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THE LITTLEWOOD-PALEY THEORY : A COMMON THREAD OF

MANY WORKS IN NONLINEAR ANALYSIS

HAJER BAHOURI

In this article we present the Littlewood-Paley theory and illustrate the effectiveness of
this microlocal analysis tool in the study of partial differential equations, in a context which
is the least technical possible. As we shall see below, the Littlewood-Paley theory provides
a robust approach not only to the separate study of the various regimes of solutions to
nonlinear partial differential equations, but also to the fine study of functional inequalities,
and to make them accurate.

1. The Littlewood-Paley theory : a tool that has become indispensable

The Littlewood-Paley theory is a localization procedure in the frequency space that,
since about three decades ago, has established itself as a very powerful tool in harmonic
analysis. The first goal of this text is to present it in a way as simple as possible 1. Its basic
idea is contained in two fundamental inequalities known as Bernstein’s inequalities, that
describe some properties of functions whose Fourier transform have compact support.

The first inequality says that, for a tempered distribution 2 in Rd whose Fourier trans-
form is supported in a annulus of size λ, to differentiate first and then take the Lp norm
is the same as to apply a homothety of ratio λ on the Lp norm. In the L2 setting this
remarkable property is an easy consequence of the action of the Fourier transform on de-
rivatives and of the Fourier-Plancherel formula. The proof in the case of general Lp spaces
uses Young’s inequalities and the fact that the Fourier transform of a convolution is the
product of the Fourier transforms.

In the other hand, the second inequality tells us that, for such a distribution, the change

from the Lp norm to the Lq norm, with q ≥ p ≥ 1, costs λ
d
(

1
p
− 1
q

)
, which must be

understood as a Sobolev embedding. It is proved like the first inequality, using Young’s
inequalities and the relation between the Fourier transform and the convolution product.

Fourier Analysis is at the heart of the Littlewood-Paley theory, which has inspired a
large number of my works. It was in conducting experiments on the propagation of heat
that Joseph Fourier at the end of the 18th century opened the door to that theory, which
was hugely expanded on the 20th century and intervenes in the majority of branches of
Physics.

In this theory having the name of its creator, one performs the frequency analyis of a
function f of L1(Rd) by the formula :

f̂(ξ) =

∫
Rd

e−ix·ξf(x) dx .

1. For a more detailed presentation of this theory the reader can consult the monograph [?].

2. A tempered distribution is an element of the topological dual of the Schwartz space S(Rd).
1



2 H. BAHOURI

Under appropriate conditions, f̂ the Fourier transform of f (also denoted Ff in the present
text), allows the synthesis of f through the inversion formula :

f(x) =
1

(2π)d

∫
Rd

eix·ξ f̂(ξ) dξ .

As a consequence, we obtain the Fourier-Plancherel identity∫
Rd
|f(x)|2 dx =

1

(2π)d

∫
Rd
|f̂(ξ)|2 dξ .

In fact, for all functions f of S(Rd), we have, due to Fubini’s theorem,∫
Rd
f(x)f(x) dx =

1

(2π)d

∫
Rd

(∫
Rd

eix·ξ f̂(ξ) dξ

)
f(x) dx

=
1

(2π)d

∫
Rd
f̂(ξ)

(∫
Rd

e−ix·ξf(x) dx
)
dξ .

This representation created a true revolution in the way we think about functions. To

give f̂ is exactly equivalent to give f , and this duality between analysis in amplitude
(in the physical space described by x) and analysis in frequency (in the frequency space
described by ξ) is of extraordinary importance in Physics and in Mathematics.

A fundamental fact from the theory of distributions is that the Fourier transform can
be extended to the space of tempered distributions S ′(Rd). The crucial point is the fact
that F is a well-known isomorphism on the Schwartz space S(Rd) (the space of smooth
functions that, together with all their derivatives, decrease faster than every polynomial)
and its extension to S ′(Rd) is defined by duality 3.

Fourier transforms have a very large number of properties that we do not wish to list
here. Let us just recall the two basic principles of this transforms that we cannot dissociate
from the convolution product. The first principle of the Fourier transform is that regularity
implies decreasing ; the second one is that decreasing leads to regularity. The usefulness of
these properties, that play a crucial role in the study of Fourier transforms in S(Rd), will
be clear very soon in what follows.

Fourier analysis allow us to explicitly solve linear equations with constant coefficients 4.
In particular, combining the Fourier transform with the convolution product we can ex-
plicitly determine the solutions of the Schrödinger equation, a fundamental equation in
quantum mechanics :

(S)

{
i ∂tv + ∆v = 0

v|t=0 = v0 ∈ S(Rd) .
In fact, taking the partial Fourier transform with respect to the variable x we obtain, for
every (t, ξ) in R× Rd : {

i ∂tv̂(t, ξ)− |ξ|2v̂(t, ξ) = 0

v̂(0, ξ) = v̂0(ξ) ,

and integrating we get

v̂(t, ξ) = e−it|ξ|
2
v̂0(ξ).

3. For a complete presentation of the theory of distributions we can, for instance, see the fundamental
references [?, ?].

4. Linear equations with variable coefficients and nonlinear equations require different methods.
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Combining the inverse Fourier transform together with the properties of the Fourier trans-
form and the convolution product, we deduce that the solution of (S) for t 6= 0 can be
written as

v(t, ·) =
ei
|x|2
4t

(4πit)
d
2

? v0 ·

By Young’s inequality, it follows the fundamental dispersion property

‖v(t, ·)‖L∞(Rd) ≤
1

|4πt|
d
2

‖v0‖L1(Rd) ·

This technique of explicit representation of solutions can be adapted to all linear evolution
equation with constant coefficients. However, it is not always straightforward to deduce
the dispersion effects. In fact, for example, to establish dispersive estimations for the wave
equation in Rd requires more elaborate techniques involving oscillating integrals, which
necessitate an hypothesis of spectral localization in a annulus of Cauchy data.

The analysis of dispersion, a central problem in linear wave mechanics, provides a fra-
mework of formidable effectiveness for solving and analyzing nonlinear dispersive partial
differential equations. It is thanks to the remarkable work of Robert Strichartz [?], in the
late 1970s, that we have been able to transcribe dispersion phenomena, which correspond
to a pointwise inequality, into robust inequalities. The idea of these estimates, known as
Strichartz estimates, is to pass from a pointwise in time decay estimate to a spatial inte-
grability gain after an appropriate time average. These Strichartz estimates, which have
known a big boom these last few years, go along with the Littlewood-Paley theory : they
can be expressed equally in Lebesgue spaces and in Besov spaces which we will define
next.

The Littlewood-Paley theory was introduced by John Edensor Littlewood and Raymond
Paley [?, ?] in the 1930s for the harmonic analysis of Lp spaces, but its systematic use in
the analysis of partial differential equations is more recent. In fact, the main breakthrough
of this theory was made after the seminal paper [?] by Jean-Michel Bony, in 1981, on
the paradifferential calculus that connects nonlinear functions and the Littlewood-Paley
decomposition.

The main idea of this theory consists in sampling the frequencies by means of a decom-
position of the frequency space in annulus of size 2j , thus allowing the decomposition of a
function into a sum of a countable number of regular functions whose Fourier transform
is supported in an annulus of size 2j :

(1) f =
∑
j∈Z

∆̇jf ,

where the homogeneous dyadic blocks of f , ∆̇jf, are defined by the filtering of f at
frequencies of order 2j . Observe that this so called homogeneous Littlewood-Paley de-
composition is valid modulo polynomials P . In fact, since the Fourier transform of every
polynomial is supported at the origin, the identity (??) cannot be applied to polynomials.
This restriction on the lower frequencies is overcome in the case of the inhomogeneous
Littlewood-Paley decomposition :

(2) f =
∑
j≥−1

∆jf ,
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where ∆jf := ∆̇jf for j varying in N and ∆−1f is an operator filtering the lower frequen-
cies, that is : it only preserves the frequencies in a ball centered at the origin.

The Littlewood-Paley decompositions (??) and (??) introduced above are obtained by
a decomposition in the space of frequencies arising from dyadic partitions of unity. More
precisely, if we are given a radial function χ belonging to D(B(0, 4/3)), identically equal
to 1 in B(0, 3/4), we have the following identities

χ+
∑
j≥0

ϕ(2−j ·) = 1 in Rd, and
∑
j∈Z

ϕ(2−j ·) = 1 in Rd \ {0} ,

where ϕ is the function defined by ϕ(ξ) = χ(ξ/2)− χ(ξ).

With this normalization ϕ is a radial function of D(C) where C is the annulus centered
at the origin with inner radius 3/4 and outer radius 8/3 and we define the homogeneous

dyadic blocks ∆̇j by 5

∆̇jf := ϕ(2−jD)f := F−1(ϕ(2−j ·)Ff) = 2jdh(2j ·) ? f with h = F−1ϕ

and the inhomogeneous dyadic blocks ∆j by ∆jf := ∆̇jf = 2jdh(2j ·) ? f if j ≥ 0 and

∆−1f := χ(D)f := F−1(χFf) = h̃ ? f , where h̃ = F−1χ .
In a similar way, we also introduce the low-frequency cut-off operators

Ṡjf :=
∑
k≤j−1

∆̇kf := F−1(χ(2−j ·)Ff) = 2jdh̃(2j ·) ? f for j ∈ Z and

Sjf :=
∑
k≤j−1

∆kf = 2jdh̃(2j ·) ? f for j ∈ N .

It is worth noticing that the dyadic blocks that are frequency cut-off operators are
convolution operators. This property, which is a trivial consequence of the fact that the
Fourier transform changes the convolution product to the pointwise product of functions,
plays a central role in the techniques arising from Littlewood-Paley theory. In particular,
all these operators act in the spaces Lp in a uniform way with respect to p and j.

For what follows, it is also important to underline that the properties of the supports
of the functions ϕ and χ give rise to quasi-orthogonal relations for the Littlewood-Paley
decomposition, namely

∆̇j∆̇k = 0 and ∆j∆k = 0 if |j − k| > 1 ,

which easily implies that

(3) ∀ξ ∈ Rd ,
1

2
≤ χ2(ξ) +

∑
j≥0

ϕ2(2−jξ) ≤ 1, and

(4) ∀ξ ∈ Rd \ {0} , 1

2
≤
∑
j∈Z

ϕ2(2−jξ) ≤ 1.

Littlewood-Paley analysis allows the exact characterization of the regularity of a func-
tion f in terms of the decay properties of its dyadic blocks with respect the summation

5. By F−1 we denote the inverse Fourier transform in Rd and F(ϕ(2−jD)f)(ξ) = ϕ(2−jξ)f̂(ξ) which

shows that F(∆̇jf) is supported in the annulus 2jC.
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index j. We thus recover, in a more precise way, the idea already present in Fourier analysis
that space regularity is translated into frequency decay.

In particular, using the Fourier-Plancherel formula and the quasi-orthogonality proper-
ties (??)-(??), it is easy to observe that we can characterize a function f as an element

of L2(Rd) in terms of the sequence (‖∆̇jf‖L2(Rd))j∈Z in `2(Z), and the same for its in-
homogeneous dyadic blocks. More precisely, thanks to an elementary Hilbertian analysis
lemma, we can show the existence of a constant C such that we have

C−1
∑
j∈Z
‖∆̇jf‖2L2(Rd) ≤ ‖f‖

2
L2(Rd) ≤ C

∑
j∈Z
‖∆̇jf‖2L2(Rd),

and
C−1

∑
j≥−1

‖∆jf‖2L2(Rd) ≤ ‖f‖
2
L2(Rd) ≤ C

∑
j≥−1

‖∆jf‖2L2(Rd) .

Similarly, several classic norms can be written in terms of the Littlewood-Paley decom-
position. This is, for example, the case of the Sobolev and Hölder norms. In particular
the fact that some function belongs to some Sobolev (resp. Hölder) space is related with

properties of decay with respect to j of the L2 (resp. L∞) norm of ∆̇ju or ∆ju according
to whether they are homogeneous or nonhomogeneous spaces.

Let us recall that the nonhomogeneous Sobolev spaces Hs(Rd) that naturally show up
in a large number of Mathematical Physics problems are, in the case when s = m ∈ N,
the subspaces of functions f of L2(Rd) for which all derivatives (in the sense of distribu-
tions) of order smaller than or equal to m belong to L2(Rd). It is then clear, given the
quasi-orthogonality of the Littlewood-Paley decomposition and the action of the Fourier
transform on the derivatives, that the fact that a function is in Hm(Rd) is characterized
as follows :

‖f‖Hm(Rd) ∼ ‖(2jm ‖∆jf‖L2(Rd))‖`2(j≥−1) .
A similar equivalence holds in the case of homogeneous Sobolev spaces Ḣm(Rd) which are
more appropriate to study scale invariant problems such as the incomprehensible Navier-
Stokes system 6 and several variants of this system in meteorology and oceanography, or
nonlinear wave equations that we have studied in [?, ?, ?], and many other equations such
as those dealt with in [?, ?].

In general, to say that a function f belongs to Hs(Rd) means, roughly speaking, that f
has s derivatives (fractional derivatives if s is noninteger) in L2(Rd), and, as before, we
can prove that there exists a constant C such that

C−1
∑
j≥−1

22js ‖∆jf‖2L2(Rd) ≤ ‖f‖
2
Hs(Rd) ≤ C

∑
j≥−1

22js ‖∆jf‖2L2(Rd) .

This heuristic idea can also be applied to the homogeneous Sobolev norms, giving rise to
the following correspondence in the setting of the Littlewood-Paley theory :

C−1
∑
j∈Z

22js ‖∆̇jf‖2L2(Rd) ≤ ‖f‖
2
Ḣs(Rd) ≤ C

∑
j∈Z

22js ‖∆̇jf‖2L2(Rd) .

In examining these inequalities we observe that three parameters play a role : the
regularity parameter s, the exponent of the Lebesgue norm used to measure the dyadic

6. Recall that for the incomprehensible Navier-Stokes system the question of eventual creation of sin-
gularities after a finite time is one of the Millenium problems proposed by the Clay Mathematics Institute.
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blocks ∆̇jf or ∆jf , and the type of sum preformed, either over Z or for j ≥ −1. This
observation allows, more generally, to efficiently characterize the norms of homogeneous
or nonhomogeneous Besov spaces, respectively Ḃs

p,r(Rd) and Bs
p,r(Rd). The norms of these

spaces, which can be defined in terms of finite differences or using the heat kernel (as we can
see, for example, in [?, ?]) can be expressed in terms of Littlewood-Paley decompositions 7 :

‖f‖Bsp,r(Rd) ∼
( ∑
j≥−1

2rjs ‖∆jf‖rLp(Rd)
) 1
r
,

and

‖f‖Ḃsp,r(Rd) ∼
(∑
j∈Z

2rjs ‖∆̇jf‖rLp(Rd)
) 1
r
.

Even if scale invariant, the homogeneous Sobolev spaces (and more generally the homo-
geneous Besov spaces) have to be manipulated with care since, as was mentioned above,
the homogeneous Littlewood-Paley decomposition (??) is only defined modulo polyno-
mials of arbitrary degree. There is no consensus about the definition of these spaces. In
certain references, such as [?], they are defined modulo polynomials of arbitrary degree.
In others, such as [?], they are define subject to a condition on the low frequencies. This
condition requires limiting oneself to tempered distributions f satisfying (in the sense of
distributions)

‖Ṡjf‖L∞(Rd)
j→−∞−→ 0 .

The dyadic decompositions provide not only the possibility of characterizing a function
as an element of almost all the classical spaces (Hölder, Sobolev, Besov, Lebesgue, Triebel-
Lizorkin) by conditions concerning only its dyadic blocks, but they also allow to define a
plethora of functional spaces.

Littlewood-Paley decompositions and more simply the decomposition of functions into
low and high frequency components are techniques that have proved their usefulness in
the study of functional inequalities and in the analysis of nonlinear partial differential
equations.

Sobolev embeddings are among the most celebrated of all functional inequalities. They
provide key tools for the study of linear and nonlinear partial differential equations, in the
elliptic, parabolic, or hyperbolic framework. Sobolev inequalities express a strong integra-
bility or regularity property for a function f in terms of integrability properties of some
derivatives of f .

Among those inequalities, we can mention the Sobolev inequalities in Lebesgue spaces :

(5) Ḣs(Rd) ↪→ Lp(Rd) ,

with 0 ≤ s < d/2 and p = 2d/(d− 2s).

Let us observe that the value p = 2d/(d−2s) can be easily deduced using an homogeneity
argument. In fact, if for every function v defined in Rd and all λ > 0 we define a function vλ
by vλ(x) = v(λx), it is easy to verify that

‖vλ‖Lp(Rd) = λ
− d
p and ‖vλ‖Ḣs(Rd) = λs−

d
2 ‖vλ‖Ḣs(Rd) .

7. Observe that the Besov spaces are independent of the dyadic blocks ∆̇j and ∆j .
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Since both quantities ‖ · ‖Lp(Rd) and ‖ · ‖Ḣs(Rd) have the same homogeneity degree when

the Lebesgue index p = 2d/(d−2s) (which means that they behave in the same way under
a change of the unit of length), it is thus natural to compare them and we can assume in
what follows that ‖f‖Ḣs(Rd) = 1.

We know that for all real number p ≥ 1 and all measurable function f , we have, due to
Fubini’s theorem,

‖f‖p
Lp(Rd) = p

∫ ∞
0

λp−1µ
(
|f | > λ

)
dλ .

To establish the Sobolev embedding (??), we decompose f into low and high frequency
components in the following way :

f = f`,A + fh,A with f`,A = F−1(1B(0,A)f̂) .

Since the support of the Fourier transform of f`,A is a compact set, the function f`,A
is bounded and, more precisely, by using the inversion formula and the Cauchy-Schwarz
inequality, we have

‖f`,A‖L∞(Rd) ≤ (2π)−d‖f̂`,A‖L1(Rd)

≤ (2π)−d
∫
Rd
|ξ|s|ξ|−s|f̂`,A(ξ)| dξ

≤ CsA
d
2
−s ‖f‖Ḣs(Rd) .

Now, the triangle inequality implies, for all A > 0,(
|f | > λ

)
⊂
(
|f`,A| > λ/2

)
∪
(
|fh,A| > λ/2

)
·

Consequently, by choosing

A = Aλ
def
=
( λ

4Cs

) p
d ,

we deduce that

‖f‖p
Lp(Rd) ≤ p

∫ ∞
0

λp−1µ
(
|fh,Aλ | > λ/2

)
dλ .

Since, by the Bienaymé-Tchebychev inequality,

µ
(
|fh,Aλ | > λ/2

)
≤ 4
‖fh,Aλ‖2L2(Rd)

λ2
,

we obtain

‖f‖p
Lp(Rd) ≤ 4p

∫ ∞
0

λp−3‖fh,Aλ‖
2
L2(Rd) dλ .

Finally, by the Fourier-Plancherel identity,

‖fh,Aλ‖
2
L2(Rd) = (2π)−d

∫
(|ξ|≥Aλ)

|f̂(ξ)|2 dξ ,

which implies, due to Fubini’s theorem, that for all p > 2

‖f‖p
Lp(Rd) ≤ 4p (2π)−d

∫
Rd

(∫ 4Cs|ξ|
d
p

0
λp−3dλ

)
|f̂(ξ)|2 dξ

≤ Cp

∫
Rd
|ξ|

d(p−2)
p |f̂(ξ)|2 dξ ,
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where Cp = (2π)−d 4p
p−2 (4Cs)

p−2. Since s = d
(1

2
− 1

p

)
, this concludes the proof of the

Sobolev embedding.

The proof presented above is borrowed from [?]. We have other previous proofs of
this estimate, namely one based on the Hardy-Littlewood-Sobolev inequality, which is for
instance presented in [?]. We should note that the arguments of the above proof have
inspired a number of other works, among them we can point out the paper [?] where
the authors considered Sobolev embeddings in the Lorentz spaces Lp,q. Recall that the
Lorentz spaces 8 were introduced in the 1950s by Lorentz so that Lp,∞ are the weak spaces
introduced by Marcinkiewicz in the 1930s, and Lp,p are the usual Lebesgue spaces Lp.

This technique of decomposition into low and high frequencies was also relevant for the
study of nonlinear partial differential equations, namely to establish that some Cauchy
problems are globally well posed. Among these works we can refer to the article of Fujita-
Kato [?] on the Navier-Stokes equations. In this type of approach, the idea is to decompose

the Cauchy data (assumed here, for simplicity, in some Sobolev space Ḣs) into low and

high frequencies in such a way that the high frequency part has rather small norm in Ḣs.
If we have a global existence theorem for small initial data, then this high frequency part
will give rise to a global solution to the problem, whereas the low frequency part (that
will be regular) will satisfy a modified equation, and all we need to do is to prove that we
can solve this perturbed equation.

The Sobolev embedding (??) is invariant by translation and scaling, but it is not inva-
riant by oscillations, that is, by multiplication by oscillating functions, namely by those of

the type uε(x) = ei
(x|ω)
ε ϕ(x), where ω is a unit vector of Rd, and ϕ is a function in S(Rd).

Revisiting the proof of the Sobolev embedding presented above we can establish the fol-
lowing inequality due to Gérard-Meyer-Oru [?] :

(6) ‖u‖Lp(Rd) ≤
C

(p− 2)
1
p

‖u‖
1− 2

p

Ḃ
s− d2∞,∞(Rd)

‖u‖
2
p

Ḣs(Rd)
·

This Sobolev inequality is sharp, as the oscillatory example uε(x) = ei
(x|ω)
ε ϕ(x) shows.

Many other examples show the optimality of the estimate (??), in particular a fractal
example constructed in [?], supported in a Cantor type set, and the example of the chirp
signal :

f(x) = x−α sin
(1

x

)
, α > 0 ,

investigated in [?].

The refined estimate (??) is one of the key arguments in [?] where Patrick Gérard gave
a characterization of the defect of compactness of the critical Sobolev embedding (??) by
means of profile decompositions 9. We recall that the study of the defect of compactness
of Sobolev embeddings of functional spaces, which goes back to the seminal works of
Pierre-Louis Lions [?, ?], provides a useful tool in the study of geometric problems and
the understanding of the behavior of solutions to nonlinear partial differential equations.

Nonlinear analysis progressed substantially in the last decades due to profile decomposi-
tion techniques. This type of decomposition has been generalized, by different approaches,

8. For more details see [?, ?] .
9. Profile decompositions originate in the work of Brézis-Coron [?].
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to other functional settings. In particular, we can point out the recent works [?, ?] about
the description of the defect of compactness of the critical Sobolev embedding of H1(R2)
in L(R2), where L(R2), the so called Orlicz space 10, is the space of measurable func-
tions u : R2 → C for which there exists a real number λ > 0 such that∫

R2

(
e
|u(x)|2

λ2 − 1
)

dx <∞ ,

as well as its generalization to higher dimensions in [?]. This Sobolev embedding, which
is based on the Trudinger-Moser inequalities, deal with the limiting case of the Sobolev
embedding (??) and intervenes in numerous geometrical and physical problems, namely
in the propagation of laser beams in different media. The study of this embedding is done
in [?] by Fourier analysis arguments that highlight the fact that the elements responsible
for the lack of compactness are, in this case and in contradistinction to the case of the
Sobolev embedding (??), spread over the frequencies.

It is also noteworthy that an approach started by Stéphane Jaffard in [?] has allowed
the extension of Patrick Gérard’s result in [?] to the setting of the Triebel-Lizorkin spaces
and has inspired the abstract analysis in [?]. This approach was based on the theory of
wavelets, which, for its part, was inspired by the Littlewood-Paley, and will be discuss
later.

As was referred to above, the second Bernstein inequality must be understood as a
Sobolev embedding. In fact, it is easy to deduce from this second inequality that for all
real numbers s, and for all 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, we have

(7) Ḃs
p1,r1(Rd) ↪→ Ḃ

s−d( 1
p1
− 1
p2

)

p2,r2 (Rd) ,

and analogously for the nonhomogeneous case.

Observe that these Sobolev embeddings are strict, as is shown, in the particular case
of the Sobolev embedding Ḣs(Rd) ↪→ Ḃs

2,∞(Rd), by the following example based on the

idea of lacunar series. Given a function χ of S(Rd) whose Fourier transform is supported
in a small ball centered at 0 with radius ε0, and given a vector ω ∈ Rd with Euclidean
norm 3/2, we consider the sequence of functions (fn)n∈N defined by

fn(x) =
√
n
∑
j≥n

2−js
1

j + 1
ei2

j(x|ω)χ(x).

It is easy to observe that ∆̇jfn = 0 if j ≤ n− 1 and

(∆̇jfn)(x) =

√
n 2−js

j + 1
ei2

j(x|ω)χ(x) if j ≥ n .

By an elementary computation, we conclude that

‖fn‖2Ḣs(Rd) ∼ n
∑
j≥n

1

(j + 1)2
∼ 1 and ‖fn‖Ḃs2,∞(Rd) .

1√
n

,

which clearly shows the strict inclusion of Ḣs(Rd) into Ḃs
2,∞(Rd).

10. For an introduction to Orlicz spaces see [?, ?].
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The techniques arising from the Littlewood-Paley theory allow also the analysis of the
product of two tempered distributions (if it exists) by means of J.-M. Bony’s paradiffe-
rential calculus. It does so in the following way : given two tempered distributions u and
v, we write

u =
∑
p

∆pu and v =
∑
q

∆qv .

Formally, if the product exists it is written as

uv =
∑
p,q

∆pu∆qv .

The idea consists in decomposing the product uv into three parts : a first one with terms
where the frequencies of u are large compared with those of v, a second one with terms
where the frequencies of v are large compared with those of u, and a third one for which
the frequencies of u and v have comparable sizes. This leads to the following definition,
first introduced by Jean-Michel Bony in [?] : we write

uv = Tuv + Tvu+R(u, v) with

Tuv
def
=

∑
p≤q−2

∆pu∆qv =
∑
q

Sq−1u∆qv and

R(u, v)
def
=

∑
|q−p|≤1

∆qu∆pv .

This so called Jean-Michel Bony’s decomposition is fundamental in the study of product
laws as well as in the study of nonlinear partial differential equations. Clearly, it admits an
homogeneous version. Let us recall that the bilinear operator Tuv is called the paraproduct
of v by u whereas the symmetric bilinear operator R(u, v) is called the remainder.

From the detailed study of the way the paraproduct and the remainder act on Sobolev,
Hölder, and, more generally, Besov spaces, one can identify some principles :

— For two compactly supported distributions, the paraproduct is always defined, and
the regularity of Tuv is determined, mainly, by the regularity of v.

— In the other hand, the remainder is not always defined, but when it is the regularities
of u and v add up to determine its regularity.

Jean-Michel Bony’s paradifferential calculus has proven to be very effective in the study
of evolution equations, which describe the behaviour of a physical phenomenon dependent
of time. This method’s relevance will be illustrated by presenting a method of microlocal
decomposition we have introduced in [?, ?], in collaboration with Jean-Yves Chemin (see
also [?, ?]), for the study of quasilinear wave equations of the type

(E)

{
∂2t u−∆u− ∂(G(u)∂u) = Q(∇u,∇u)

(u, ∂tu)|t=0 = (u0, u1)

with
∂(G∂u) =

∑
1≤j,k≤d

∂j(G
j,k∂ku),

where Q is a quadratic form on R1+d ; and G is a C∞ function vanishing on 0, which,
together with all its derivatives is bounded from R into the space of symmetric matrices
on Rd, and takes its values in a compact set K such that Id + K is included in the cone
of symmetric positive definite matrices.
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By the classical theory of strictly hyperbolic equations, 11 we can solve such equation
with Cauchy data (u0, u1) in the space Ḣs(Rd)×Ḣs−1(Rd) for s > d

2 +1. Notwithstanding,
it is important to think about the scale invariance of such equation. It is immediate to check
that if u is a solution of equation (E), then the function uλ defined by uλ(t, x) = u(λt, λx)
is also a solution of (E). A large number of works have been concerned to solving nonlinear
wave equations, by trying to decrease as far as possible the index of minimal regularity of
the initial data towards a space of initial data invariant by the above change of scale, for

instance in the space Ḣ
d
2 .

The goal here is to solve equation (E) for less regular Cauchy data than what is required
by energy methods. This approach fits in Christodoulou-Klainerman programme for gene-
ral relativity, which also includes works by Klainerman, Bourgain, Tao and their schools.
To get closer to scale invariant spaces for the initial data, it is obvious that we need to
use the specific properties of the wave equation, namely the dispersion effects referred to
above. This necessitates the proof of Strichartz type inequalities for that equation that
we can interpret as a wave equation with variable and rough coefficients. It is the alliance
of geometric optics and harmonic analysis through the paradifferential calculus of Jean-
Michel Bony that allows to establish these estimates, to improve the minimal regularity
index, and to give an answer to a longtime open question.

As stated above, Strichartz estimates are obtained from dispersive phenomena coupled
with an abstract functional argument known as TT ∗-argument, developed by Ginibre
and Velo in [?], and generalized by Keel and Tao in [?]. As also pointed out previously,
dispersive phenomena are obtained for the wave equations with constant coefficients by
applying a stationary phase argument on an explicit representation of the solution. The
variable coefficients case needs more attention since in this case we do not have an explicit
representation, and we recur to geometric optics methods involving Hamilton-Jacobi and
transport equations to approximate the solution. When the coefficients are rough, as, for
example, in the quasilinear case, such approach does not work since the Hamilton-Jacobi
equation produces singularities. It is the Littlewood-Paley theory that allow us to overcome
this difficulty.

In fact, to perform such method in this framework requires a regularization of the coeffi-
cients. More precisely, using Bony’s paradifferential calculus, we are left with the study of
the part of the solution related with frequencies of size 2j which satisfies a wave equation
with regular coefficients. By a classical method, we construct a microlocal approximation
of the solution to this equation, that is valid in a time interval whose size depends on
the frequency and that allows to establish a microlocal Strichartz estimate. In fact, it
seems impossible to construct a local approximation of the solution since the associated
Hamilton-Jacobi equation generates singularities at a time related to the frequency : this
is due to the fact that these regular coefficients keep memory of the original regularity of
the solution. The local Strichartz estimate is obtained (with some loss) by decomposing
the interval [0, T ] into intervals where the microlocal Strichartz estimate is satisfied.

The applications of the Littlewood-Paley theory, and particularly of the paradifferential
calculus, are manifold and we cannot enumerate all of them here. For a wider range of
perspectives, wether in the study of functional inequalities or the analysis of solutions to
nonlinear partial differential equations arising in fluid mechanics or general relativity, we
refer the reader to the monograph [?].

11. See, for instance, chapter 4 of [?].



12 H. BAHOURI

The Littlewood-Paley theory has inspired the wavelet theory which is at the origin of
numerous progresses in various applied disciplines, such as signal and image processing
techniques. We can illustrate wavelet theory in a simple setting by considering Haar’s
system introduced at the beginning of the 1920s by Alfred Haar in his PhD thesis. This
system is defined by the functions

ψj,k(x) = 2
j
2ψ(2jx− k), j, k ∈ Z,

where the generating wavelet
ψ = χ[0, 1

2
[ − χ[ 1

2
,1]

is the piecewise constant function equal to 1 in [0, 12 [ and −1 in [1/2, 1[. This system consti-

tutes an orthonormal basis of L2(R) and, thus, it is straightforward that all functions f
of L2(R) can be decomposed as follows :

(8) f =
∑
j,k∈Z
〈f, ψj,k〉ψj,k ,

where 〈f, ψj,k〉 denotes the scalar product of f and ψj,k in L2(R). In the wavelet decom-

position (??), the homogeneous dyadic blocs ∆̇jf are replaced by the projections

Pjf =
∑
k∈Z
〈f, ψj,k〉ψj,k ,

where the index k provides an additional level of discretization.

The main drawback of Haar’s system is its lack of regularity, since the mother wavelet ψ
is not continuous. Other, more regular, wavelet basis have been constructed alter on, which
allow to get decompositions in wavelets similar to (??), often taking into consideration
the scaling of the space in question.

As in the Littlewood-Paley decompositions, we can characterize the belonging of a
function to almost all classical functional spaces by conditions pertaining only to the
absolute values of the coefficients of the function in a basis of unconditional normalized
wavelets 12.

For example, in the Besov space Ḃs
p,p(Rd), 1 ≤ p < ∞ and s <

d

p
, the wavelet decom-

position of a function takes the form :

(9) f =
∑
λ∈∇

dλψλ,

where λ = (j, k) includes the scale index j = j(λ) and the space index k = k(λ), and

ψλ = ψj,k = 2jrψ(2j · −k), j ∈ Z, k ∈ Zd,

where ψ is the mother wavelet, and r =
d

p
− s · The wavelet theory allows to characterize

the belonging to Ḃs
p,p(Rd) in terms of the coefficients in the above wavelet decomposition

as follows :

(10) ‖f‖Ḃsp,p(Rd) ∼ ‖(dλ)λ∈∇‖`p .

The possibility of characterizing the regularity of a function by the size of its wavelet
coefficients is at the heart of the extensive applications of wavelet theory. In particular,

12. For more details consult [?, ?, ?].
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we can translate the equivalence (??) by the decrease of the wavelet coefficients, with the
exception of a small number of them. This property of concentration of information in
a small number of coefficients, often called parsimony or sparsity, plays a crucial role in
image processing. In this type of essentially nonlinear process, it is clear that the set of
remaining coefficients depend on the function we are approaching. A general theory for
the study of these phenomena, known as nonlinear approximation theory, was started by
Ronald DeVore in the 1980s.

A first result in nonlinear approximation theory is the representation of a function by
its N most significant coefficients. More precisely, given an element f of Ḃs

p,p(Rd) admitting
a decomposition given by (??) in the wavelet basis (ψλ)λ∈∇, the goal is to keep only the
nonlinear projection QNf defined by

QNf =
∑
λ∈EN

dλψλ,

where EN = EN (f) is the subset of ∇ with cardinal N , which corresponds to the N largest
wavelet coefficients |dλ|.

Among the many applications of the nonlinear projection QNf , we can refer to the
following estimate :

(11) sup
‖f‖

Ḃsp,p(Rd)
≤1
‖f −QNf‖Ḃtq,q(Rd) ≤ CN

− s−t
d ,

that has played a key role in [?], in the study of the lack of compactness of the critical
Sobolev embedding

Ḃs
p,p(Rd) ↪→ Ḃt

q,q(Rd) ,

with 0 <
1

p
− 1

q
=
s− t
d
·

In fact, given a function f of Ḃs
p,p(Rd) we obtain, from (??) and using (dm)m>0, the

decreasing rearrangment of |dλ|

‖f −QNf‖Ḃtq,q(Rd) ∼
( ∑
λ/∈EN

|dλ|q
)1/q

=
( ∑
m>N

|dm|q
)1/q

≤ |dN |1−p/q
( ∑
m>N

|dm|p
)1/q

≤
(
N−1

N∑
m=1

|dm|p
)1/p−1/q( ∑

m>N

|dm|p
)1/q

≤ N−(1/p−1/q)
(∑
m>0

|dm|p
)1/p

≤ N−
s−t
d ‖(dλ)λ∈∇‖`p ∼ N−

s−t
d ‖f‖Ḃsp,p(Rd).

The success of wavelet theory either in signal and image processing, or in the field of
numerical simulations of partial differential equations is now well established. For a general
survey of applications of this theory, one can consult the monograph [?] and the references
therein.
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The Littlewood-Paley theory is considered the simplest tool of microlocal analysis. We
can see microlocal analysis as the study of functions by the decomposition of the phase
space, that is the space of (x, ξ). In a general way, this process consists in localizing in
physical space x then in the Fourier variable ξ, which corresponds to the localization
in a ball for a metric of T ?Rd (the cotangent space of Rd) : it is the Weyl-Hörmander
calculus 13. The interest of this type of process, introduced in the 1970s, is to allow the
analysis of fine properties of functions defined in the physical space by operating in the
phase space, where the number of variables has doubled. This turned out to be particularly
useful in the study of nonlinear partial differential equations namely, for instance, to take
into consideration certain geometric specificities.

The whole issue of the Weyl-Hörmander calculus consists in the use of reasonable metrics
(the so called Hörmander metrics) in order to localize in phase space. As an example, the
procedure of localizing in the variable x in an Euclidean ball with size α, and afterward

in the Fourier variable in a ball of radius α(1 + |ξ0|2)
1
2 is equivalent to localize in a ball

for the following metric, the so called (1, 0) metric :

g(x,ξ)(dx
2, dξ2) = dx2 +

dξ2

1 + |ξ|2
·

The so called Weyl-Hörmander calculus, which achieved its present day formalism at the
end of the 1970s in the works of L. Hörmander, generalizes this metric. In fact, it consists
in the description of reasonable ways to decompose the phase space. These decompositions
are chosen according to the nature and the geometry of the problem under consideration.
The admissible decompositions are those whose construction is based on Hörmander’s
metrics, which are functions g of T ?Rd with its standard sympletic structure in the set of
positive definite quadratic forms in T ?Rd satisfying :

— a so called slowness assumption stating that the metric does not change much on its
own balls, and this in a uniform way ;

— an uncertainty principle hypothesis that prevents too much localization. In parti-
cular, the uncertainty principle imposes that the volume of a gX ball of radius 1 is
larger than or equal to the volume of the Euclidean ball of radius 1 ;

— and finally, a so called temperance hypothesis that reflects the fact that we can
estimate the ratio of metrics in arbitrary points by the dual metric.
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[33] Y. Meyer, Ondelettes et opérateurs. II, Hermann, 1990.
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