the full yz meridian [see Fig. 5(c)].
Although semiclassical dynamics would predict diffusion
toward a featureless distribution, we observe several small-
scale dips that we interpret as the location of zeros of the
Husimi function. For a pure quantum state jψi of a spin J,

we expect the occurrence of 2J zeros in the Husimi
function, corresponding to the opposite orientations of
the 2J fictitious spin-1=2 particles composing the spin
J—the so-called Majorana stellar representation [56].
Denoting these orientations ûi (1 ≤ i ≤ 2J), the Husimi
function reads Qðn̂Þ ∝ Q

ið1þ ûi · n̂Þ and vanishes for
n̂ ¼ −ûi [57]. Fitting the entire distribution with this
ansatz, we obtain the location of all zeros of the Husimi
function, in good agreement with the expected positions
[see Fig. 5(d)]. We show in Fig. 5(e) the Wigner function
reconstructed for the oversqueezed state. It exhibits neg-
ative values in a large fraction of phase space, indicating a
highly nonclassical character [58]. We also find small-scale
oscillations reminiscent of “sub-Planck” structuring of
phase space, as expected for metrologically useful quantum
states [59]. Although the measured small-scale structures in
the Husimi function are not directly linked to the magnetic
sensitivity, the oscillations found in the Wigner function
imply a fast variation of the state upon rotation, making a
direct connection with the high magnetic sensitivity of
oversqueezed states [60].
To conclude, we showed that measurements based on

single magnetic sublevel resolution allow reaching optimal
sensitivity with non-Gaussian states of a quantum spin J.
An optimum G ¼ 8.6ð6Þ is reached as soon as the spin
distribution is stretched along the full yz meridian. The
Heisenberg limit G ¼ 16 could in principle be achieved
using the maximally entangled N00N state [13,21]; how-
ever, the required interaction time t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
π2J=2

p
τ is much

(a) (b)

(c) (d)

(e) (f)

FIG. 5. (a)–(c) Husimi Q function measured for a coherent,
squeezed, and oversqueezed spin states (a)–(c), achieved after
evolution times t=τ ¼ 0, 0.48(2) and 2.2(1), respectively. The
Bloch sphere is parametrized by the spherical angles ðΘ;ΦÞ
associated with the frame ðy; z; xÞ. The red stars in (c) indicate the
fitted zeros of the Husimi function. (d),(f) Husimi (d) and Wigner
(f) functions of the quantum state expected from the one-axis
twisting model for an interaction time t ¼ 2.2τ. (e) Wigner
function reconstructed from the same data used in (c).
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longer than τ for J ≫ 1, making this state more fragile
to decoherence [45]. Oversqueezed states thus appear
as a compromise for future progress with large atomic
ensembles. We also provided a full characterization of
nonclassical spin states in phase space in terms of
their Majorana stellar representation. The latter could be
used to characterize ordering in spinor quantum gases
[61], geometric quantum entanglement [62] or chaotic
behavior [63].
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