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Ecosystems constantly face disturbances which vary in their spatial and temporal

features, yet little is known on how these features affect ecosystem recovery and

persistence, i.e., ecosystem stability. We address this issue by considering three

ecosystem models with different local dynamics, and ask how their stability properties

depend on the spatial and temporal properties of disturbances. We measure the spatial

dimension of disturbances by their spatial extent while controlling for their overall strength,

and their temporal dimension by the average frequency of random disturbance events.

Our models show that the return to equilibrium following a disturbance depends strongly

on the disturbance’s extent, due to rescue effects mediated by dispersal. We then reveal

a direct relation between the temporal variability caused by repeated disturbances and

the recovery from an isolated disturbance event. Although this could suggest a trivial

dependency of ecosystem response on disturbance frequency, we find that this is true

only up to a frequency threshold, which depends on both the disturbance spatial features

and the ecosystem dynamics. Beyond this threshold the response changes qualitatively,

displaying spatial clusters of disturbed regions, causing an increase in variability, and even

a system-wide collapse for ecosystems with alternative stable states. Thus, spanning

the spatial dimension of disturbances is a way to probe the underlying dynamics of an

ecosystem. Furthermore, considering spatial and temporal dimensions of disturbances

in conjunction is necessary to predict ecosystem responses with dramatic ecological

consequences, such as regime shifts or population extinction.

Keywords: localized disturbance, rescue effect, bistability, return time, variability, persistence

1. INTRODUCTION

Understanding the stability of ecosystems, i.e., their ability to recover and persist in the face of
natural and anthropogenic disturbances, is of fundamental importance to ecology and conservation
(May, 1973; Neubert and Caswell, 1997; Loreau and deMazancourt, 2013). Ecosystems are spatially
extended, comprised of multiple interacting communities in different locations, and therefore an
important factor in understanding their stability is their spatial structure (Levin, 1992; Peterson
et al., 1998; Wang and Loreau, 2016). However, while the influence of space on properties such
as biodiversity and food web structure has been intensely investigated (Loreau et al., 2001; Chase
and Leibold, 2002; Montoya and Sol, 2002; McCann et al., 2005), basic questions regarding
spatial stability remain open. In particular, despite the fact that most disturbances (e.g., fires, pest
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outbreak, pollution runoff) are strongly heterogeneous in
space, the impact of their spatial structure on stability is
largely unknown. Similarly, their temporal dimension, e.g.,
their timespan or the frequency of their occurrence, is critical.
Taken together, these dimensions span a vast space of possible
disturbances that ecosystems can face (e.g., fires and storms).
This, in part, explains why reaching a clear understanding of
ecosystem stability has proven to be an extremely challenging
endeavor.

Research on ecosystem stability has a long history in ecology,
and numerous studies have investigated how various properties
of disturbances affect ecosystem responses. The importance
of spatial properties of disturbances, in particular, has been
assessed by a few studies of regeneration dynamics under
recurrent, spatially structured disturbances (Turner et al., 1993;
Moloney and Levin, 1996; Fraterrigo and Rusak, 2008). These
studies introduced the concept of landscape equilibrium and
demonstrated how the spatial and temporal scales of disturbances
can generate different stability patterns. A point not explicitly
addressed in these studies, however, is the importance of rescue
dynamics occurring at a regional scale when local recovery
processes are too slow or fail altogether. This can occur
in sufficiently connected ecosystems, following high-intensity
disturbances (Foster et al., 1998; Fraterrigo and Rusak, 2008). In
fact, recovery from a disturbance is a consequence of both local
and regional processes. Local processes lead to recovery due to
dynamics that are internal to local communities (e.g., birth and
death of individuals), while regional processes lead to recovery
by bringing in individuals from neighboring communities via
dispersal (Turner, 1989; Leibold et al., 2004). These two processes
mediate the large-scale system response to a disturbance, and
their respective parts in this response is bound to strongly depend
on the spatial connectivity of the system and, importantly, on the
spatial structure of disturbances.

Recent work has made this relationship more explicit, by
defining three distinct regimes of recovery from a single spatially
heterogenous disturbance: Isolated, Rescue and Mixing (Zelnik
et al., 2018). If a system is highly connected due to strong
dispersal of organisms, then it is in the Mixing Regime, and
the system’s behavior at large scales is essentially an extended
version of a local system (Durrett and Levin, 1994). At the other
extreme, if dispersal is low and hence each site acts separately
with its own local dynamics, then the system is in the Isolated
Regime, and its large-scale behavior is an aggregation of many
independent small systems (Tilman et al., 1998; Yachi and Loreau,
1999). In between these two extremes is the Rescue Regime,
where systems with intermediate connectivity show large-scale
rescue dynamics due to the interaction between limited dispersal
and the system’s behavior at the local scale (Peterson, 2000; Dai
et al., 2013; Wang et al., 2017). For instance, in the study by
Dai et al. (2013), a metapopulation of yeast exhibits a front
structure which emerges due to interaction of dispersal with
nonlinear local behavior of the yeast. A different example is
found in the work of Wang et al. (2017), where the correlations
between local bird populations, mediated by dispersal, leads to a
spatial scaling law of the variability of populations across North
America.

While the spatial structure of both system and disturbance
plays no role in the Mixing regime, for weaker dispersal it
does: in both the Isolated Regime and the Rescue Regime the
spatial structure of the disturbance has significant effects as it can
initiate qualitatively different responses that involve both local
and regional processes (Zelnik et al., 2018). This is the case in an
experimental study of a predator-prey protist system, in which
local extinctions are met by rescue processes, which prevent
synchronization of the regional metapopulation (Fox et al., 2017).
We will therefore consider systems with intermediate dispersal,
and focus on the effect of the spatial structure of disturbances as
well as their temporal properties.

Quantifying the impact of disturbances amounts to defining
relevant stability measures. If the disturbance is an isolated
event, a natural measure to consider is the return time to
the unperturbed state (May, 1973; Neubert and Caswell, 1997).
On the other hand, in a regime of repeated disturbances (e.g.,
climatic events), measures of temporal variability are commonly
used (Tilman et al., 2006). In the presence of alternative stable
states, those repeated disturbances can cause a regime shift
from one state to another. One well-known example is that of
lake eutrophication (Carpenter, 2005) due to fertilizer runoff
disturbances. Here the stability measure of interest is typically
persistence, i.e., the probability that a system will remain in a
desired state (Holling, 1973; Pimm, 1984). Importantly, these
stability measures reflect not only the spatial and temporal
properties of the disturbance, but also the dynamical features
of the perturbed ecosystem. Exploring this interplay is the
focus of our study, which we will address by considering
three spatial ecosystem models with increasing nonlinear local
dynamics, ranging from logistic growth to bistability. Under
various perturbation scenarios we will measure their stability
using return time, variability and persistence.

We begin by looking at the ecosystem’s recovery following a
single disturbance, and show that changing the spatial structure
of the disturbance reveals two basic recovery trajectories:
isolated and rescue. Isolated recovery trajectories reflect the
local resilience of the system, while rescue trajectories involve
spatial processes, and their dominance signals the failure of local
processes. We thus argue that the relationship between spatial
structure and recovery contains substantial information about
the local dynamics of the system, both close to and far from
equilibrium. We continue by exploring the temporal axis of
disturbances, and demonstrate a direct link between return time
(following an isolated disturbance event) and temporal variability
(under a regime of repeated disturbances). We find that for
low disturbance frequency patterns of variability do not contain
additional information in comparison to the patterns of return
time. However, past a frequency threshold (which depends on the
system’s internal dynamics) the variability patterns change. As we
will argue, this signals the onset of a new dynamical regime driven
by disturbances, which can lead to a regime shift—in our case a
transition from a populated to a bare state (extinction).

Our work demonstrates that the spatial dimension of
disturbances can be used to reveal information on the ecosystem’s
internal behavior. Furthermore, our results illustrate that
the conjunction of the spatial and temporal properties of
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disturbances may lead to unforeseen dynamical responses, with
drastic ecological consequences.

2. METHODS

2.1. Models
We assume for simplicity that the local community dynamics
can be described by a single state variable N that represents the
ecosystem’s local biomass density. We study the dynamics in
multiple locations in space using partial differential equations.
We define three different models that differ in their local
dynamics but have identical dispersal across space with linear
diffusion. In all models the local biomass may reach a carrying
capacity K, so that N = K (the populated state) is a stable
steady state in all three models. An additional solution exists
for N = 0 (the bare state), with its stability properties differing
among models.

The first and simplest model (LG) describes local logistic
growth coupled with dispersal:

Nt = rN(1− N/K)+ d∇2N, (1)

where Nt is the change in time of the local biomass and ∇2N is
the second derivative in space of N (a diffusion term). Here r is
the characteristic, local dynamical rate of growth, while the rate
of spread by dispersal is governed by d. In this model the bare
state N = 0 is an unstable solution. This is the classic model of
population growth (Hall, 1988), shown to appropriately depict
the dynamics of various biological systems, from the growth
of unicellular organisms (Gause, 1934), to human populations
(Marchetti et al., 1996).

The second model (AE) describes species dynamics with a
strong Allee effect (Kramer et al., 2009), so that low biomass
densities are not viable. Such dynamics have been found in a
variety of species, ranging from the gypsy moth to woodland
caribou (Kramer et al., 2009). The model reads

Nt = rN(1− N/K)(N/α − 1)+ d∇2N, (2)

where α is the viability threshold, i.e. the minimal amount of
biomass N that is necessary to allow positive growth. This model
has two alternative stable states (N = 0, N = K) and a single
unstable state (N = α), and we assume that 0 < α < K. This
is the simplest model for dynamics with alternative stable states,
a property that has been found in many ecosystems (Scheffer,
2009), such as lakes (Carpenter, 2005) and coral reefs (Nyström
et al., 2000).

Finally, our third model (SR) describes dynamics with slow
recovery following intense disturbances, and stands as an
intermediate between the two previous models. It will help us to
clarify the distinction between strong nonlinearity and bistability.
Its main feature is that while there is only one stable equilibrium
at N = K, far from this equilibrium the return rate is very slow
compared with the return rate close to equilibrium. This could
model succession dynamics, for which the recovery following
strong disturbances (e.g., clearcutting) is very slow, as it involves
the successive colonization by different species, and not simply
the regrowth of the disturbed species (Uhl, 1987), or a weak Allee

effect, a prevalent feature in population dynamics (Kramer et al.,
2009). The model is:

Nt = rN(1− N/K)(N/K)γ + d∇2N, (3)

where γ controls the nonlinearity of the dynamics, such that
at high values of γ local recovery is very slow following high-
intensity disturbances.

For each model we can define a local potential (see left
panels of Figure 2), such that its derivative with respect to N
corresponds to the derivative of N with respect to time—i.e., the
local dynamics. This means that the local dynamics follow the
slope of this potential, so that the biomass density can be thought
of as a ball moving from peaks to valleys in the landscape that the
potential defines. In both the LG and SR models only one stable
equilibrium exists, but the speed of return to the equilibriummay
be much slower for low biomass density in the SR model. Two
stable states exist in the AE model (the populated state and the
bare state).

By rescaling time, space and biomass, we can effectively
reduce the parameter space, and set r = 1, d = 1 and
K = 1. Our results thus hold for any values of these three
parameters. We set α = 0.4 to make sure that the AE model
recovers from a single disturbance (see next subsection), and
γ = 4 to make sure the return time far from equilibrium of
the SR model is sufficiently slow. We focus on one-dimensional
systems as they are simpler to analyze, but the qualitative
results hold for other types of spatial structure such as two-
dimensional systems (see Appendix D). We use a system size
of L = 500, which is large enough to allow for the spatial
dynamics to manifest itself (so that the system is not in the
Mixing Regime Zelnik et al., 2018), with periodic boundary
conditions. For a clearer illustration, in Figure 3 and Figure S2

we show snapshots of a two-dimensional system of size 200 ×

200.

2.2. The Spatial Dimension of Disturbances
We define a disturbance as a change in the state variable that
is forced on the ecosystem. We consider a pulse disturbance
occurring at a given time, with its full effect being applied
at that time. This assumption is appropriate for the many
types of disturbances that are faster than the dynamics of the
ecosystem, and lends itself to mathematical analysis. We choose
a disturbance that removes biomass (reduces N), so that a
disturbance of strength s will reduce the overall biomass of the
ecosystem by sK (but any negative values of N will be set to 0
for consistency). Once a disturbance takes place, the ecosystem
may recover to its original state, or a regime shift can occur if
the ecosystem is bistable. We are interested here in stability and
recovery dynamics, and therefore focus on parameter values for
which a single disturbance cannot lead to a regime shift.

Since a disturbance need not occur uniformly across space,
we vary the spatial extent of the disturbance σ while keeping
its overall strength s constant. A disturbance is performed by
choosing its locus, and removing some biomass in a domain of
size σ centered around the locus. We can vary the spatial extent
from σ = 1 for a uniform disturbance across space, to σ = s for
a localized disturbance.
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To measure recovery we use the return time T defined as the
time needed for the ecosystem to recover 90% of the biomass lost
to the disturbance. While the choice of a threshold is arbitrary, its
specific value has no significant effect on the results as long as it
is not too close to either 0% or 100% (which roughly correspond
to reactivity and asymptotic resilience, respectively Arnoldi et al.,
2016). By avoiding these extreme values, we simply emphasize the
role played by the overall recovery dynamics, rather than by the
system’s initial response or final convergence.

2.3. The Temporal Dimension of
Disturbances
We consider a disturbance regime by repeatedly applying
disturbances with a given average frequency f , over a time period
τ . For simplicity we assume no correlation in space or in time, so
that the time between disturbances is drawn from an exponential
distribution with some average frequency (a Poisson process, see
Appendix B for details), while the location of the disturbance’s
center is drawn from a uniform distribution.

We use two measures of stability for a system that is disturbed
repeatedly, i.e., variability, which measures how far the system
ventures from its average value, and persistence, which measures
how likely it is to move to the basin of attraction of a different
equilibrium. We define variability V as the variance in time
of the total biomass of the system, given a regime of repeated
disturbances. In order to neglect the effect of transients, we
calculate V over the last 80% of the simulations, which last for
10, 000 time steps. We define the collapse probability C as the
probability that the system will be in the bare state at the end
of a simulation, such that C = 0 means no chance of a system

collapse, while C = 1 means that a collapse is certain. We use a
longer simulation time (100, 000 time steps) to calculate C since
we are interested in predicting a collapse before it occurs. For
each of these calculations we run 100 simulations with different
randomizations of the location and time of disturbances.

3. RESULTS

3.1. Spanning the Spatial Dimension of
Disturbances Reveals Local Ecosystem
Dynamics
We begin by looking at the response of an ecosystem to a
single disturbance with varying spatial extent σ . We focus on
disturbances with a fixed overall strength s = s0 for simplicity
and clarity, and relax this assumption in the discussion. Thus a
global disturbance σ = 1 (Figure 1, right panels) occurs when
N is decreased by s0K in the entire system, while a localized
disturbance σ = s0 (Figure 1, left panels) occurs when N is set
to zero in a domain of relative size s0.

The response to a disturbance can take two possible forms:
isolated recovery due to local processes, and rescue recovery due
to incoming biomass from outside the disturbed region. Isolated
recovery dominates the system response when each site recovers
without the aid of neighboring sites (Figure 1, right panels).
In contrast, rescue recovery occurs when the disturbed region
cannot recover without the rest of the system, or when the bulk
of the recovery occurs due to such spatial dynamics (Figure 1, left
panels).

The coupling of local dynamics and dispersal results in
distinct recovery processes in the three models, as shown by

FIGURE 1 | Recovery dynamics following a localized and a global disturbance (left and right panels, respectively) for the bistable AE model (see Main text). Top

panels: snapshots at different times (t) along recovery trajectories, each snapshot showing a biomass spatial profile. Bottom panels show the change in overall

biomass over time following the disturbance, where the dotted line denotes the threshold beyond which the system is considered to have recovered, and red circles

correspond to the snapshots. Note that the return time T from a localized disturbance is much longer than the one from a global disturbance. Disturbance parameters

are s = 0.1, with σ = 0.1 for the localized disturbance and σ = 1 for the global one.
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the trajectories in phase-space diagrams in the middle column
of Figure 2. In these panels we unfold the recovery along
two dimensions: the horizontal axis denotes the size of the
disturbed region at a given time, while the vertical axis shows the
biomass density in the disturbed region. Immediately after the
disturbance, the system is along the dashed black curve, and it
then changes over time until it enters the shaded region where it
is considered to have recovered.

If a large part of the trajectory during recovery is horizontal,
this means that the disturbed region is shrinking due to rescue
recovery, which indicates a lack of local resilience, which would
otherwise allow isolated recovery to take place. This behavior
reflects the strong nonlinearity of local dynamics, which can be
seen in the changing curvature of the local potential (Figure 2,
left column). We can see that for the AEmodel (Figure 2, bottom
row) the recovery is along a horizontal line for recovery scenarios
with a sufficiently small spatial extent, so that regional processes
bring about the recovery. In contrast, the recovery is entirely due
to local processes in the LG model since the local dynamics are

much faster here, while for the intermediate SR model a mixture
of the two processes can be seen to take place.

These differences translate into markedly different values
of the return time T (Figure 2, right panels). The vertical
recovery trajectories that follow all disturbances in the LG model
and large-sized disturbances in other models indicate isolated
recovery, and hence small values of T. For the intermediate
SR model localized disturbances lead to a larger contribution
of rescue recovery, leading to a sigmoid shape of T as a
function of disturbance extent σ . The AE model shows a similar
behavior of larger T following localized disturbances, but the
trend here shows a maximum for mid-sized disturbances. This
occurs because in bistable systems, the most efficient way to
perturb the system is to locally remove biomass just bellow
the viability threshold, and then let the system collapse locally.
Such a disturbance has an equivalent effect to that of a stronger
disturbance that would remove all biomass over a larger region.
The spatial recovery process will take longer to recover, thus
giving larger return time values (see Appendix A for details).

FIGURE 2 | Contribution of isolated and rescue recovery as a function of disturbance spatial extent for the three models presented in the main text. The left column

shows the local potentials defining local processes. Top row: Logistic (LG) model; Middle row: the highly non-linear SR model; Bottom row: bistable AE model. Middle

column: isolated recovery on the y-axis, and rescue recovery on the x-axis. Black dashed line shows the equal disturbance strength used s = 0.2 for different

disturbance extent σ . Blue lines are recovery trajectories, where recovery is considered complete when trajectories reach the gray shaded region. For the SR and AE

model, as disturbances become more localized, a shift is observed from a dominant isolated recovery (upward trajectories) to a dominant rescue recovery (leftward

trajectories), impacting return times (right column). The “x” marks in blue correspond to the different trajectories shown in middle columns. The green and magenta

circles show initial states following two different disturbances (left and middle columns) and their associated return times (right column). The dotted line (bottom row)

shows the local tipping point of the bistable AE model, beyond which local dynamics collapse to the bare state.
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This explains the humped shape of return time as a function of
disturbance extent. Since bistability is a sufficient condition for a
hump-shaped relationship to occur, the latter could be used as an
indicator of bistability. This illustrates the more general idea that
considering the spatial dimension of disturbances can allow us to
probe the local dynamics of a spatially extended ecosystem.

3.2. From Variability to Collapse Under
Increasing Frequency of Disturbances
Natural ecosystems are constantly perturbed, leading us to
consider a temporal dimension of disturbances, namely their
average frequency. We therefore translate the results of the
previous section on the response to a single disturbance
(Figure 3, top) into an understanding of temporal variability
under repeated disturbances (Figure 3, bottom). In fact, there
is a direct link between the response to a single disturbance
and temporal variability in response to repeated disturbances.
Indeed, biomass fluctuations are the result of past disturbances,
as they integrate short- to long-term responses of the ecosystem
to individual disturbances (Arnoldi et al., 2016). Variability is
a statistic of those fluctuations, and is therefore a function of
both the integrated response to a single disturbance and the
average frequency f of disturbances. More precisely, if g(t) traces
the change in overall biomass through time following a pulse
disturbance a time t = 0, then variability V can be expressed as
V = f

∫ ∞

0 g2(t)dt (see Equation S15 in Appendix B). However,
this identity assumes no interaction in space between the different
disturbances, and therefore should not hold at high disturbance
frequency.

As expected, at low frequency of disturbances the analytical
approximation agrees with the numerical simulations quite
well for all three models (Figure 4, second column). For
higher frequencies (Figure 4, third column) where multiple
disturbances often take place in the same time frame, we see a
slight underestimation of the analytical approximation, although
the general trend is well captured. Importantly, variability and
return time show the same behavior. We see effects of regional
processes on variability for more localized disturbances in both
the SR and AE models, where the former shows a sigmoid shape
while the latter has a hump shape, which is a consequence of
the bistability in the AE model. We note that these trends hold
in more general scenarios, such as disturbances with a random
extent or following seasonal patterns (Appendix D).

At this point it would appear that the temporal dimension of
disturbances f is not as informative on ecosystem behavior as the
spatial dimension of disturbances σ . However, as f is increased
further, a discrepancy between variability and its prediction
based on recovery from a single disturbance starts to grow.
This signals that the disturbances start to interact with each
other, a phenomenon that is not captured by our approximation.
Disturbances start to aggregate in space, which can substantially
increase variability (Appendix C) due to large excursions toward
low total biomass levels. For bistable systems such as the AE
model, such excursions can lead to a collapse of the whole system.
This is evident in the two last columns of Figure 4, in which
we see, for the AE model, that the values of σ for which the

FIGURE 3 | Single and multiple disturbance regimes and the relationship

between return time and variability. The left panels show time series of the

overall biomass, while right panels are spatial snapshots of the corresponding

time-series (red dots in the left panels). The response to a single disturbance is

shown in the top left panel. We focus on two of its characteristics: return time

T, and an integral measure of the transient g(t) (see main text). The response

to multiple disturbances occurring randomly at an average frequency f is
shown in the bottom left panel. It is summarized by its variability V (variance of

overall biomass). In the limit of low f there is an inherent relationship between

return time and variability in the sense that V can be approximated by

f
∫ ∞
0 g2(t)dt. Simulations were made using the SR model with parameters

values: s = 0.1, σ = 0.11, f = 0.025, and γ = 2. Random uniform noise was

added in left panels to demonstrate how realistic time series might look like.

discrepancy of variability is highest precisely corresponds to the
values of σ for which the collapse probability is most significant.
Thus, at high frequencies, disturbances of similar strength but
different spatial extent lead to dramatically different responses.
This example highlights the fact that the combination of spatial
and temporal dimensions of disturbances can have a drastic effect
on ecosystem stability.

4. DISCUSSION

Investigating the role of the spatial and temporal dimensions
of disturbances in ecosystem stability, we obtained four main
results: (1) In comparison with a global disturbance, a localized
one of the same strength can initiate a fundamentally different,
and much slower, ecosystem response, especially when local
dynamics are nonlinear. (2) The return time from a single
disturbance and the temporal variability caused by repeated
disturbances show the same trends, even for locally intense (and
therefore nonlinear) disturbances. (3) The relationship between
a system’s response and the spatial extent of the disturbances
it experiences reveals its underlying dynamics. For instance, a
hump-shaped relationship between return time and the spatial
extent of the disturbances may indicate bistability. (4) The
correspondence between return time and variability breaks down
for high disturbance frequencies. This discrepancy signals the
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FIGURE 4 | Return time, variability and collapse probability as a function of disturbance spatial extent for three models (from top to bottom: LG, SR, AE). Left column

shows return times (as in Figure 2) while middle columns show variability under low and high frequency of disturbances, and right column shows collapse probability.

The black dashed (solid) line is a numerical (analytical prediction) value of variability, with gray shading noting error estimation. Deviation from this prediction implies

some degree of interaction between disturbances. Return time and variability are qualitatively similar with low dependency of disturbance spatial extent for the LG

model but a much stronger dependency when local dynamics are highly non-linear (SR and AE models). In the case of the bistable AE model we recognize a

non-monotonous “hump-shaped” dependency with disturbance extent, with mid-sized disturbances causing the most severe response. Disturbance parameters

were s = 0.1, σ = 0.1, and for low frequency: f = 0.002, while for high frequency: f = 0.02.

occurrence of spatial interactions between disturbed regions,
which, in turn, may lead to a regime shift.

Althoughwe considered simple spatially homogenousmodels,
our results should apply to a wide range of ecosystems. Forests,
savannah and shrublands might be good examples of ecosystems
to which our models apply since disturbances such as fires
and grazing occur frequently and are often localized, and the
recovery of plant communities often follows complex succession
dynamics driven by spatial processes (Adler et al., 2001; Turner,
2010; Staver and Levin, 2012). Our results, however, need not be
restricted to such spatially homogeneous systems. Although we
built our theory using spatially uniform models, this simplifying
feature is not essential to our arguments, which only require a
notion of locality. Therefore, our theory may also be relevant to
less homogeneous ecosystems, such as mountain lake networks,
coral reefs and riverine systems. Indeed, such ecosystems
undergo different disturbances that are often strongly localized,
and their dynamics may be sufficiently nonlinear (Knowlton,
1992; Campbell Grant et al., 2007; Forrest and Arnott, 2007).

Uniquely to our work, we considered systems locally pushed
far from their equilibrium, and even to a different basin of
attraction. In a marine ecosystem context, this could represent

coral reefs (Nyström et al., 2000; Adjeroud et al., 2009) or rocky
intertidal systems (Sousa, 1979; Paine and Levin, 1981), which
frequently undergo intense disturbances (e.g., storm damage).
These locally intense disturbances can allow rescue recovery,
mediated by dispersal, to dominate the ecosystem response. In
the case of the bistable (AE) model this glimpse outside the basin
of attraction of the populated state is the direct cause of the
hump-shaped trends of variability and return time as a function
of disturbance extent. In fact, the front propagation that drives
rescue recovery contains information about the ecosystem’s
basins of attractions, reflecting the existence of alternative stable
states and the transient dynamics between them. Thus, by
observing the ecosystem’s response to localized disturbances,
rescue recovery allows us to probe ecosystem dynamics far
from equilibrium. For instance, comparing between different
disturbed marine ecosystems may give further evidence that
some have alternative states (e.g., coral reefs) while for others
the dynamics show a succession process (e.g., rocky intertidal
systems). This reasoning could be taken further by focusing on
regions where rescue recovery takes place, e.g., analyzing the
plant community structure at transition zones between grassland
and forest in a savanna ecosystem (Augustine, 2003).
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FIGURE 5 | Reconstruction of return time vs. disturbance extent curve from the more general parameter space of disturbance properties. Top (bottom) panels

correspond to the SR (AE) model. Left column shows the return time over the parameter space of disturbance extent σ (x-axis) and of disturbance strength s (y-axis).
Right column shows the corresponding reconstruction of the return time curve, using 100 randomly chosen points (red asterisks) in the parameter space. The return

time values are normalized by the disturbance strength s, while the normalized disturbance extent is defined as σ̃ = 1− s/σ . Note that the hump (sigmoid) shape of

the curve for the AE (SR) model are easily recognizable from these reconstructions.

Spanning the spatial dimension of disturbances could thus
allow us to detect nonlinearities in ecosystem behavior, revealed
by the increasing local intensity of disturbances (see Figure 2).
One might expect that along the temporal dimension of
disturbances, increasing their average frequency could also reveal
nonlinear effects, since the ecosystem becomes more strongly
disturbed. In fact, increasing frequency has only a trivial linear
effect, as reflected by the relation we found between return time
and variability (see Figure 3). Beyond some threshold, however,
a response of a different kind emerges, due to spatial interactions
between disturbed regions which aggregate in potentially large-
scale clusters. This causes a higher variability than expected
and can, consequently, cause a global loss of persistence or a
regime shift. Taking, once again, the example of corals reefs, we
could ask how the impact of both natural and anthropogenic
disturbances leads to a phase-shift from hard coral to fleshy algae
dominance. A regime shift due to an aggregation of unrecovered
regions would occur not as a typical tipping point due to loss
of resilience (e.g., due to changing temperatures), but rather
due to the crossing of a threshold for disturbance frequency.
Importantly, in such a scenario the two dimensions, spatial and
temporal, must be considered in conjunction. The threshold

beyond which aggregation occurs depends strongly on the spatial
extent of disturbances and hence the associated response is not a
mere superposition of responses to single disturbances. In other
words, this finding highlights and explains how the interplay
between the spatial and temporal dimensions of disturbances can
have drastic ecological consequences, such the loss of persistence.
Since our findings are purely theoretical, it would be enlightening
to elucidate the prevalence of this interplay in empirical systems
that have undergone regime shifts (e.g., phase-shifts in coral reefs
Nyström et al., 2000 or the desertification of the once green
Sahara Ortiz et al., 2000).

As previously mentioned, in bistable systems the relationship
between return time (as well as variability) and the spatial
extent of disturbances is hump-shaped. This relation could
be used as an indicator of bistability, assessed empirically
by comparing time series of the same ecosystem in different
regions with estimates of the intensity of single disturbances.
Its implications for ecosystem management depend on the type
of disturbances considered. Anthropogenic disturbances that are
largely controlled, such as logging in forests (Chazdon, 2003) or
large-scale fishing (Kaiser et al., 2006), can be better planned to
avoid both an unpredictable yield due to high variability and
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an overall collapse. For many natural disturbances control is
neither possible nor desired (e.g., fires in semi-arid ecosystems
necessary for plant germination Wellington and Noble, 1985),
but predicting their effects and the possibility of regime shifts is
paramount (Kéfi et al., 2007).

In order to focus on the role of the spatial properties of
disturbances and allow a clearer presentation, we conducted our
analysis assuming disturbances of constant overall strength. It is
straightforward to extend the analysis to more general settings,
such as a random extent of disturbances and seasonal patterns
(see Appendix D for details). It is particularly interesting to
consider the case of different values of disturbance strength s.
As shown in Figure 5, if we randomly choose a set of points
with different values of strength s and extent σ , we can use
these to reconstruct a normalized version of the dependency
of the different stability measures on disturbance extent. Thus
we can use the different phenomena described previously, such
as a hump-shape relationship as an indicator of bistability,
under more general conditions, thereby making our theory more
empirically accessible.

Our work is a step toward a quantitative account of spatial and
temporal dimensions of disturbances, and their interplay with
local and regional ecosystem dynamics. This is an important goal
in the context of global change. Disturbances are of increasing
frequencies and occur at different scales (which is evident, e.g., in
coral reefs Jackson, 1991 and forests Turner et al., 1993), while the
spatial structure of ecosystems themselves is altered by land use
change, often causing fragmentation of the landscape (Harrison
and Bruna, 1999). It is thus important to build a framework in
which we can understand and predict the ecological impacts of
this complex interplay.
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