N
N

N

HAL

open science

Discriminating Unknown Software Using Distance Model

Yassine Lemmou, Hélene Le Bouder, Jean-Louis Lanet

» To cite this version:

Yassine Lemmou, Hélene Le Bouder, Jean-Louis Lanet.
Distance Model. ICACSIS 2019: 11th International Conference on Advanced Computer Science

and Information Systems, Oct 2019, Bali, Indonesia. 10.1109/ICACSIS47736.2019.8979970 .

02352861

HAL Id: hal-02352861
https://hal.science/hal-02352861
Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Discriminating Unknown Software Using

https://hal.science/hal-02352861
https://hal.archives-ouvertes.fr

Discriminating Unknown Software Using Distance
Model

Yassine Lemmou
LABMIA
University Mohammed V
Avenue Ibn Batoufa, Rabat, Morocco
yassine.lemmou @gmail.com

Abstract—Crypto-ransomware is a class of malware that en-
crypt their victim’s data and only return the decryption key in
exchange for a ransom. In a previous work, we have yet designed
a solution able to detect any ciphering of files using statistical
estimator. Once detected, a pop up requests the user to verify if
that operation is allowed on not. To improve our tool, automation
is needed. In this paper, an anomaly detection mechanism to
determine if a suspected group of threads is an authorized
cryptographic software or a malicious code is presented. The
effectiveness of our solution to correctly distinguish between
valid programs and ransomware is evaluated using a string
analysis. The t £-idf metric is used to choose the most pertinent
features. The distance of a candidate software with a vector
representing the allowed cryptographic software is measured. If
the distance exceeds a threshold, the suspected process is flagged
as a ransomware. We have evaluated our approach with the
samples provided by open databases and executed on our bare
metal platform.

Index Terms—Ransomware, Machine Learning, Anomaly De-
tection, String analysis, TF-IDF metric

I. INTRODUCTION

Ransomware are still one of the most dangerous security
threats on the Internet. The growing number of ransomware
attacks resulted in an increased concern on existent defense
mechanisms. These malware share a similar objective: to
render your data unavailable using encryption until you pay a
ransom. It is of a prime importance to detect rapidly such an at-
tack to restrain file losses if no prior detection was achievable.
Current detection mechanisms rely on limiting this number
of lost files. Immediately after the start of the encryption,
they block any process that has similar behavior/features of a
ransomware (Application Programming Interface (API) calls,
registry keys, embedded strings in binaries...). Our solution
does not rely on these features but only on data transformation.
Thus leading to a solution independant of the code able to
detect any new threat. A difficulty results in an approximate
decision procedure with issues related with False Positive (FP)
when a legitimate process is considered as a ransomware,
and False Negative (FN) when a ransomware is detected as
legitimate software. We have to rely on approximative decision
procedures with False Positive (FP) and False Negative (FN)
issues.

This paper improves our first countermeasure presented
in [1], which targets crypto-ransomware. The main idea is

Hélene Le-Bouder
IMT-Atlantique
2 Rue de la Chataigneraie,
35510 Cesson Cevigne, France
helene.le-bouder @imt-atlantique.fr

Jean-Louis Lanet
LHS INRIA-RBA
263 Avenue Gnral Leclerc,
35000 Rennes, France
jean-louis.lanet@inria.fr

that encrypted data is indistinguishable from perfectly random
data. That is why our previous solution is implemented as a
file system mini-filter driver. Statistical tool to detect random
data are used.

We evaluate dynamically the entropy of a file with a Khi
square statistical estimator or a divergence to a Markov
chain’s model while writing in the output buffer which
represents our primary indicator. Once the driver detects a
suspicious behavior, it blocks the process’ threads and it
performs a memory snapshot. It consists into the memory
allocated to a process that is copied in another memory
region not accessible to the suspected thread. Then, a pop-up
warns the user of the suspected behavior. To automate
this last feature, we need to distinguish between legitimate
cryptographic applications (browser, backup, compressor etc.)
and a ransomware which generates FP issues. The issue with
an Al based solution remains FP and FN that have to be
minimized. Currently, the driver performs well in term of FN
(only 2 ransomware bypass the statistical test) but not with
FP. We need to add a new detector, based on other features.
The idea is to use the memory snapshot to check whether the
suspected file is malicious or benign modeling the allowed
software and then considering any deviation to this model as
a threat.

The aim of this paper is to demonstrate that these snapshots
can be used to extract relevant information such that we can
classify the suspected thread. The driver transforms the mem-
ory snapshot into a binary vector that marks the presence or
the absence of specific strings. Then, it verifies if the memory
snapshot corresponds to the allowed cryptographic tools. It
uses a similarity metric by measuring the cosine distance
between the suspected snapshot and a model representing
all the allowed cryptographic applications on that particular
device. If the distance is close to one, the system releases the
locks and lets the process carry on. If it is below a threshold,
the system kills the threads and backup all the modified files.

The paper is organized as follows. The section II presents
the context of the ransomware phenomenon and the state
of the art of the countermeasure. In section III, the specific
and technical context of our works is detailed. The new tool
is presented in section IV. Experimental are described in

section V. Finally, the conclusion is drawn in section VI.

II. RANSOMWARE STORY
A. The ransomware threat

The first occurrence of a ransomware was in 1989 [2]. The
pandemic began in 2012, when the number of ransomware vic-
tims has increased significantly. The crypto-currency made the
success of these malware such as bitcoin, for the trade which
is nearly impossible to trace. The ransomware business model
works, people pay, and thus conducts to an augmentation of
266 percent of the average ransom compared to a year ago (i.e.,
1077$) [3]. Ransomware as a service is growing, the Cerber
authors hold an affiliate program and get back money for each
franchised infection when the victim pay [4]. Indeed, it is
only the beginnings of the ransomware surge. The worldwide
wannaCry attack emerged by exploiting the MS17-010 flaw.
A ransomware attack can be split in separated step. The vectors
for ransomware infection are classical : trapped e-mail, or usb-
key

Generation of symmetric keys: Generally a ransomware
uses symmetric encryption as AES to encrypt data. First step
is to generate symmetric keys, with a random generator. One
symmetric key is associated at one victim’s file.

Then a public key is used to encrypt symmetric keys.
Sometime the public key is embedded with the code.

Foot-printing the target: The ransomware checks if the
system has not already been encrypted, search for files to be
encrypted. It needs to perform a complete file traversal, they
mostly use Windows API to find attached removable devices,
and browse the file system. The ransomware browses files to
find specific victims (.doc, .xls, .jpg, .pdf, .mp3)

Encryption of data: A ransomware encrypts files with
a symmetric cipher. The secret key is ciphered using the
public key and is added to the file. Some ransomware use the
crypto API of Windows while others use their own embedded
cryptography.

Ransom note: A ransom note is displayed to explain how
to pay to the victim. This marker must be significantly visible
being part of the business model. Finally if the victim agrees to
pay, the ransomware rescue the files by handing the symmetric
keys. In practice, it is often the case but sometimes the attacker
do not restore data.

The dangerous behavior is of course the third one, all the
other behaviors can be used to confirm or infirm the result of
the countermeasure or as an early warning.

B. State of the art of the countermeasures

One of the most used technique is signature-based method.
It is a sequence of information that characterizes each known
malware. The detection is generally a two-step process: feature
extraction and classification/clustering. In the first step, various
features such as API calls, binary strings, and program n-
gram are extracted statically and/or dynamically to capture
the characteristics of the file samples. In the second step,
techniques such as classification or clustering are used to au-
tomatically categorize file samples into different classes based

on the analysis of the feature representations. These data-
mining-based malware detectors mainly differ on the feature
representation and the employed data mining techniques. The
features can be Windows API calls [S], byte n-grams [6],
strings [7], instructions [8], and control flow graphs [9].

The authors of [5] apply data mining methods on a dataset
of malicious executables where a set of Windows and MS-
DOS format executables are utilized. They used strings and
2-byte sequences as features. They obtained very high recall
and precision with 5-Fold Cross Validation on a dataset of 4
266 Windows executables (3 265 known malicious binaries
and 1 001 benign). A rule induction algorithm Ripper [10]
was applied to discover patterns based on DLL calls dataset.
The authors conclude that malware detection rate using data
mining method was twice of the signature-based method on
their data collection.

In [8] the authors develop a system for Android where
they extracted all the strings from the disassembled files of
Android binaries. They transform the text into vectors using
the TF-IDF weighting schema. No indication is given on the
size of the vector. Then, they compute the distance between
the file under investigation and a vector representing benign
software.

Simply creating signatures using the call frequency does
not allow them to detect malware in polymorphic or unknown
form. It can be also evaded by malware authors’ by inserting
redundant API calls. Several authors use sequences of system
calls, API calls and function calls of malware to detect
malicious behaviors. In [11], they use sequence of function
calls to represent program behavior.

All these works try to identify a malware by searching a
set of strings to flag it as hostile knowing a set of signatures.
We do not rely on string analysis to flag it as hostile, we rely
on data modification for that. We use string analysis only to
eradicate the false positive. The model of the strings does not
use the binary code of the malware but on the binary of the
authorized encrypting software.

ITII. CONTEXT
A. The bare metal evaluation platform

An automated analysis platform called MoM (Malware O
Matic) has been designed. It does not use a virtual machine
but it maintains all the main features of a regular analysis
framework. Such a fully bare-metal platform is built on top
of two open source software, Clonezilla [12] and Viper [13],
which makes it reusable. The platform is made of a master
server and several slaves. Each slave runs the analysis loop in
parallel. The whole system is on a dedicated network under
the supervision of the master server and directly connected
to the Internet, to emulate a typical home network. The
malware database and the result of the analyses are stored on a
Network Attached Storage (NAS). MoM grabs automatically
new sample of ransomware from public repositories. Then,
these samples are classified and for those that are alive (they
have all the conditions to be executed) we evaluate our run
time analyses. A bare metal platform is preferred to the

solutions based on virtualization in order to avoid well known
evasion techniques. It exists numerous techniques used by the
malware to fingerprint well-known sandboxes (e.g., Cuckoo
Sandbox [14]). If a sandbox is detected, they can evade them
avoiding to deploy the payload.

The analysis loop configures the monitoring environment,
executes the malware, gathers the results and performs a clean
up of the system. In the first step, the slave downloads a script
from the master, a set of instructions on how to conduct the
next analysis. Once the procedure is completed, the slave sets
its next environment and reboots for cleanup. The clean-up
process consists in flashing a clean disk image into the slave’s
drive. Windows 10 and Seven, 32-bit or 64 bit disk image
are used as the operating system to be infected. The user
is logged in as administrator with the User Account Control
(UAC) disabled. Each run is fifteen minutes long. After that
period, if the ransomware did not deploy its payload, it is
tagged as inactive and removed of the data base. Else, several
data are collected for signature extraction, run time detection
evaluation and for post mortem analysis.

We have included into the Windows images our mini-filter
such that after each execution we can add to our database
the memory snapshot. In the database, all the samples are
associated with their memory snapshot.

B. Preliminary works

This paper is an improvement of a first countermeasure
presented in [15]. The solution is implemented as a filter driver
which can inspect all the I/O operations that target the disks. It
does not matter that the requested operation be an I/O Request
Packet (IRP) or a FAST I/O. In this context, we are able to
monitor write, read operations, change directory and so on.
However, a clever usage of such functionalities have to be
done, otherwise a significant penalty occurs and the solution
can not be deployed in real world. We restrict our monitoring
on the write operations. Our solution has been extensively
tested on Windows 7 and 10, whatever the architecture 32
or 64-bit.

To detect a ransomware statistical tool are used. The de-
tector uses the property that the distribution of encrypted data
is similar to random data. This solution is based on the Khi
square which measures the frequency distribution. The chi-
square goodness-of-fit test is a test of distributional accuracy,
it measures how closely a set of numbers follows a particular
distribution. It is a non-parametric statistical test, meaning
that no assumption is done on the samples distribution. This
test can distinguish randomness (or encryption) from some
compression schemes and is the more relevant statistic distin-
guisher. This detector is particularly well suited to detect a
file encryption. But it is unable to distinguish an authorized
ciphering tool (OpenPGP) or compressor (WinZip) from a
ransomware, thus generating false positive.

IV. REDUCING THE FALSE POSITIVE

Once a thread has been detected to be suspicious, the driver
takes a memory snapshot related to the process to which the

thread belongs.

A. Strings and vectors

It uses a string analysis on the content of the memory
snapshot to reduce the FP. The strings represent the tokens
or the features in the different algorithms. Memory of a
suspected file is made of code, data and garbage. A binary
code calls functions belonging either on static or dynamic
libraries (DLL). The strings corresponding to these items
have to be present in memory while the code is running.
The use of a dynamic bare metal approach, avoids us two
problems: obfuscation and evasion. Memory is saved while the
payload has been deployed in memory (even if drop byte effect
can occur) and is active (ciphering has been detected). Each
program (benign or malicious) can be represented by either by
a boolean or an integer vector of the features. A boolean vector
of the features indicates the presence or not of the different
strings while an integer vector represents the raw count of the
strings. We choose to use the integer representation for the
vector ¢ of the candidate program.

To check if a suspicious memory is malicious or not,
we have to compare it with a model m representing a
set of authorized ciphering software. Such a list has to be
defined by the administrator of the device. He knows all
the software installed within each machine including the
ciphering software. For each software, the tool takes a memory
snapshot and extract the strings. This model has been build
with the allowed ciphering tools as challenger, cryle,
hamster, veracrypt, axcrypt, cryptoexpert,
master voyage, cryptoforge; archivers with cipher-
ing capabilities as peazip, 7zip, winzip, winrar
and a specific browser, Tor. Only intersection of all strings
are used to build the model.

B. Memory filtering

When a memory snapshot is analyzed, the first step consists
in removing useless information from the memory. A snapshot
contains thousand of strings. Some of them are just noise
(string with no semantics) as code section or previously
allocated but uncleaned memory.

The memory can include the following items:

« Noise, code section with character like instructions,

e Ransom info, e.g.194.132.208.167 3114
e09caa5d3f7664be5c812ea6f1425dfd467e8, to
address sukhonina.akilina@ gmail.com,

o Execution data: e.g.the string advapi32.dll

197
e-mail

This step consists in removing information that are useless
for the detection. Two elements are of importance: the loaded
DLL and the name of the functions called. To keep only the
strings with relevant meaning, a dictionary approach (white
list) is used. It reduces the number of strings by one order
of magnitude keeping only relevant information. An efficient
hash map structure is used for the dictionary. At that step, the
strings are only valid strings. We can build the vector ¢ count-
ing their raw value in the memory. We build c representing a
software in two parts: the DLL section and the function names

section. The DLL part is of a fixed length. It corresponds to
all the allowed software encountered at that time. We select
only a valuable part of the strings for the vector according to
the amount of information it represents.

C. Compute the best vector

The second step consists in reducing the size of the vector.
Reducing the vector is necessary because all the valid software
do not have the same number of strings. If we expect to
compare dynamically the vectors, we need to normalize its
size. For that purpose, we can apply Information Retrieval
(IR) techniques to select a subset of the strings in the vector.
The set of strings of a vector can now be considered as a
document and the set of valid application as a collection of
documents.

We use the tf£-idf weighting technique to choose the
relevant strings to be kept in the vector. The value associated
to each term has the following explanation:

« highest when the term occurs many times within a small
number of documents leading to a high discriminating
power;

¢ lower when the term occurs fewer times in a document,
or occurs in many documents;

e is the lowest when the term occurs in almost all docu-
ments.

To compute the t£-idf, we first compute for each term
of a document its tf. This value reflects the normalized
occurrence of the term in the document. We keep only as
useful information its frequency considering the order as
irrelevant. In that representation, each term (function calls of
the DLL) has the same importance. In fact, certain terms have
little or no discriminating power in determining relevance. For
example, the term EnableWindow which is present in the
DLL is useless for discriminating goodware and malware. We
compute the document frequency df defined to be the number
of documents N in the collection that contain a given term t
. Then, the inverse document frequency idf is computed as
the log(N/df;). We combine now these two metrics to build
the t£-idf value as the product of ¢f; g4 X idf;. Then, we
keep only a subset of variables (function name) to take part of
the vector of each authorized software. We observed that the
minimum value is 25 variables, a good trade-off is between
100 and 400 variables and keeping the variables over 500 does
not improve the results.

Any candidate ¢ and then be compared to each of these
vectors. We choose to use only one representation of these
vectors by computing the barycenter of these vectors. It forms
our model m of the allowed ciphering software.

D. Distance to the model

In this paragraph, the distance between a candidate vector
c (the suspicious one) and the model m is evaluated. The
vector ¢ can be seen has the distribution of the strings in
the memory. Various distance/similarity measures are available
in literature to compare two data distributions. To measure
the divergence, we evaluate two metrics, the euclidean and

the cosine distance. The euclidean distance (1) between each
element of the candidate vector ¢ and the model m is used,
assuming n being the size of the both vectors.

n
d(m,c) = Z (mi — ¢;)?)]
i=1
It is the ordinary distance between two points. The Eu-
clidean distance determines the root of square differences
between the coordinates of a pair of objects.
The cosine distance (2) is used too, even if at the end only
one metric will remain in the driver.

mc Z?:1 m;c;
cos(m, ¢) = = — — (2)
Imllllell />, mi2 /3o e

Setting up the vector consists in choosing the most inter-

esting features to discriminate then. The more element of the

vector we have the more precise the computation is but also

the most costly. We will discuss in the section V the trade off
we made.

V. EXPERIMENTAL RESULTS
A. Efficiency of the divergence model

In this paragraph, the evaluation of the ability of the model
to reject illegal ciphering software is presented. First the
minimum value of strings required for a good detection ratio
from 50 values to 500 is defined experimentally. TABLE 1
shows the different values for a candidate bitman. Reducing
the size of the vector reduces the time needed for dynamically
comparing the two vectors. The smaller they are, quicker the
on-line decision can be taken to kill or not the process.

All the allowed ciphering software are below 45 for the Eu-
clidean distance and above 0.92 for the Cosine distance (they
match the model). We setup the threshold of the Euclidean
distance to 50 and the cosine distance 0.85 with 400 features.
If a candidate reaches these thresholds, then it is labeled as
an allowed ciphering tool.

Euclidean | Cosine

50 44 .34
100 87 .36
150 131 .38
200 170 38
250 220 .34
300 268 32
350 318 .30
400 368 28
450 418 .26
500 468 .26

TABLE T

MEAN VALUE OF THE DISTANCES ACCORDING TO THE NUMBER OF
FEATURES

Several ransomware are used, samples of the following
families: bitman, cerberV1l, cerberv2, fsnyna,
telsacrypt, xorist, yakes, zerber, crysis,
ctblocker, gamarue, graphtor, locky, purge
and sage.

The results for a threshold of 400 strings are given in Table
2. There is clear separation between the class of allowed
ciphering tools and the ransomware.

Euclidean > 50 | Cosine <0.85
bitman 368 28
cerbervl 350 .35
cerberv2 2907 .06
fsnyna 341 .38
telsacrypt 368 28
xorist 376 24
yakes 365 .29
zerber 356 .33
crysis 399 .05
ctblocker 395 11
gamarue 361 31
graphtor 395 A1
locky 386 18
purge 376 24
sage 383 .20

TABLE I
DETECTION RATIO OF THE RANSOMWARE SET

If an allowed tool is upgraded to a new version, the model m
must be recomputed. We evaluate the impact of new versions
of the software and how it impacts the model. For this reason,
we integrate in the model the version 15.5 of winzip (the 32
bit version) and we check the behavior of the detector if a user
loads an upgraded version. We evaluated the versions: 16.5 (64
bits), 17.5 (64 bits) and 22.0 (64 bits). All of them have been
detected as valid programs with an Euclidean distance close
to 0 and a cosine close to 1.

B. Known Issues

The first issue is related to the false positives that this
solution can raise. We evaluate many other programs (Of-
fice Powerpoint, Word, Excel, DiskMark, Firefox, Python,
SearchIndexer, Open Office Calc...) and they would have been
classified as malware with a value below 0.5 for the Cosine
metric and over 350 for the Euclidean distance. But due to the
fact that they do not perform encryption, they are not suspected
by the primary indicator. This solution would not have been
suitable if the preliminary step was not executed first.

The second issue is related to the strength of the solution.
Any software can be able to bypass this indicator by inserting
strings in its code. If the model is stored in the kernel like in
our solution, then the attacker must guess the elements that
are part of the model. We have restricted the number to 755
common strings, but if we use also the loaded DLL we can
include much more common strings but at a higher cost for
on line decision. If the attacker can fingerprint the system in
a preliminary step, she knows the different installed software.
She has to add all the strings in a data section of his malware
to bypass the detector. Until now such a behavior has never
been detected but it can occur.

C. Global efficiency

For the global evaluation of our solution, i.e. the primary
indicator followed buy the string analysis, the following clas-
sical measures are used to evaluate its performance. The True

Positive Rate (7'P R) measure also called the sensitivity is the
rate of ransomware samples (i.e., positive instances) correctly
recognized:
TP
TPR= TP+ FN

with TP the number of applications correctly classified as
ransomware and F'N the number of applications misclassified
as benign software.

The False Positive Rate (F'PR) is the rate of authorized files
(i.e., negative instances) wrongly classified (i.e., misclassified
as ransomware samples):

FP
FPR= FN+TN ~
with F'P the number of valid applications incorrectly detected
as malicious and T'N the number of valid applications cor-
rectly classified. The Accuracy (AC'C) measure is the rate of
the correctly classified file instances, including both positive
and negative instances.

TP+TN

A =
ce TP+ FP+TN+FN

The input set of data consists in two subsets. A benign set,
which corresponds to a collection of intensive use of scientific
laptop during nine days containing around 110 000 threads. A
hostile set, which corresponds to the execution of ransomware
of different families (365 threads).

In the benign set, we can find threads related to the auto-
matic backup, the anti-virus solutions and some compressor
tools. TABLE 3 provides the result corresponding to the
detection using the first level indicator.

In the second column labeled Current work is the improve-
ment obtained with this work. This solution acts only on the

Metric | Previous solution III-B | Current work
TP 365 365
TN 103 180 103 180
FP 6820 0
FN 15 15
TPR 96.05% 96.05%
FPR 17.9 % 0%
ACC 93,79% 99.98%

TABLE TIT

METRICS RELATED TO THE SOLUTION

FPR by distinguishing the benign software that have been
detected as suspected threads. It has no effect on the TPR
metric. We consider that all the authorized software have
been included into the divergence model. If this is not the
case, I'P increases correspondingly. The policy of authorized
software must remain under the control of the administrator
which can raise problem with individuals who are not aware
of the dangerousness of software uploaded from unknown
sources. This can be a limit of this approach if the user is
the administrator.

VI. CONCLUSIONS

In this work, we develop an anomaly detection process
of suspected cryptographic activities in threads to replace a
human decision. We use a model for allowed cryptographic
applications having a subset of common features. We build
a model representing these allowed applications. We measure
the distance between a suspected thread and the model to allow
legitimate software to resume execution and to block the illegal
ones. We improve the original solution by reducing the F'P
rate but with no effect on the F'N. We mix several detectors,
which use different features, that measure different aspects of
an unknown software. The solution relies on a single probe
that records all the writing requests. Its impact on the system
is extremely low, the second indicator cost more but it is only
involved in case of suspicion. As a drawback, this mechanism
can be bypassed if the attacker can customize dynamically his
code after a fingerprinting step.

APPENDIX

The complete list of the ransomware tested is available
at the following address: people.rennes.inria.fr/
Aurelien.Palisse/ ml-labels.txt with their
MDS5. The list of allowed cyphering tools that have been used
to form the model: challenger, cryle, hamster,
veracrypt, axcrypt, cryptoexpert, master
voyage, cryptoforge; archivers with ciphering
capabilities as peazip, 7zip, winrar and
a specific browser, Tor.

winzip,

REFERENCES

[1]1 Aurelien Palisse, Antoine Durand, Helene Le Bouder, Colas Le Guernic,
and Jean-Louis Lanet. Data aware defense (dad): Towards a generic and
practical ransomware countermeasure. In Nordic Conference on Secure
IT Systems, pages 192208. Springer, 2017.

[2] Adam L. Young and Moti Yung. Cryptovirology: Extortion-based secu-
rity threats and countermeasures. In 1996 IEEE Symposium on Security
and Privacy, May 6-8, 1996, Oakland,CA, USA, pages 129140, 1996.

[3] Patrick Howell ONeill. Ransomware demands now average about 1,000
dollars because so many victims decide to pay up, April 2017.

[4] Malwarebytes. Cybercrime tactics and techniques. Technical report,
March 2017.

[5] [Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo.
Data mining methods for detection of new malicious executables. In
Security and Privacy, 2001. Proceedings. 2001 IEEE Symposium on,
pages 3849. IEEE, 2001.

[6] Mohammad M Masud, Latifur Khan, and Bhavani Thuraisingham. A
scalable multi-level feature extraction technique to detect malicious
executables. Information Systems Frontiers, 10(1):3345, 2008.

[7] Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and
Min Zhao. Sbmds: an interpretable string based malware detection
system using svm ensemble with bagging. Journal in computer virology,
5(4):283, 2009.

[8] Igor Santos, Felix Brezo, Javier Nieves, Yoseba K Penya, Borja Sanz,
Carlos Laorden, and Pablo G Bringas. Idea: Opcode-sequence-based
malware detection. In International Symposium on Engineering Secure
Software and Systems, pages 3543. Springer, 2010.

[9] Marius Gheorghescu. An automated virus classification system. In Virus

bulletin conference, volume 2005, pages 294300. Citeseer, 2005.

William W Cohen. Learning trees and rules with set-valued features. In

AAAI/TAAL Vol. 1, pages 709716, 1996.

Sean Peisert, Matt Bishop, Sidney Karin, and Keith Marzullo. Analysis

of computer intrusions using sequences of function calls. IEEE Trans-

actions on dependable and secure computing, 4(2):137150, 2007.

[10]

(1]

[12]

[13]
[14]

[15]

Clonezilla. The Free and Open Source Software for Disk Imaging and
Cloning, v:2.5.6-21, 2018.

Viper. Binary management and analysis framework, 2015.

Cuckoo Foundation. Cuckoo Sandbox 2.0.6: Automated Malware Anal-
ysis, 2018.

Aurelien Palisse. Analyse et detection de logiciel de rancon. PhD thesis,
University of Rennes 1, 2019.

