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Existence and stability of steady noncharacteristic solutions on
a finite interval of full compressible Navier—Stokes equations
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Abstract

We treat the 1D shock tube problem, establishing existence of steady solutions of
full (nonisentropic) polytropic gas dynamics with arbitrary noncharacteristic data. We
present also numerical experiments indicating uniqueness and time-asymptotic stability
of such solutions. At the same time, we give an example of an (artificial) equation
of state possessing a convex entropy for which there holds nonuniqueness of solutions.
This is associated with instability and Hopf bifurcation to time-periodic solutions.

1 Introduction

In this paper, continuing investigation in [MZ19] of the isentropic case, we study by a
combination of analytical and numerical techniques the existence, uniqueness, and stability
of steady solutions of the full (nonisentropic) 1D compressible Navier—Stokes equations on
a bounded interval, with noncharacteristic inflow-outflow boundary conditions.

This corresponds to the 1D version of the “shock tube” problem of describing flow in a
finite length and width channel, with prescribed boundary conditions at the left and right
ends. Our main interest is in large-amplitude data, since small-amplitude existence and
uniqueness as we shall show, follow in 1D by straightforward entropy considerations.

As developed in the viscous shock case [BHZ10, BHLZ18a, BHLZ18b, HLZ09, HLZ17], a
convenient method to study spectral stability is via numerical Evans function investigations.
A useful necessary condition, also based on Evans function considerations, is the positivity
of the stability index, a mod two count of the Morse index of the linearized operator about
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the wave. This was trivially evaluable in the isentropic case [MZ19], but is complicated in
general. In particular, it does not seem to be analytically evaluable for the nonisentropic
case considered here. It can be computed explicitly however in the “standing-shock limit”
of [SZ01, Zum10], in which the steady solution is taken to be a sufficiently large piece of a
standing viscous shock profile (see Appendix A.6).

1.1 Description of main results

Our main analytical results are (i) local uniqueness of almost constant steady solutions for
general symmetrizable systems (Corollary A.6); (ii) global uniqueness of constant solutions
for general systems with convex entropy (Theorem A.9); (iii) global existence of steady
solutions of the full polytropic gas equations (2.1) (Corollary 4.5). We show, moreover,
that global uniqueness of solutions of (2.1) is roughly equivalent to transversality of steady
profiles as solutions of the ODE connection problem (2.6)-(2.10). This is equivalent to the
nonvanishing of the Jacobian det(d¥) of (2.10) (Proposition 5.1).

Nonvanishing of det(dW) is also seen to be equivalent to nonvanishing of the stability
index (Lemma 6.1). Hence a change in sign implies appearance of both nonuniqueness
and instability: the usual “exchange of stability” scenario familiar from finite-dimensional
ODE. Thus we may study uniqueness in passing, in the course of a larger study of spectral
stability.

Augmenting our analytical results for the full polytropic gas equations, we carry out such
a study in Section 7 by a systematic numerical Evans function investigation of the “feasible
set” C of profiles realizable by numerical shootings. Our numerical findings (Section 7) are
that, on the feasible set C, the stability index is uniformly positive, indicating uniqueness
of large-amplitude solutions, and that steady solutions exhibit uniform spectral stability.
Finally, the nonlinear stability can be obtained by similar considerations to [MZ19, Section
6] (see also Remark A.8).

1.2 Discussion and open problems

The first local existence/uniqueness result for small-amplitude data has been established in
[KK97]. We improved this result to large-amplitude data.

Our findings of global existence and uniqueness for the noncharacteristic problem par-
allel those of Lions [Lio98] in the characteristic case u = 0 on the boundary, for which he
shows global existence and uniqueness of solutions for arbitrary prescribed average den-
sity, in 1- and multi-D. However, they are obtained by quite different techniques, which,
moreover, are special to 1D. Indeed, though perhaps intuitively expectable, especially given
the uniform shock stability results of [HLZ09, HLZ17] for the compressible Navier—Stokes
equations, our results of large-amplitude existence, uniqueness and stability are obtained by
a combination of exhaustive numerical investigations, and rather delicate degree-theoretic
arguments specific to the equations of 1D polytropic gas dynamics under study.

In [SZ01, Zum10] the case of steady solutions on a half-line is investigated and it is shown
that instability of steady solutions can occur, even for the most standard ideal polytropic gas
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law. It suggests that the question of stability at least is not a foregone conclusion for steady
solutions on the interval. Moreover, the nature of instablity found in [SZ01, Zum10] involved
change of sign in the stability index, which in the present case would signal nonuniqueness
as well. On the other hand, our numerical findings (Section 7) indicate that neither of these
phenomena in fact occur for polytropic gas dynamics on the interval.

This begs the question whether such detailed and special arguments are necessary, or
whether there might instead exist some more straightforward argument for all or part of our
results via general principles, such as, e.g., existence of convex entropy as used in Appendix
A.4. We give a partial answer to this question in Section 8, exhibiting a counterexample
involving an equation of state presented in [BFZ15] for which the equations of compressible
gas dynamics possess a convex entropy, but global stability and uniqueness are violated. It
is seen that the associated transition to instability can involve either steady bifurcation to
multiple solutions, or Hopf bifurcation to time-periodic solutions. The latter phenomenon is
significant as the first example of Hopf bifurcation for stationary solutions of compressible
gas dynamics, similar to “galloping” or “cellular” instabilities in detonation [TZ11].

It is an interesting question whether our existence result extends to general equations
of states considered in [BFZ15]. Note that we obtain nonuniqueness results for a particular
equation of states in Section 8.

A further very interesting open problem is the extension of our existence results to the
true multi-D shock tube problem, generalizing the small-amplitude existence-uniqueness
results of [KK97], and the determination of stability of multi-D solutions even in the small-
amplitude case.

Finally, another interesting open question is the rigorous characterization of structure
in the small-viscosity limit, A preliminary, quite approachable, step in this direction would
be to show existence and uniqueness of possible limiting configurations composed of shocks
and boundary layers, as discussed at the end of Appendix A.5.2.

2 Preliminaries

2.1 Equations of motion

The 1D compressible Navier—Stokes equations in Eulerian coordinates are

pt + (pu)l = 07
(2.1) (pu)e + (pu2 + D)y = QUzy ,
(PE)t + (puE + pu)y = KTy + (quug)y

u2
E:e—l—E, p="Ipe, e=c,7T,

with I, ¢, v, and « fixed positive constants; see [Bat99, HLZ09, HLZ17]. We define v = &

Ccy
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Remark 2.1. For simple gases, the ratio ¢ follows closely to the prediction

(2.2) 5227F+12
I} 16

of statistical mechanics [HLZ09, HLZ17].* In our numerics, we will assume, further, (2.2).

As described in [MZ19] in the isentropic case, we seek steady solutions on the interval
[0, 1], with noncharacteristic inflow-outflow boundary conditions

(2'3) (P, u, 6)(0) = (p0>u0760)7 (uae>(1) = (ulvel)'

By changing p by pgp, v by piou, t by pot and e by p%e (notice that we can not change x
0

without changing the length of the interval), we assume in the following that

(2.4) po=1, wug,eq,u;,e; > 0.

2.2 Profile equations and formulation as mapping problem

Our main interest is the study of steady solutions, i.e. solutions of

(IOU)I =0,
(2.5) (pu2 +Tpe)s = qugy,

2
u
<pu (e + 2> + Fpeu> = Veg, + (quuyg), .
X

Integrating (2.5) from 0 to = and rearranging using (2.4), we obtain similarly as in [HLZ17]
the profile ODE

« e

—u' =c; +u+T—,

uo u

v, 1,
—e =cp—cu— -u” +e,
U 2

(2.6)

U

together with p = “2 with the initial data

u(O) =ug >0

(2.7) e(0) =¢y >0

and where ¢ = (¢, c2) are constants of integration to be determined. Indeed in our setting
/ v / 1 2
(2.8) cg=—u(0)—uy—T—,co=—¢€(0)+au'(0) —ey — JU0 Teg,

and we do not know the values of (v/(0),€'(0)).

Tn the notation of [HLZ17], o = 2u +n = %m v=T+1, and cfﬂ = 974_5, giving the result.
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The domain of the ODE is the set
{(u,e) e R* , u > 0}

so that the right hand side of (2.6) is well-defined and for which we can reconstruct p.
Indeed, we remark that «u > 0 is imposed by pu = Cst and p > 0. Hence we may ignore the
variable p in the following. Note also that the physical solutions are the one for which e is
also positive.

For a fixed choice of left data (po,ug, eg) (meaning, by our previous normalization, just
a fixed choice of ug and eg), we define now the mapping

(2.9) U (c1,c2) — (u,e)(1),

where (u,e) denotes the maximal solution of (2.6)-(2.7) for the given value of ¢ = (¢1, ¢2).
Evidently, solutions of (2.3)-(2.5) thus correspond to solutions of the mapping problem

(2.10) U(c) = (ug,er).

3 The feasible set

In (2.9), we did not specify the domain of ¢. It is indeed our first order of business to
determine it. For a fixed choice of left data (ug, ep), we define the feasible set C as the set of
all ¢ for which (2.6)-(2.7) has a continuous solution (u,e) on [0, 1] where u and e are both
positive on [0, 1]. Note that C is not empty since (—up — I'g2, —(1 +I)eg — sud) € C (that
corresponds to a constant solution of problem (2.6)-(2.7)). Then, we have the following

crucial observation.

Proposition 3.1. The set C is open and its boundary consists of ¢ for which there exists
continuous functions (u,e) on [0, 1], solution of Problem (2.6)-(2.7) on [0,1), with u,e both
positive on [0,1) and such that e(1) = 0.

Before proving Proposition 3.1, we establish a preliminary result.

Lemma 3.2. Let c = (c1,c2) € R?. Let x, € (0,1] such that a solution (u,e) of (2.6)-(2.7)
is defined on [0,x,). We have the following statements :

(i) If e > 0 on [0,z), then (u,e) is bounded on [0, x,) uniformly with respect x. and
one can extend continuously (u,e) to ..

(ii) If there exists a constant € > 0, e > & > 0, then there exists a constant @ > 0, u > 4.

(iii) If (u,e) — 0 simultaneously as x — . with (u,e) both positive, then ¢; < 0 and
co < 0.

(iv) Assume c1 < 0, ca < 0, (u,e) is a solution of (2.6)-(2.7) on [0,z and u,e > 0
on [0,z.]. For any € > 0, there exists § > 0 depending only on ci,ce,e such that if
u(xy),e(zy) < 0, there exists T € [xy,xs + €] such that (u,e) extends continuously as a
solution of (2.6)-(2.7) on [0,2) with u,e >0 on [0,Z) and e(x) — 0 as x — Z.
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Remark 3.3. As we will see in the proof of (iv), one can prove that if (c1,c2) € C with
c1 <0, cg <0 and (u,e) a solution of (2.6)-(2.7) on [0, 1], there exists a constant M > 0
depending only on cq,ca, T, such that for any 6 > 0 small enough, for any x. € (0,1), if
0 < u(zy),e(xy) <0, then0<e<dand 0 <u< Mo on [x,1].

Proof. (i) Since e > 0 on [0, z,), we get

1 /
- <au2+y62> = ciu+ u® 4+ Te+ coe — creu — eu?® /2 + €
uo uo

< ciu+ u? +Te + coe — creu + €2

<A (O‘uQ i Vez) B
uQ uo

for some constants A, B > 0 depending on cj, co, I', o, v, uy. Hence, |(u,e)| grows at
most exponentially, in particular remaining bounded on [0, z,). Furthermore, u and e can
be continuously extended to z, since (u?)" and (e?)’ are bounded and then integrable on
[0, ).

(ii) This statement is clear since the term I'C in the u-equation serves as a barrier.

(iii) Evidently, ¢; < 0, or else v/ > 0 for u, e > 0, contradicting the assumed convergence
to 0. Then, for v > 0 sufficiently small, this implies that —ciu — %uz > 0 and hence
u—"oe’ > co + e. Therefore, co < 0 or else ¢/ > 0 for e > 0 and v > 0 sufficiently small, again
contradicting convergence. This proves the first assertion.

(iv) We assume now that c1, ca < 0, that (u,e) are both positive on [0, z,] and that
u(zy),e(zs) < 0. We first note that so long as u,e < 27, Ze' < —su? < 0 and e
is decreasing. Next if § is small enough, based on the u-equation, several situations can
happen:

e —nJ2—
(a) If u(zy) > =2 612 4FE(I*), u'(z4) < 0 and u is decreasing about .
—c1— 2_ /
(b) If u(z,) = —+—Y 4F6(“*)7 u' () = 0, v’ (z4) = F% < 0, u is decreasing about .
o] e/ iTe
(c) If u(z,) < —V4 4F6(I*), W (zx) >0 and u < % < 21““%' about ..
1
Therefore, for § small enough, © < max (1, %) 0 and u—”oe’ < § solong as 0 < e < 4.
Hence e goes to zero at T for |z — x| < u02|Z ;70- This proves assertion (iv). O

Thanks to this lemma we can assert that
C={ceR?, where e >0 on [0,1], (u,e) the maximal solution of (2.6)-(2.7)} .

Proof of Proposition 3.1. For ¢ = (c1,c2), we denote by (u,e) the maximal solution of
Problem (2.6)-(2.7). Note that the following map is locally Lipschitz

T 1
(3.1) @:(u,e)e{(u,e)ERQ,u>0}r—> <61+u+€,02—01u—2u2+e>.
u
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If ¢ € C, then u and e are defined and positive on [0, 1] and by continuous dependence on
parameters of solutions of an ODE, c lies in the interior of C. In particular C is open.

We assume in the following that ¢ € C¢. Thanks to Lemma 3.2(i)-(ii), there exists z, € (0, 1]
such that v and e are defined and continuous on [0, ), u,e > 0 on [0, z,) and (u,e) can be
extended to z, with e(z,) = 0 and u(x,) > 0. Three different situations can then occur.
Case (i) : x« = 1 and then e(1) = 0.

Case (ii) : u(xx) > 0 and x4, < 1. Then (u,e) is defined on a interval that strictly contains
[0, 2] and €'(x,) < 0. If €/(z,) < 0, e must actually cross 0 and must become negative as
x crosses .. On the other hand if ¢/(z,) =0

v u
e (w2) = (1 + ) (22) = =2 e+ u())?
uQ «
and e crosses 0 unless u(zy) = —c¢; and simultaneously «/(z,) = 0. But, then, repeated
differentiation shows that, if u(z.) = —c1, e(zs) = 0 and €'(z,) = 0, derivatives of e and u

at x, vanish to all orders. By analyticity of solutions of an analytic ODE (note that u > 0),
e =0 and u = —¢y, contradicting e(0) > 0.

Therefore in any cases, there exists ¢ > 0 small enough such that (u,e) is defined on
[0, 24 + €], e negative on |z, x, +¢] and u positive on [0, z4 +£]. By continuous dependence
on parameters, c lies in the interior of C¢. In particular ¢ & OC.

Case (iii) : u(zs«) = 0 and x, < 1. In this case, Lemma 3.2(iii) shows that c¢;, c2 < 0.
Let (é1,¢2) close enough to (c1,c2) and denote by (4, €) the maximal solution of Problem
(2.6)-(2.7) associated to (¢1,¢2). We then take a § associated to ¢ = 1 — x, in Lemma
3.2(iv) that works for any (¢, é2) close enough to (¢1,c2). By continuity of u and e, there
exists a number g > 0 small enough such that 0 < u(z, — p),e(w. — p) < §. Then,
by continuous dependence on parameters, for any (¢1,¢2) close enough to (c1,c2), (@, €) is
defined on [0,z — pu] and 0 < w(xy — p), é(zs — p) < 0. Lemma 3.2(iv) shows that there
exists T € [z — p, 1 — p], €(Z) = 0. In particular, ¢ ¢ OC. O

We can now show that ¥ defined in (2.9) is continuous.

Proposition 3.4. The map VU is continuous on C and can be extended to C as a continuous
map denoted again V.

Proof. The fact that W is continuous on C follows from continuous dependence on parameters
of solutions of an ODE (and the fact that the map ® defined in (3.1) is locally Lipschitz).
We consider now ¢ = (c1,¢2) € OC. Proposition 3.1 shows the maximal solution (u,e)
of (2.6)-(2.7) is defined and continuous on [0,1) and can be extended continuously to 1
with e(1) = 0 and u(1) > 0. Therefore, we can define ¥(c) = (u(1),0). If u(l) > 0,
(u,e) is defined on a interval that strictly contains [0, 1] and by continuous dependence on
parameters, ¥ is continuous at ¢. We know have to deal with the case u(1) = 0. Lemma
3.2(iii) shows that ¢, co2 < 0. Consider € > 0. Let ¢ € C close enough to ¢ and denote by
(u, €) the maximal solution of Problem (2.6)-(2.7) associated to ¢. By continuity of (u,e)
there exists z, € (0,1) such that 0 < u(z«),e(z+) < 5. Then, by continuous dependence on
parameters, for any ¢ close enough to ¢, we have 0 < @(z4), é(zs) < e. Finally, since ¢ € C,
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by taking e small enough, Remark 3.3 gives 0 < @(1) < Me (where M depends only on ¢
and I'). Hence, ¥ is continuous at c. O

4 Existence

We are now ready to study existence. We first show that ¥ is “proper” in the following
sense.

Proposition 4.1. Assume that ug > 0,eq > 0 are fived. Let ¢ = (c1,c2) € R2, such that
le| > 1 and denote by (u,e) the mazimal solution of (2.6)-(2.7). Then, if ¢ € C, either
u(l)>1,e(1)>1or0<u(l) 1.

Proof. Several situations can happen.
Case (i) (e1 > 1). If c€C, u%u’ > c1 +up and u(1) > “2(cy 4 ug) + uo > 1.
Case (ii) (c2 < —1). We consider the energy y = 5%-u? + i~e. Then,

2ug

2
u
y’:cg+(F+1)e+?§62+My

where M is a constant depending only on I',ug, a,v. Therefore, there exists a constant
A > 0 depending only on ug, eg, a, v, " such that for any co < —A, ¢ & C.
Case (iii) (co > 1). Let ¢ € C. We consider again the energy y = 5%~u? + w-e. Then,

2ug

2
u
y'ZCQ—i-(F—Fl)e—I—?ZcQ—i—my

where m is a constant depending only on I', ug, o, v. Therefore either e(1) > 1 or u(1) > 1.
Case (iv) (c;7 < —1 and co < A, for A sufficiently large) Let ¢ € C. Using again
Y= ﬁlﬂ + e and following case (ii), we get y' < A+ My. In particular, since ¢; < —1,
there exists a constant B depending only on ug, eg, o, v,I', A such that e < B on [0,1].
Using this fact on the u-equation of System (2.6), we get
I'B

a
—u <c+u+—.
Uug

u
Noticing that u%u/ < %cl for u € [—% — %\/icf —4I'B, -9 + %\/%C% — 41“3}, we obtain
that u(1) < =G — 34/3¢f — 4B < (¢ and u(1) < 1. O

Remark 4.2. We proved in the previous proposition that there exists a constant A > 0
depending only on ug, eg, o, v, ' such that for any co < —A, ¢ € C (see case(ii)). Note also
that if u—”oeo 4+ cog — crug — %u% +e9 <0 and c; +uy >0, then ¢ ¢ C. Indeed, in this case,
u increases and —ciu — %uQ < —cug — %u% so that e is decreasing, € < —eqy and then e
crosses 0 in (0, 1].

The previous proposition is not empty in the sense that C is not bounded.
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Lemma 4.3. Assume ug > 0,eq > 0 are fized. There exists a positive number A depending

A(lez

only on I', ug, ey, a, v such that if c; +ug + Fuio‘ﬂ) < 0 and ca+ ey > 0, then (¢1,c2) € C.

Proof. For ¢ = (c1, c2), we denote by (u, e) the maximal solution of Problem (2.6)-(2.7) and
by I its interval of definition. Following case (ii) in the previous proposition there exists
a constant A > 0 depending only on T',ug, g, v, v such that e < A(|cz2| + 1) on [0,1] N 1.
Then, we saw that so long as 0 < u < ug,

A 1
gu’ §cl+u+FM and Le’ > c9 +e.
uQ u ()
Since v/(0) < 0 and €'(0) > 0 we get from Lemma 3.2(i)-(ii) that [0,1] C I, e is increasing
and 0 < u < wug on [0,1]. In particular ¢ € C. O

We now define for ¢ > 0, E. = {(2,y) € R? e < z,y < %} and Q. = V~1(E.). By
continuity of ¥ (Proposition 3.4) and Proposition 4.1, Q. is open, bounded and Q. C C.
We denote V¥, as the restriction of ¥ to €)..

Corollary 4.4. Assume that ug > 0 and eg > 0 are fixed. Let uy > 0, e; > 0. Then
for e > 0 small enough, (u1,e1) & ¥(0Q:) and the Brouwer degree d(¥., ., (e1,u1)) is
independent of (u1,e1) and €.

Proof. Let u; > 0,e; > 0. First, Proposition 4.1 shows that U~!(uy,e;) is bounded and
included in the open set €. for € small enough. In particular, d(V., €, (e1,u1)) is inde-
pendent of € small enough. Furthermore, we also get from Proposition 4.1 that for any
te[0,1], (1 + (1 —t)us, 1+ (1 —t)er) & ¥(09) if € is small enough. Hence, by homotopy
invariance, d(Ve, Qe, (e1,u1)) and d(V,Qe, (1,1)) are equal. O

Corollary 4.5 (Large-data existence). There is at least one steady solution for every choice
of left and right data.

Proof. Applying Corollary 4.4, we find that the Brouwer degree is independent of the target
(u1,e1). Thus we may compute the degree at the constant data (u,e1) = (ug, eg). But, by
Theorem A.9, constant solutions of general systems possessing a convex entropy are globally
unique and nondegenerate in the sense that det(d¥(—uo — I't2, —(1 + I')eg — 2ud)) # 0
(indeed, we may check by direct computation the map W is full rank at the corresponding
value), and thus the degree for constant data is 1.2 But this implies that the Brouwer
degree is £1 for all values of the target. Since degree is 0 in a domain without any roots,
this implies in standard fashion that there exists at least one solution for any choices of

target (ug,eq). O

*Here, we are using the standard fact that (2.5) possesses a convex entropy [Lax73, Smo94].
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5 Uniqueness

Proposition 5.1. If v := det(d¥(c)) does not vanish on the feasible set C, then solutions
of (2.10) are globally unique for each choice of data (po,uo, €0, u1,€1). If on the other hand
~v changes sign on the feasible set C, then even local uniqueness is violated; in particular,
there is at least one choice of data possessing multiple solutions.

Proof. Nonvanishing of « implies nonvanishing of the Jacobian determinant det(d¥(c)),
which implies constant sign and full rank at all points c¢. It follows that the degree of ¥
with respect to a target (u1,e1) is exactly equal to the (constant) sign of  times n, where
n is the number of solutions for that data. Since we have already shown that degree is
identically equal to +1, this is a contradiction unless roots are unique i.e., n = 1. This
proves the first assertion. For the second assertion, just notice that uniqueness implies that
degree is equal to the sign of « at the unique solution and therefore a change of sign in v
implies a change in degree hence by contradiction uniqueness is impossible when v changes
sign. O

Conclusion: Uniqueness or nonuniqueness hinges on nonvanishing of det(d¥(-)) on C.

6 Spectral stability and the Evans function

We can reduce Problem (2.1) to

pt+ (pu), =0,
pug + puuy + (Tpe)y = atig, ,

pet + puey + I'peu, = vey, + aui ,
from which we obtain the eigenvalue problem about a steady state (p, a, €)

Mo+ (pu + ip), =0,
(6.1) Apu + (puu +Tpe+Tép), + Uy (pu+ Up) = aty,,
Ape + (pue), + €5 (pu + p) + IT'péuy + Ty (pe + €p) = veyy + 2at,u, ,

with boundary conditions
(6.2) (021, €)(0) = 0, (1w, )(1) = 0.
Note that for A = 0 the previous system can be written in the alternative form

pu+up =0,
(6.3) (ptu +T'pe +T'ép), = atgy,
(1 +T)pae + ﬁﬂzu)x = Vegy + a (Uug + Ugu), .
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The Evans function [Rou01, SZ01] is defined as?

(6.4) D()\) := det (28)) zj((m ,

where (pj,uj,e;) are solutions of (6.1) with initial conditions
(Pl, uy, e, ulla 6/1)(0) = (O’ 0,0,1, 0)? (92, uz, €2, u,27 6,2)(0) = (Oa 0,0,0, 1)'

Evidently, D(-) is analytic in A on all of C, and real-valued for A in R, with zeros corre-
sponding to eigenvalues of the linearized operator about the associated steady solution.*

Conclusion: Spectral stability is equivalent to nonvanishing of D on {RX > 0}.

6.1 The stability index

It is readily seen (see, e.g. [MZ19]) that D(A) # 0 for A real and sufficiently large, hence
we may define as in [GZ98] the Stability index

p = sgnD(0) < lim sgnD(A))
A—+00rcal

as a nonvanishing multiple +sgnD(0) of sgnD(0). Evidently, 1 determines the parity of the
number of roots of the Evans function with positive real part, or, equivalently (since complex
roots occur in conjugate pairs), the number of positive real roots, with +1 corresponding
to “even” and —1 to “odd”. As such, it is often useful in obtaining instability information.

Moreover, we have the following key observation relating the low-frequency stability
and the stability index information to transversality of the steady profile solution of the
standing-wave ODE.

av

Lemma 6.1. The zero-frequency limit D(0) is equal to - multiplied by the Jacobian de-
0
terminant det(d¥(c)) associated with problem (2.10) evaluated at root c.

Proof. The proof amounts to the observation that the operations of linearization and inte-
gration of the standing-wave ODE commute. Taking the variation of the profile equation
(2.6) with respect to c gives

O‘"=¢1+a+r<‘f—iu),
U a4 U
(6.5) Yo = g — (18 + c10) — i + &,
m

(@,€)(0) = (0,0),

3We are using here the standard approach [AGJ90, GZ98] of rewriting (6.1) as a first-order system and
a Cauchy problem

4Indeed, as standard in Evans function theory, zeros correspond in both location and multiplicity to
eigenvalues of the linearized operator about the wave; see, e.g., [AGJ90, GZ98, ZH02] in the whole-line case.
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where " denotes variation. Furthermore, we deduce from relations (2.8) that
(é1,é2) = <O‘u’(0), Ze(0)+ m’(o)) .
ug uo

It is readily verified for A = 0 that the eigenvalue equations (6.3) can be integrated from 0

to z to yield the same system (6.5) (note that pt = wug). Therefore, keeping the notations
2

of (6.4), for (¢1,¢2) = (1,0), (@, é) = “(u1,e1) — u—yo(ug,eg), whereas for (¢1,¢2) = (0,1),

(1, €) = =2 (ug, e2). The result follows. O

Remark 6.2. The previous lemma gives us another way to compute D(0). Considering the
problem

2 T
gu’:dl+ <1—Fe>u—|—Ae,
U

uo ’112
(6.6) Lo =dy — dyii — Silu+ e+ TDou,
uo uo u

u(0) = 0,e(0) =0,

we have
ur(1) uz(1)
Do) =der(201) ()

where (uy,e1) solves (6.6) for (di,ds) = (5‘—0 —ug — I’Z—g, o — ey — %ug — Feo) and (ug, e2)

solves (6.6) for (dy,d2) = (—uo I e —eo— Fud — Feo) (see (2.8) for the link between
(c1,¢2) and (u'(0),€(0)).

Remark 6.3. Lemma 6.1 is analogous to the Zumbrun-Serre/Rousset lemmas of [Z599,
Rou01] in the whole- and half-line case, which say D(X) ~ ~v0(\) for |\| < 1, where ~
is a Wronskian encoding transversality of the associated standing-wave ODE and § is a
Lopatinski determinant for the inviscid stability problem (here trivially nonvanishing).

Conclusion: Both Brouwer degree v = sgn(det d¥) and stability index p are deter-
mined by sgn(D(0)), hence (by Proposition 5.1 and the discussion just above) uniqueness
and topological stability information may be obtained by evaluation of D(0) on the feasi-
ble set C. In particular, differently from the cases of the whole- or half-line (see, e.g., the
discussion of [ZumO01, §6.2]), changes in stability/Morse indezx associated with passage of a
single eigenvalue through A = 0 are necessarily associated with bifurcation/nonuniqueness.

7 Numerical investigations

7.1 TFeasible set

For our numerical studies, we rescale (2.1) through the following change of coordinates,
p = pop, U = U, € = u%é, t = u—to, a = pooq‘m, U= po';m, which allows us to always fix
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po = ug = 1. We note that the assumption concerning the ratio of viscosities for simple
gasses still holds under this change of coordinates, 160 = a(27I'+12). Hereafter, we drop the
bar notation. To map out the feasible set, we solve the profile equation (2.6) (with ug = 1)
as an initial value problem on the interval [0, 1] with initial conditions (u,e)(0) = (1, ep) for
various values of the integration constants c1, co. We center the map about the integration
constants corresponding to the fixed point, ¢; = —1 —I'eg, co = —% — (1+T)eg. We tested
our feasibility set independently using a constant step-size RKF four to fifth order scheme
we coded by hand, and using standard suite software in MatLab. For improved accuracy,
for the large scale study we use MatLab’s odel5s routine which is an adaptive step, stiff
ODE solver. The solver warnings alert us to finite blowup, and testing a solution tells us
whether or not v and e remain positive throughout the unit interval. In Figure 1, we plot
some examples of the feasible set. Note that the feasible set is unbounded (see Lemma 4.3).

7450 100 -0 0 50 100 Y150 100 50 0 50 100

Figure 1: (a) Plot of the feasible set as eg varies when I' = 1, a = 0.1, and v = 0.244. (b)
Plot of the feasible set with black dots, the set where u goes negative on [0, 1] with blue
circles, the set where e goes negative on [0, 1] with green stars, and the set where there is
finite time blowup on [0, 1] with red + signs for « =2, v = 3.75, ' = 2/3, eg = 2. (c) Plot
of the feasible set with black dots, the set where u goes negative on [0, 1] with blue circles,
the set where e goes negative on [0, 1] with green stars, and the set where there is finite
time blowup on [0, 1] with red + signs for « = 0.2, v =1, ' = 2/3, ey = 2. A bold magenta
dot marks the constant solution on plots (b) and (c).

We ran large batch jobs to test if the following parameters lie in the feasibility set,

(', a, e, Acy, Acg) € {2/3,2/5,1} x 1in(0.1,2,10) x lin(0.001, 10, 30)
x lin(—50, 50, 50) x lin(—50, 50, 50),

where lin(a, b, ¢) indicates the set containing c¢ evenly spaced points in the interval [a,b],

V:m#(?m, and 01:—1—F€0+A01, CQ:—%—(l—FF)eo—i—ACQ.

7.2 Evans function computations

To compute the Evans function, we use the the flux coordinates described in Section 3.1 of
[BHLZ18a], which is equivalent to computing with coordinates (p,u,e,u’,e’) as described
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in Section 6. To improve numerical conditioning of the computation, we evaluate the
Evans function wronskian at z = 1/2 with ODE solutions given in the definition of the
Evans function initialized at 2 = 0 with {(0,1,0,0,0)7,(0,0,1,0,0)"} and at z = 1 with
{(1,0,0,0,0)T,(0,1,0,0,0)7,(0,0,1,0,0)} to recover, as given by Abel’s Theorem, a non-
vanishing multiple of the Evans function. We also use the method of continuous orthog-
onalization [HZ06] without the radial equation using Drury’s method [Dru80] in order to
compute the ODE solution, which resolves computational challenges due to differing growth
modes. To verify the correctness of our code, we computed D(0) with the radial equation
by initializing the ODE solutions at x = 0 only and evolving them to take the determinant
at x = 1 with the initializing basis there, and checked that this matched the value of D(0)
computed with the definition given in (6.4). We further note that our code, which is part of
STABLAB [BHLZ], is well tested by this point; for example see [BHLZ15, BJN*T17, BLZ11].

7.3 Winding number computations

To test for the existence of unstable eigenvalues, we compute the Evans function on a
contour consisting of the boundary 95 of the set S := {z € B(0,100) : R(z) > 0}. We use
the functionality built into STABLAB [BHLZ| that adaptively chooses the mesh along 95
so that the relative error between any two consecutive points on the image of 9.5 under the
Evans function, Cg, varies by no more than 0.2. We then compute the winding number of
Cg, which is the number of eigenvalues of (6.1) inside S. In Figure 2, we demonstrate the
profile and corresponding Evans function computation for representative parameters.

We computed the Evans function on the contour 9S for the parameters, if they are in
the feasible set, given by

(T, a, e, Act, Ac2) € {2/3,2/5,1} x 1lin(0.1, 2, 10) x 1in(0.001, 10, 30)
% lin(—50, 50, 50) x lin(—50, 50, 50),

where lin(a, b, ¢) indicates the set containing c¢ evenly spaced points in the interval [a,b],
V= W, c1 =—1-Tey+Acy, and cg = —% —(14T)eg+ Acy. In all, we computed the
Evans function on 670,926 contours, and in all cases found the winding number to be zero.
To complete these computations took the equivalent of approximately 83.8 computation

days on a desktop with 11 duo cores.

7.4 Global uniqueness/stability index

For the parameters in the feasible set described in Section 7.1, we computed the Evans
function at the origin, D(0). We found that the smallest value of D(0) for the computed
parameters is 4.19e-4. Thus, D(0) appears not to vanish on the feasible set, confirming
global uniqueness. See Figure 3 for a demonstration of how D(0) varies as ¢; and ¢y vary
in the feasible set.
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Evans Function
500 -~ 1:
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Figure 2: For the parameters a = 0.1, I' = 1, v = 0.2438, ¢g = 0.001, ¢; = —18.35,

and co = 0.5184, we plot (a) the boundary layer profile, and (b) the image S := {z €
B(0,100) : ®(z) > 0} under the Evans function. The winding number is zero indicating
spectral stability of the boundary layer profile.

100

50

-50

-100 1

-150
-150  -100 -50 0 50 100

(b) “

Figure 3: In these figures, o = 0.73, I' = 2/3, v = 1.375, and eg = 0.001. (a) Plot of D(0)
against ¢; and cy. (b) Plot of the feasible set corresponding to Figure (a) with black dots,
the set where u goes negative on [0, 1] with blue circles, the set where e goes negative on

[0,1] with green stars, and the set where there is finite time blowup on [0, 1] with red +
signs.
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8 A numerical counterexample

We now consider equations (2.1) subject to the equation of state é(r,S) = § +5+ é

considered in [BFZ15], where 7 corresponds to specific volume and S corresponds to entropy.
Specific density is given by p = %, and T =ég = § +1,s0 5 =11

o or

(8.1) S=2S8(p,T)=In <Tp_1> .

From this, we obtain

- 1
p:p(p,T)=—eT:p(T—1)—;,
(8.2) 0
e:é(p,T)_T—1+ln<> —|—§p2,

closing the system, together with the energy relation £ = e + %uQ, in terms of variables
(p,u,T), T > 1. Alternatively, inverting the relation e = é(T, p) using ér > 0 for T' > 1,
we may consider it as implicitly determining a system in the usual variables (p,u,e), with
e > 0. This is the system referred to as the local model in [BFZ15]. Notably, the function
n = —8(p,T), with S as in (8.1) considered as a function of the conservative variables
(p, pu, E) is a convex entropy for system (2.1) in the sense of Appendix A.4; see [BFZ15].

In [BFZ15] it was shown that the local model considered on the whole line has unsta-
ble shock waves for parameters for which the inviscid system has stable waves. Here, we
demonstrate that the local model considered on a finite interval has parameters for which
uniqueness of solutions fails, and also other, nearby parameters for which a Hopf-bifurcation
occurs.

These results are guided by the general principles of Appendix A.6 relating spectra
of standing shocks on the whole line to spectra of pieces thereof, considered as solutions
on a finite interval. The first relevant principle is that spectra on the interval are, for
RA > 0 and A # 0 given in the limit as interval length goes to infinity- equivalently, as
viscosity goes to zero- by the direct sum of spectra on the whole line together with spectra
of constant boundary layers on the half-line with data corresponding to that on the left
(resp. right) endpoint of the interval. This implies that strict instability on the whole
line implies strict instability on the interval (Proposition A.10), with associated stability
transition as amplitude is increased from a constant steady solution to an unstable one.?

The second principle is that in the same large interval length/small viscosity standing-
shock limit, the stability index does not vanish (Proposition A.11), or equivalently D(0) # 0.
Thus, if a homotopy is taken from stable constant solutions to unstable standing shock
solutions, entirely within the class of standing shocks with sufficiently large interval/small
viscosity, then the associated stability transition cannot correspond to a simple crossing of
an eigenvalue through the origin A = 0, as D(0) # 0, and must therefore involve the crossing
of one or more pairs of complex conjugate roots, i.e., a Hopf-type scenario.

®Stability of constant steady solutions for entropy systems is shown in Theorem A.9), Appendix A.4.
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On the other hand, the first cited principle implies that two of these roots must be near
the pair of roots at the origin of the whole-line shock as it undergoes transition to instability:
one “translational” eigenvalue fixed at A = 0 and the crossing eigenvalue corresponding
to instability. Thus, we have the picture of a Hopf bifurcation with very nearby roots,
i.e., with associated time-period going to infinity, a quite delicate scenario. This makes
numerical verification somewhat sensitive; however, it also aids us in finding a more standard
bifurcation in the form of a single crossing eigenvalue through A\ = 0, as we are able to find
by playing with the left and right boundaries of the interval for a given, sufficiently large-
amplitude standing shock on the whole line.

8.1 Nonuniqueness
8.1.1 Abstract bifurcation result

We first demonstrate a bifurcation implying nonuniqueness. Namely, we show for the local
model with finite boundaries that D(0) changes sign as xy, and zr vary, where the local
model is posed on the finite interval given by [zp,xRr]; see Figure 6 (a)-(c). Defining by
¢«(xr, zR) the value of ¢ corresponding to the shock profile on [z, xg], define the map

®(c;xr, xr) = Y(cs(xr, 2R) + 2L, xR) — Y(cx(TL, TR); L, TR),

where ¢ (x;xp,zR) is the solution map 1 associated with the interval [zp,zg|. Then
®(0;xr,2xr) = 0, reflecting the fact that the shock profile restricted to [xr,zpr] solves
its own data. Existence of additional roots ¢ # 0 for some x, zr implies nonuniqueness for
the same data. Nonuniqueness is then a consequence of the following abstract bifurcation
result in the spirit of Proposition 5.1.

Proposition 8.1. Let ®(c;p) : R™ x R satisfy ®(0;p) = 0. If v := det(d®(0;p)) changes
sign as p crosses a particular bifurcation value p = py, then ®(-;p) has a nontrivial root
¢ # 0 for p arbitrarily close to ps.

Proof. Arguing by contradiction, suppose that ¢ = 0 is the unique root of ®(¢;p) = 0
for p in a neighborhood of p,. Thus, ® does not vanish on the boundary of a small ball
B(0,7), hence the topological degree of ®(-;p) is independent of p. However, at p for which
det(d®(0;p)) > 0, the degree is by the assumed uniqueness of roots equal to +1, while at
points p for which det(d®(0;p)) < 0, the degree is —1, a contradiction. O

To show non-uniqueness, we first solve for the profile corresponding to the whole-line
shock. Then we take the piece of that solution on [z,zg| as the profile for the finite
boundary problem posed on the same interval. The computations showing non-uniqueness
are relatively difficult. In the following discussion, S_ := lim,_,_ S(x), is the left end
state value of entropy in the whole-line shock wave solution of the local model. To solve for
the profile, we fix the parameters @« = k = 1 and take S_ = 1. From the Rankine-Hugoniot
conditions, we obtain the other parameters. We then use MatLab’s bvpbc boundary value
solver to obtain the whole-line viscous shock solution. Next, we use continuation with 30
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evenly spaced steps in S_ to obtain the solution at S_ = —5. That is, we change the
parameter S_ by a small amount and solve for the other parameters given by the Rankine-
Hugoniot conditions, then use the profile solution corresponding to the previous value of S_
as an initial guess in bvpbc to solve for the profile for the new parameters. In solving for
the whole-line profile, we use the profile_flux module built into STABLAB which adaptively
increases the spatial domain [—L, L], L > 1, until the profile converges to the fixed-point
end states corresponding the shock at x = oo to within requested tolerance, which was le-
6 in this study. To compute the Evans function, we used the same procedure as described
in Section 7.2, except that we evaluated the Wronskian to obtain the Evans function at
x = 0 instead of (1, +xr)/2, and we used “pseudo-Lagrangian coordinates” as described in
[BHLZ18b] to reduce winding in our winding number studies without changing the zeros of
the Evans function. In the Evans function computations, we used odelbs in MatLab with
the requested relative and absolute error tolerance set to le-10 and le-12 respectively.

8.1.2 Multiple solutions

We next find numerically an explicit example of two distinct profiles solving the same data.
To demonstrate abstract non-uniqueness of profile solutions, our general strategy was to
take a piece of the whole-line shock for an unstable wave in the local model, and truncate it
to a finite interval. By varying the boundary on the left of this finite interval, we were able to
observe a change of sign of the Evans function evaluated at the origin, D(0), indicating non-
uniqueness of solutions occurs. Fixing the interval to be [z, zgr] = [-33.17,2.9], we then
computed the Evans function at the origin for profiles with varying ¢; and ¢z to find regions
in ¢; and co for which D(0) has opposite sign; see Figure 4(a)-(b). Explicit parameter pairs
(é1,¢2) and (¢, ¢2) that correspond to two distinct profiles solving the same data must lie
in regions for which D(0) has opposite sign. We note that the null clines of D(0) shown in
Figure 4 are nearly parallel, which is expected since these profiles are nearly translationally
invariant. Indeed, it is the small eigenvalue corresponding to translational invariance of the
whole line profile that makes these computations delicate.

A nice way to find two parameter pairs corresponding to two distinct profiles solving
the same data is to look at null clines of the mappings M;(c1, c2) = ur(c1, c2) — uj (¢}, c3)
and Ma(c1, c2) := Tr(c1,c2) —T7(c},¢5). Here (¢}, ch) are fixed constants of integration that
correspond to the whole line shock, which constants of integration we find by solving for
them in the Rankine-Hugoniot equation. The other terms used in defining M7 and Ms, that
is ur(c1,c2) and Tr(cq, c2), are the components of the profiles evaluated at x = x. We note
that these profiles have the same data at = x g as the the profile corresponding to (¢}, ¢3).
In particular, ug(c1, c2) = ur(ci, cs) and Tr(c1,c2) = Tr(c}, ¢5). The levels sets of M; and
My intersect in two locations, which we name (éq,¢é2) and (é1,¢2), along the same curves
indicating that these constants of integration correspond to two distinct profiles solving the
same data; see Figure 4 (c)-(d). We plot the profiles corresponding to (¢1,¢2) and (é1, ¢2) in
Figures 5(a)-(b). We note that there is approximately a 20% difference between the lower
curves, in terms of the ratio of the ~ 0.2 maximum difference between the two curves to
the = 1.0 total variation of each curve, far more than can be attributed to numerical error.
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Figure 4: Figures (a)-(b) demonstrate that D(0) changes sign as ¢; and ¢z vary. Figures
(c)-(d) indicate that there are distinct profiles that solve the same data since there are
nullclines of M; and M that intersect twice. (a) Plot of D(0) against ¢; and ca. (b) Plot
of sign(D(0)) against ¢; and ca. (c) Plot of the null clines of M; and M. Dots indicate
intersections of the null clines. (d) Plot of only the two intersecting null clines seen in (c).
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Figure 5: (a) Plot of the two profiles, solving the same data, against z. The solid blue
curves and dashed red curves correspond to the profiles with ¢; and ¢y values plotted as
dots with the same colors in Figure 4(c)-(d). (b) Zoomed in picture of (a) near x = zp.
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Figure 6: The parameters of the local model in this figure are y = 0.5, k = 1, T_ ~ 1.001,
T, =2, p_ ~ 00769, py =1, uy ~ 1041, u_ ~ 13.53, and M ~ 1.041. (a) Plot of D())
against A where z, = —0.5 and zp = 2.15. (b) Plot of D(\) against A where zy, = —0.7
and zr = 3.01. (c) Plot of the whole-line viscous shock profile. (d) Plot of D()\) against
A where z, = —4.3 and xp = 4.3. (e) Plot of I(D())) against R(D(N)) where z, = —4.3,
xr = 4.3, and D(-) is evaluated on 9({z € B(0,1e — 3) : R(z) > 0}). (f) Zoomed in view of
().
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8.2 Hopf bifurcation

Using the same shock parameters in the local model that we used to show a bifurcation
implying non-uniqueness, but with different choices of left and right boundary, we can
show also the existence of a Hopf-bifurcation. When the finite boundaries are x; = —4.3,
xr = 4.3, and the whole-line shock is truncated to [z, x|, the Evans function evaluated
on the real line segment [0,1073] has no zeros, whereas the image of the Evans function
evaluated along 0({z € B(0,1e — 3) : R(z) > 0}) has winding number of two. Thus, there
is a complex conjugate pair of eigenvalues with non-zero imaginary part, indicating that a
Hopf-bifurcation occurs; see Figure 6 (d)-(e).

A General systems

In this appendix, we augment our results for polytropic gas dynamics with a series of partial
results for general systems, some of which are used in the main body of the paper. Consider
steady solutions of general viscous conservation laws:

(A.1) BtU+f(U)x:(B(U)UI)w ,0<z <1, ,t>0,
where

U;r _ 0O O
U= ER" xR B= , Bog € M,,_,(R),
<UH> <0 B22) 22 (R)

with the boundary conditions

U
(A.2) U(0) = Uy = (UOI) and Uz (1) = Ugy.
071

We make the following assumptions:
(HO) f and B are smooth.
(H1) Boa(U) + Baa(U)t > 0 for any U.
(H2) for f = (fr, f11), the partial derivative (dfr);(U) has positive eigenvalues for any U.

Condition (H1) corresponds to the strict parabolicity of (A.1)°. Condition (H2) means
that the flow moves from the left to the right (which explains the boundary condition for
Ur at = 0). In the following, we define A(U) = df(U) and

A11 A12
A = s A E l“r R .
(Agl Agz) 1 ( )

Snote that B2 (U) is necessary invertible.
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A.1 The linear case
We assume in this part that df and B are both constant. We have the following proposition.

Proposition A.1. If df and B are both constant and conditions (HO)-(H2) are satisfied,
Problem (A.1) has a unique steady state that satisfies the boundary condition (A.2) if and

only if

(A3) o (3521 (AQQ — A21AI11A12)> N Qiﬂ'Z\{O} = (.

Remark A.1. Condition (A.3) is a compatibility condition between the parabolic and the
hyperbolic part. A similar condition was assumed for the study of quasilinear noncharacter-

istic boundary layers (on the half-line) in, for instance, [Mét03, Lemma 5.1.3] or [Mét04].
For example, the following system does not satisfy Condition (A.3)

v+( Y Vo —v, 0<z<1.
27 0

and any constant state U must satisfy U(0) = U(1).

Proof. We can rewrite the problem as
AU+ AwUp; =0,
AglU} + AQQU}I = BQQU},I.
Then, integrating, we get

{ AnUr + AU = Cy,
A Ur + AU + Cy = ByoUy,

where C1 = A11Uj9 + A12Ur10 and Cs is a constant that has to be determined. Then, since
Aq1 is invertible, we obtain

{ Ur = A Cy — A AU,
Ul = Byy' (Agg — Ag A A12)Urs + By (Co + A1 ATCY).

Denoting A = B;21 (AQQ — AglAilAlQ) and é == 3521 (02 + A21Af1101), we solve

{ Uy = AU+ C
Urr(0) = Urpo.

0

We decompose A as A = P~1 B
0 F»

) P where P and F5 are invertible and F is strictly
upper triangular. We get that
~ 1 SFld O ~
Un(1) = eAv(0) + Pt (o €7ds PC.
(1) =e"Ur(0) + ( 0 Fyl (e — 1)

Thus, we see that the map Cy — Ujr(1) is invertible if and only if o(A)N2i7Z\{0} = 0. O
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A.2 Almost constant steady states

We next study the existence of steady states for system (A.1)-(A.2) under the spectral
assumption (A.3). We seek solutions U of

(A.4) (f(0))s = (B(ﬁ)ﬁm> L0<z<1,U(0)=Up,Up(l) = U

x

Similarly as for gas dynamics, for Uy fixed, we define the map
O : (U1, Co) = Urr(1) = Uypr € R
for (Ui, C2) € R™™" x R™" such that the maximal solution U of the ODE
(A.5)  Boa(U)Upy = f11(U) = f11(Up) + Baa(Uo)Cs , Urr(0) = Uorr , f1(U) = fr(Uo)
is defined on [0, 1]. Thus, profiles are equivalent to roots Cy of ®(Uyyy, ).

Theorem A.2. Let Uy € R" and assume conditions (HO)-(H2) are satisfied. Assume that
Condition (A.3) is satisfied for A = df (Uy) and B = B(Up). There exists 6 > 0 and € > 0
such that for any Uyrr with [Uprr — Uirr| < 6, there ezists a unique solution U of (A.4)
satisfying

U3(0)| <ee.
Moreover, the solution is nondegenerate: i.e., corresponds to a nondegenerate root of ®.

Remark A.3. We do not claim that for Uirr close enough to Upry, there exists a unique
solution of (A.4). The previous theorem only gives a local uniqueness.

Proof. Let us fix Uy € R™. First, we notice that for Uy;; = Uyyy, U = U is a solution
of (A.4). Then, by continuous dependence on parameters on the ODE, (H2) and the
implicit function theorem on the constraint f;(Ur, Urr) = 0, for (Uirr, C2) close enough to
(Uorr,0), one can express Ur as a function of Uy and the maximal solution U of (A.5) is
defined on [0,1]. Therefore, we can define the map ® on a neighborhood V' of (Uysys,0)
in R"" x R"". The function ® is C! on this domain and ®(Up;7,0) = 0. Then, for any
D € R™", dy®(Up,0) - D = Vi (1), Vi solving

Bao(Uo) Vi = (Agg — Aot AT A12)(Uo)Vir + Co + (Ao A1) (Uo)Ch , Vir(0) = 0,

with C1 = A11(Uo)Uro + A12(Uo)Ur1o. As in the proof of Proposition A.1, we can solve this
ODE and, using Condition (A.3), we obtain that da¢(Up,0) is invertible. The result then
follows from the implicit function theorem, as does nondegeneracy. O

A.3 Symmetrizable systems

The spectral condition (A.3) is satisfied for many physical systems. We first have the
following technical lemma.
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Lemma A.4. If A is symmetric and B + B' > 0, then o(B~'A) NiR\{0} c {0}.
Proof. If Bv = it Av for 7 # 0, we get
2iT(v, Av) = (v, (B + B")v) + (v, (B — B')v).
and since B + B! > 0, v = 0. O
We recall that (A.1) is said to be symmetrizable if:

(H3) there exists a smooth map S : U € R™ — S(U) such that, for any U € R", S(U) is

S1u(U) 0 )’ S(U)A(U) is symmetric

a definite positive symmetric matrix, S(U) = ( 0 Soa(U)
22

and Sao(U)Baa(U) + (S22(U)Baa(U)) > 0.
Then we have the following useful Lemma.
Lemma A.5. Under assumption (H3), o (B2_21 (Agg — A21A1_11A12)) NiR C {0}.
Proof. We note first that by assumption SogAs; = (S11412)!. Then we write
By (Ags — Ant AT A12) = (S22B22) " (Sa22422 — (S11412)" (S11411) ' S11 A1)
and the result follows from the previous lemma. O

Corollary A.6. For symmetrizable systems satisfying Conditions (HO)-(H3), almost con-
stant solutions of almost constant data exist and are locally unique, nondegenerate, and
spectrally stable.

Remark A.7. Note that contrary to the whole line situation (see for instance [Kaw83,
KS88, Zum04]) we do not assume a Kawashima’s genuine coupling condition. The main
reason behind is that a steady state U of a purely hyperbolic system on a interval under
assumptions (HO),(H2),(H3) is stable. Even better, any solution of Problem (A.1)-(A.2)

initially close enough to U is equal to U after a finite time.

Proof. Existence, local uniqueness, and nondegeneracy are immediate consequences of The-
orem A.2 and Lemma A.5. For spectral stability of a steady state U , one can easily adapt
[MZ19, Prop. 3.2] and prove that the spectrum of the linearized operator only contains
eigenvalues. We then consider the eigenvalue problem

AV 4 (AW, = (B(U)Vx + dB(U)VUm) V() =0, V(1) =0,

If U = Uy, one can check that (note that Conditions (H2)-(H3) give S11 A1 >0 7)

1
RA) (SW)V, V) 20,1+ (S22(Uo) B22 (Uo) Vires VH:c)L2<o,1)+§|\/511(Uo)z‘ln(Uo)VI(l)!2 =0

“since A11(U) is symmetric for the inner product associated to S11(U).
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so that Uy is spectrally stable. Furthermore, for almost constant steady states (meaning U,
small enough), using an appropriate Goodman-type estimate and Poincaré inequality, one
can check that

RO (£S@WV) 0 < =a (Vi V)

for some a > 0 and ¢ > 0 such that

PSAD) +¢ (SO AD) - SO)AWD)). ) <.

Then U is also spectrally stable. See [MZ19, Section 3] for similar computations in the
isentropic gas dynamic case. O

Remark A.8. Using the same kind of energy estimates, on can also prove the nonlinear
stability of a steady state. See [MZ19, Section 6] for similar considerations in the isentropic
gas dynamic case.

A.4 Systems with convex entropy

A system (A.1) is said to have a convex entropy [Kaw83, KS88] if it has and entropy/entropy
flux pair (1, ¢) : R® — R? such that

d’n >0, dndg =df , d*nB + (d*nB)! > 0 , with equality only on ker B.

It is a theorem of [KKS88] that existence of a convex entropy implies symmetrizability, i.e.,
reducibility by coordinate change to a system satisfying (H3) thus, we may deduce local
uniqueness information for systems with a convex entropy already by reference to Corollary

AL6.
Arguing directly, we obtain the following much stronger, global, uniqueness result.

Theorem A.9. For systems (A.1)-(A.2) with a global convex entropy and satisfying Con-
ditions (HO)-(H3), solutions of (A.4) for constant data Uprr = Uiy are globally unique,
nondegenerate (full rank), and spectrally stable, consisting exclusively of constant states.

Proof. Following [Lax73], we obtain by multiplying (A.1) by dn and using dndf = dq the
equation n; + ¢, = dn(BU,), = (dnBU,); — (U, d*nBU,). Since d*nB + (d*nB)! > 0, we
have (U,,d*nBU,) > 0, hence, integrating the steady equation from z = 0 to z = 1, we
obtain

(A.6) (q(U) — dn(U)B(U)U")|g <0,

with equality if and only if (U’, d>nBU’) = 0, or equivalently U}, = 0.

On the other hand, integrating the U equation, we have fr(U) = constant, whence, by
(H2) and the implicit function theorem, Ur(0) = Ur(1), and so U(0) = U(1). Thus, ¢(U)|}
vanishes in (A.6). At the same time, by addition of an arbitrary linear function, we may
take n without loss of generality to satisfy dn(U(0)) = dn(U(1)) = 0, whence the entire
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a) ) ' b) ' i c)
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Figure 7: Steady solutions of the Navier-Stokes isentropic equations on (0, 1) for a viscosity
v = 0.01. Panels a) and b) depict left and right compressive boundary layers, ¢) an interior
shock, and d) and e) left and right expansive boundary layers, each connecting to nonde-
generate rest states of the steady profile ODE, hence exponentially convergent. Panel f)
depicts a double boundary layer (expansive) consisting of left and right degenerate (hence
non-exponentially convergent) boundary layers meeting at a characteristic middle state.

lefthand side of (A.6) vanishes. Thus, we must have Uj; = 0 and Uj; = constant. Applying
(H2) and the implicit function theorem once more to solve for Us as a function of Uy and
f1, we find that U; = constant as well, yielding global uniqueness of the constant solution.
Nondegeneracy and spectral stability then follow by Corollary A.6. O

A.5 Small-viscosity/large interval asymptotics

In either the vanishing-viscosity limit, or the large-interval limit [0, X], X — +oc after
rescaling back to the unit interval [0, 1], we are led to consider in place of (A.1)

(A.7) U+ f(U)y =e(BU)U,), ,0<z<1,

with € = %, e — 07", and the steady profile equation is

(A.8) fU) = (BUU').

Formally setting ¢ = 0 in (A.8), we obtain f(U) = constant, or U = constant on smooth
portions, separated by standing shock and boundary layers. This indicates a rich “zoo” of
possible steady solution structures. Some examples from the isentropic gas dynamics case
are displayed in Figure 7.

A.5.1 Feasible configurations

It is readily deduced that the limiting configurations depicted in Figure 7 are in fact the only
possibilities for the isentropic case. For, pu = constant imposes p,u > 0 throughout the
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limiting pattern, whence all states have either one or two positive characteristics a = u £ c,
where ¢ is sound speed. This in turn implies, by general results of [MZ03] that, as rest points
of the scalar steady profile ODE, they are attractors or repellors, respectively. A nontrivial
nondegenerate boundary layer at the left endpoint x = 0 must terminate at x = 0T at a
rest point, which must therefore be an attractor; at the right endpoint, x = 1~ a repellor.
Interior shocks must connect a repellor on the left with a saddle on the right. It follows that
nontrivial boundary layers and interior shocks cannot coexist, but occur only separately.
Moreover, there can occur at most one nondegenerate boundary layer, either at the left
or the right endpoint. The final possibility completing our zoo of possible configurations
is a double boundary layer configuration, for which the end point must necessarilty be
degenerate, corresponding to a “sonic”, or “characteristic” point where v = ¢. Shocks
or boundary layers connecting to a nondegenerate rest point decay exponentially; those
connecting to a degenerate rest point decay algebraically. For further discussion of boundary
layer structure for the compressible Navier-Stokes equations, see, e.g., [SZ01, GMWZ05].
For the nonisentropic case, we again have p,u > 0, imposing in this instance that state
have either two or three positive characteristics &« = u — ¢, u,u + ¢; as rest points of the
steady profile equation, these correspond to saddle points or repellors, respectively. Similar
analysis to the above yields again that left boundary layers and shocks cannot coincide;
however, there is the new possibility of patterns consisting of a left boundary layer plus a
right boundary layer, or an interior shock plus a right boundary layer, as nontrivial right
boundary layers may connect to either repellors or saddles in the nonisentropic case.

A.5.2 Rigorous asymptotics

A very interesting open problem would be to carry out the zero-viscosity limit rigorously,
in preparation for the more complicated dynamics of the 2d shock tube problem. One
might hope also to understand the spectra of such wave patterns as the approximate direct
sum of the spectra of component layers, as would follow, for example, by the methods of
[Zum10, Zum11] if the components layers remained appropriately spatially separated in the
limit. A first apparently nontrival step, of interest in its own right, is to show for given
boundary data existence and uniqueness of feasible limiting patterns as described in Section
A5.1.

A.6 The standing shock limit

A simple case in which the zero-viscosity limit can be completely carried out is that of the
“standing-shock limit” generalizing the study of [Zum10] in the case of the half-line. This
consists of the study of a stationary viscous n-shock U (x) = U (1(z —3)) of (A.7), solving
(A.8) for all € > 0, with respect to its “own” boundary conditions, i.e.

Up=U%(0), UIT=0¢Q).

We consider this for the general class of system (A.1),(A.2) under assumptions (HO)-(H3)
plus the additional assumption used in [Zum10)]
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(H4) the eigenvalues of df (Up) and df (U;) are nonzero.®

Converting by 2 — £ to the large-interval limit and following the arguments of [Zum10]
word for word, we find that, away from A = 0, the spectra of the linearized operator about
ﬁX(x) = Us(em) on A > 0 approaches, as ¢ = % — 0T, the direct sum of the spectra
of the viscous shock U as a solution on the whole line plus the spectra of the constant
boundary layers on the half-lines (0, +0c) and (—oc,1) determined by the values of U at
0 and 1 with the boundary conditions for the steady problem at z = 0 and x = 1. As the
latter constant layers have been shown to be spectrally stable [GMWZO05], this implies that
the spectra of Ux converges away from A\ = 0 to that of U as X — co. Rescaling, we find
that, outside B(0,ce~!), any ¢ > 0, the spectra of U are well-approximately by e~! times
the spectra of U. We record this observation as the following proposition cited in Section
8.

Proposition A.10 (Spectral decomposition). For viscous n-shock solutions U of systems
(A.1) satisfying (HO)-(H4), the corresponding standing-shock family U¢ contains no spectra
R\ > 0 outside a ball B(0,ce™Y) for e > 0 sufficiently small, for any choice of ¢ > 0, if and
only if U is spectrally stable, i.e., has no spectra R\ > 0 with X # 0. In particular, if U is
spectrally unstable, then Ue is spectrally unstable for € sufficiently small.

Proposition A.10 gives no information about the corresponding stability index and the
uniqueness or the nonuniqueness. However, this is provided definitively by the following
result.

Proposition A.11 (Nonvanishing of the stability index). For viscous n-shock solutions U
of systems (A.1) satisfying (HO)-(H4), the Evans function D associated with the corre-
sponding standing-shock family U¢ satisfies D%(0) # 0 for e > 0 sufficiently small.

Proof. We only sketch the proof, which belongs more to the circle of ideas in [Zum10] than
those of the present paper. We first write the eigenvalue system in “flux” variables (urr, F')
as

Uty = Baa(U) ™ (Fir + AnUn),
(A.9) ~
F'=\U,
where F := B(U)U' — AU and U; = A'(F7 4+ A12Urz). This yields for A = 0 in the second
equation the simple dynamics F' = constant.

Next, we observe that the Evans function may be written equivalently as

uy, ... U; 0
DE()\):det<FIlI - Ui 1n> o,

8By (H3) the eigenvalues of df (U) are real and semi-simple since df (U) is symmetric for the inner product
associated to S(U).
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J
where <UH), j=1,...,r denote the solutions of (A.9) with initial conditions

FYJ
0
vy ... Uy _
(A.10) (Fl o )0= B(0) <0>
I,
at x = 0. In turn, we may view this as a Wronskian
Uy ... uy Uit Uyt

(A1) D =aee (G Gl G T

U
where <Ffjl>, j=r+1,...,n+r denote the solutions of (A.9) with initial conditions

upttoo Ut 0

(A12) (W o= (7
at x = 1.

By Abel’s theorem, vanishing or nonvanishing of the Wronskian (A.11) at =z = 1 is

determined by vanishing or nonvanishing at any = € [0,1]. By the analysis of [Zum10],
J

we find that, at * = ¢ for any ¢ > 0 sufficiently small, the solutions (Z{_{f), j=1,...,r

originating from x = 0 converge exponentially in X := 1/e to the limiting subspace of

solutions of (A.9) on the whole line decaying at x = —oo, which may be identified by the

property F' = 0, hence also det(U 111, ..., Uf;) # 0. Recalling by the simple dynamics for

A =0 that
(Frti Frn) = <B(0) (?)) ;

we find that the Wronskian at o = ¢ converges exponentially in X = ¢! to
det(UIlI’ SRRE) U}‘I)|£L”=C 7£ 07
hence D?(0) # 0 for ¢ > 0 sufficiently small. For further details, see [Zum10]. O

Remark A.12. The result of Proposition A.11, though proved by similar techniques, stands
in striking contrast to the results of [Zum10, SZ01] in the half-line case, where the stability
index was seen to change sign as parameters were varied for (full) polytropic gas dynamics.
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