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FRANCE LAGROIX, CHRISTINE HATTÉ, SAMUEL NEIL TAYLOR, JESSICA LYNN TILL, 3 

MAXIME DEBRET, OLIVIER MOINE AND DIANA JORDANOVA  4 

Lomax, J., Fuchs, M., Antoine, P., Rousseau, D.-D., Lagroix, F., Hatté, C., Taylor, S. N., Till, J. L., 5 

Debret, M., Moine, O. & Jordanova, D.: A luminescence based chronology of the Harletz loess 6 

sequence, Bulgaria. Boreas…. 7 
 8 
 9 

The Harletz loess-paleosol-sequence is located in north-western Bulgaria and represents an important 10 

link between well studied loess sequences in eastern Romania and further sites to the west of the 11 

Carpathians (e.g. Serbia and Hungary). The aim of this study is to establish a chronostratigraphy of the 12 

deposits, using various methods of luminescence dating, together with basic stratigraphic field 13 

observations as well as magnetic properties. Luminescence dating was carried out using the quartz fine 14 

grain fraction and a SAR protocol, and the feldspar coarse grain fraction, applying the MET-pIRIR 15 

protocol. Due to underestimation of the quartz fine grain fraction in the lower parts of the sequence, 16 

the resulting chronology is mainly based on the feldspar ages, which are derived from the stimulation 17 

temperature at 150 °C. A comparison with nearby sequences from Serbia, Hungary and Romania, and 18 

interpretations obtained through the stratigraphic and sedimentological signature of the sequence 19 

supports the established chronology. Our data suggest that the prominent paleosol (soil complex) in 20 

the upper quarter of the sequence was formed during MIS 5. It would follow that large parts of last 21 

glacial loess overlying this paleosol were probably eroded, and that the thick loess accumulation 22 

underlying this soil complex can be allocated to the penultimate glacial (MIS 6). A prominent MIS 6 23 

tephra, which has been reported from other sequences in the area, is also present at Harletz. 24 
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Loess-paleosol-sequences are important pedo-sedimentary archives, allowing to reconstruct 1 

palaeoenvironmental parameters such as variations in both wind directions and speeds, aridity, 2 

sediment supply, and vegetation cover but also temperature and precipitation. This information is only 3 

useful, when a detailed chronology is provided along with the palaeoenvironmental information 4 

released from the available proxies. In order to establish a numerical chronology in loess deposits, 5 

basically two methods are available. One is radiocarbon dating, which has been successfully applied 6 

for example to mollusc shells at Dunaszeckcső (Hungary) (Újvári et al. 2014) and to earthworm 7 

calcite granules at Nussloch (Germany) (Moine et al. 2017). But since radiocarbon dating has an upper 8 

age limit of around 45 ka and can thus only date Last Glacial loess, the standard method for dating 9 

loess, especially for a timeframe beyond 45 ka, are luminescence techniques.  10 

In many sedimentary contexts, optically stimulated luminescence (OSL) dating of quartz is 11 

preferred over infrared stimulated luminescence (IRSL) dating of the feldspar fraction, because the 12 

quartz signal is assumed to be athermally stable, as opposed to feldspar, which shows anomalous 13 

fading of the signal, which can lead to significant age underestimation. Loess deposits though usually 14 

have high dose rates of around 3 Gy ka-1, which makes quartz problematic with respect to the upper 15 

age limit. A range of studies show that above a stored paleodose of around 150-200 Gy the quartz 16 

signal approaches saturation (e.g. Chapot et al. 2012; Timar-Gabor et al. 2015a). Transferred to loess 17 

with its typical dose rate, this corresponds to an upper age limit of around 50-70 ka. Beyond this 18 

range, quartz ages can still be achieved, mainly because laboratory generated growth curves can grow 19 

up to doses of more than 500 Gy (e.g. Chapot et al. 2012), but such OSL ages can be underestimated 20 

(e.g. Lai 2010; Lowick & Preusser 2011; Chapot et al. 2012; Timar-Gabor et al. 2015a).  21 

A further problem when dating the quartz fraction may be different ages derived from different 22 

grain sizes. This was shown by various studies in the Lower Danube region and Carpathian Basin, in 23 

which contrasting luminescence ages were determined when dating the fine (4-11 µm) or coarse (63-24 

125 µm) grain fraction of quartz in age ranges >40 ka (Timar-Gabor et al. 2011, 2015b; Constantin et 25 

al. 2012, 2014). In these studies, the coarse grain ages appear to provide the more reliable ages, and 26 

the fine grain ages appear to be underestimated. 27 
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Furthermore, a range of studies in the recent past has shown that the thermal lifetime of the quartz 1 

luminescence signal may be limited in some regions of the world (e.g. Lai & Fan 2013; Lowick & 2 

Valla 2018). Next to saturation issues of the luminescence signal, this could be a further reason for age 3 

underestimates when dating older (>100 ka) samples using quartz. However, the thermal stability of 4 

the quartz luminescence signal seems to be regionally different. For example, the quartz fine grain 5 

signal of Romanian loess samples has been shown to be thermally stable enough to theoretically 6 

obtain ages up to 20 Ma (Timar-Gabor et al. 2017). However, the true maximum age limit is much 7 

lower, due to the limited number of electron traps. 8 

Feldspars IRSL signals saturate at much higher doses than quartz signals. Therefore, in order to 9 

extend the age range when dating sedimentary archives, the past decade has thus seen massive 10 

improvements in feldspar dating, through the application of elevated temperature IRSL measurements 11 

(e.g. at 225 °C, Buylaert et al. 2009) following a conventional IRSL measurement at 50 °C (Thomsen 12 

et al. 2008). These protocols are termed post-IR-IRSL (pIRIR) protocols, and the most commonly 13 

used ones at the moment are the MET-pIRIR (Li & Li 2011), the pIRIR-225 (Buylaert et al. 2009), 14 

and the pIRIR-290 protocol (Thiel et al. 2011). These protocols can also be adapted to other 15 

stimulation temperatures if required by the sedimentary setting (e.g. Reimann et al. 2012; Fu & Li 16 

2013). 17 

All these protocols are assumed to decrease or completely avoid fading in the high temperature 18 

measurements (e.g. Li & Li 2011; Thiel et al. 2011; Thomsen et al. 2008; Klasen et al. 2017), making 19 

results less underestimated and less dependent on methods which correct for fading. The downside of 20 

elevated temperature IRSL measurements is the slower bleachability of the signal, which makes these 21 

methods problematic for waterlain sediments (Lowick et al. 2012). Loess however is in most cases 22 

well bleached due to its windblown nature, and it has been shown that pIRIR measurements can be 23 

applied to this archive without correcting for incomplete bleaching, such as subtracting residuals 24 

obtained through laboratory measurements (e.g. Klasen et al. 2017). An upper age limit for loess 25 

deposits at Stari Slankamen (Serbia) of around 300 ka using a pIRIR-290 protocol has been reported 26 
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by Murray et al. (2014), which would make this technique applicable to loess deposited during MIS 6 1 

as well as MIS 8. 2 

Luminescence based chronologies of loess-paleosol sequences in the Lower Danube Region and 3 

Carpathian Basin have been established mainly for Serbia, Hungary and Romania (e.g. Balescu et al. 4 

2003, 2010; Fuchs et al. 2008; Antoine et al. 2009; Novothny et al. 2010, 2011; Stevens et al. 2011; 5 

Timar-Gabor et al. 2011; 2015b; Vasiliniuc et al. 2012; Murray et al. 2014; Újvári et al. 2014; 6 

Marković et al. 2015, 2016). Luminescence chronologies for loess sequences south of the Danube in 7 

the Lower Danube Basin are so far under-represented. A detailed palaeomagnetic study has been 8 

carried out at the Viatovo sequence (Jordanova et al. 2008) and through the Koriten borehole 9 

(Jordanova & Petersen 1999) in northeastern Bulgaria. Both sequences comprise thick loess deposits 10 

with multiple phases of loess accumulation and soil formation down to the Brunhes-Matuyama 11 

boundary (772±5 ka, Valet et al. 2014). Six paleosols are present, which are either of chernozem or of 12 

brown forest soil type (Jordanova et al. 2007). These paleosols are assigned to interglacial MIS 5 to 13 

19. In both sequences only weak indication for an interstadial MIS 3 paleosol complex was found. 14 

This is in contrast to many loess sequences westward in eastern Central Europe (e.g. Hungary, Czech 15 

Republic, Serbia), which often show quite a pronounced soil development for this period (the L1S1 16 

soil, cf. Fitzsimmons et al. 2012, locally termed e.g. the Surduk Soil in Surduk (Serbia) (Fuchs et al. 17 

2008; Antoine et al. 2009), or the PK1 in Dolní Věstonice (Czech Republic) (Kukla 1975, Antoine et 18 

al. 2013; Fuchs et al. 2013; Rousseau et al. 2013).  19 

Neither the Romanian sections Mostistea and Mircea Voda nor the Bulgarian sections, investigated 20 

by Jordanova et al. (2008) and Jordanova & Petersen (1999), showed indication for the c. 40 ka 21 

Campanian ignimbrite layer, although this tephra is widespread over other parts of Romania 22 

(Fitzsimmons et al. 2013). Indication for an older tephra was detected in Mostistea in the L2 loess unit 23 

(MIS 6) (Balescu et al. 2010). A potential correlative of this tephra is also present in Batajnica 24 

(Serbia) (Buggle et al. 2009; Marković et al. 2009) and Stalać (Serbia) (Obreht et al. 2016).  25 

 26 
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In this study, we present the first luminescence chronology for a Bulgarian loess sequence, located 1 

in an intermediate region between the important loess sequences of the Carpathian Basin and those of 2 

the northern Lower Danube Basin. The luminescence chronology is based on quartz fine grain ages, 3 

and on coarse grain feldspar multi-elevated-temperatures post-IR IRSL (MET-pIRIR) ages (Li & Li 4 

2011). The chronology is presented along with magnetic property data, which gives important 5 

additional information on the intensity of pedogenesis and on a potential tephra in the sequence. The 6 

chronology is discussed with regard to other well-studied loess paleosol sequences in the Carpathian 7 

Basin and Lower Danube region.  8 

Study area 9 

The loess sequence of Harletz (43°41’53” N, 23°49’43” E) is located on the western bank of the 10 

Ogosta River valley, a small tributary to the Danube, flowing in from the southwestern Chiprovska 11 

Mountain range (Fig. 1). The distance of the site to the Danube is about 7 km. The Ogosta valley is 12 

deeply incised into thick plateau loess deposits. Dry oxbows attest to the former meandering character 13 

of the river. 14 

Today’s climate is continental, with average annual temperatures of 11 °C, January temperatures 15 

of -2 °C, and July temperatures of 23 °C (Fotakiewa & Minkov 1966). Precipitation ranges between 16 

500-600 mm per year with a maximum in the summer months. The typical modern soil type is the 17 

chernozem. Thick paleosols, with characteristics of forest soil type, indicate more humid condition in 18 

past interglacials (Jordanova et al. 2008). 19 

According to Evlogiev (2000), the loess deposits in North Bulgaria cover Pleistocene river terraces, 20 

or older (Pliocene) denudation and accumulation surfaces. Fluvial terraces in the Bulgarian part of the 21 

Danube plain are numbered from T0 to T6, with T0 being the youngest (Holocene) terrace. Terrace T1 22 

carries one loess unit, T6 has six loess units separated by paleosols (Evlogiev 1993 in Jordanova et al. 23 

2008). Profile excavation and preparation revealed two distinct loess units in our investigated 24 

sequence, divided by one thick paleosol, suggesting that it rests on terrace T2.  25 

 26 

Page 5 of 41 Boreas

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

6 

 

Stratigraphy 1 

The Harletz sequence is naturally exposed due to a river cutting within a former meander belt. 20 m of 2 

the natural outcrop were cleaned by removing the weathered material following Antoine et al. (1999) 3 

protocol, exposing the base of the loess layers and underlying alluvial sediments. The sequence was 4 

divided into 14 main stratigraphical units. A short description of each unit is presented in Table 1. The 5 

schematic display of the sequence, together with magnetic susceptibility measured in the field (κFIELD) 6 

and in the laboratory (χ) is shown in Fig. 2.  7 

In general, the stratigraphy of the Harletz loess sequence can be described as the following. The 8 

basal part of the loess sequence (Unit 12 -14) mainly consists of sandy to clayey overbank deposits, 9 

which are strongly overprinted by pedogenesis. The overlying units (Unit 4 - 11) are represented by 10 

loess layers intercalated with thin, incipient paleosols, yielding varying magnetic susceptibility values. 11 

Unit 3b shows unaltered loess with low magnetic susceptibility and Unit 3a represents a transition 12 

zone from unaltered loess to the overlying paleosol complex, already showing rising magnetic 13 

susceptibility values. The older loess unit is overlain by a prominent paleosol complex (Unit 2a and 14 

2b) with high magnetic susceptibility. The younger loess units (Units 1d-1a) contain a weakly 15 

developed paleosol (mainly in Unit 1c and in the lower part of Unit 1b), which is hardly noticed in the 16 

field but is well represented by the higher magnetic susceptibility values than in the unaltered loess 17 

layers. The uppermost unit (Unit 0) is represented by the current soil (in situ Ah horizon of a 18 

chernozem).  19 

 20 

Magnetic properties 21 

 22 

The in-field volume-specific magnetic susceptibility (κFIELD) was measured with a handheld KT-6 23 

Kappameter from SatisGeo (Brno, Czech Republic) every 10 cm along the 20 meters of the section. 24 

Five measurements were acquired evenly spaced across an approximate one-meter width at each 25 

stratigraphic interval, averaged and its standard deviation calculated. Laboratory measurements of the 26 
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mass-specific magnetic susceptibility (χ) was analysed on a Bartington MS2B dual frequency bridge 1 

in the paleomagnetism laboratory at the Bulgarian Academy of Science in Sofia. The MS2B bridge 2 

operates with a field amplitude of 200 A/m and at frequencies of 465 Hz and 4650 Hz. The low-3 

frequency values are reported as the mass specific magnetic susceptibility (χ) (Fig. 2). The difference 4 

between χ measured at low- and high-frequency defines the absolute frequency dependence of 5 

magnetic susceptibility (∆χFD). Variations in ∆χFD are dominantly due to changes in relative 6 

concentration of fine (~20-30 nm) magnetic particles considered to be of pedogenic origin (Maher & 7 

Taylor 1988; Zhou et al. 1990). The large-scale variations observed in the κFIELD data are reproduced in 8 

the higher resolution laboratory data. However, the laboratory data reveals an important stratigraphic 9 

detail absent in κFIELD data and in the profile’s field observation log. A sharp peak in χ is revealed at 10 

12.10 – 12.00 m depth, just above unit 4. ∆χFD does not increase over this interval suggesting that a 11 

pedogenic process is not at the origin of the abnormally high value with respect to the surrounding 12 

incipient soils and loess. Moreover, clay content also sharply drops across the 12.10 - 12.00 depth, 13 

which we suspect is a tephra layer. Its stratigraphic position is similar to that observed in the Mostistea 14 

sequence in Romania (Balescu et al. 2010). Lastly, incipient soils within loess units 7 at ~13.45 m and 15 

5 at ~12.65 m are identified from the coinciding increases in χ and clay content.  16 

 17 

Luminescence dating 18 

For luminescence dating, 16 samples were taken at night, by scraping unexposed sediment into black 19 

plastic bags (e.g. Fuchs et al. 2013). It was attempted to avoid areas affected by bioturbation, although 20 

this was nearly impossible in the upper part of the section. Some mixing of layers of different 21 

sedimentation ages has to be expected therefore. Additional samples were taken from the surrounding 22 

sediment for dose rate determination, comprising representative material of a 30 cm radius around the 23 

luminescence sample.  24 

Samples for luminescence dating were prepared by separating the fine grain quartz fraction (4-11 25 

µm) and the coarse grain, potassium feldspar (K-FS) fraction (63-125 µm). After wet sieving and 26 
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treatment with HCl and H2O2, the coarse-grain felspar fraction was extracted using heavy density 1 

liquid (<2.68 g cm-³). No HF etching step was applied to the coarse grain-feldspar fraction. The quartz 2 

fine-grain fraction was separated by settling using Stokes’ law. To obtain the quartz rich fraction, the 3 

polymineral samples were etched in 34% pre-treated H2SiF6 for several days. All measurements were 4 

performed on a Lexsyg Research Luminescence reader (Lomax et al. 2014).  5 

Radionuclide concentrations of U and Th were determined using alpha counting and K 6 

concentrations using ICP-OES. These analyses were carried out at the University of Bayreuth 7 

(Department of Geography). The determination of the dose rate is based on conversion factors of 8 

Guérin et al. (2011), and consideration of the cosmic dose following Prescott and Hutton (1988, 9 

1994). For the quartz fine grain fraction an a-value of 0.04±0.01 (Rees-Jones 1995), and for the 10 

feldspar coarse grain fraction, an a-value of 0.09±0.02 (Balescu et al. 2007) was considered. For the 11 

feldspar coarse grain fraction, an internal K content of 12.5±0.5% was applied (Huntley & Baril 1997). 12 

Water contents were estimated for the samples based on a combination of grain size distribution and 13 

values measured in the laboratory. With this approach, dose rates of the loess samples were calculated 14 

with lower water contents (12±7%) than samples from soil horizons (15±7%), and from the clay rich 15 

alluvium at the base of the sequence (20±7 and 25±7%). Dose rate calculations were performed with 16 

the DRAC program published by Durcan et al. (2015). Dose rate data including water contents can be 17 

found in Table 3. 18 

Fine grain quartz dating 19 

The fine grain quartz fraction was pipetted onto stainless steel cups, approximating 1 mg of material 20 

per cup. The samples were stimulated with green LEDs (525±25 nm, 70 mW cm-2) for 50 seconds at 21 

125 °C (Murray & Wintle 2000), and integration limits were set to 0-0.5 s (initial signal) and 40-50 s 22 

(signal background). Luminescence signals were filtered through an HC377/50 (5 mm) + BG3 (3 mm) 23 

filterset, and monitored with a Hamamatsu photomultiplier tube (H7360). This filter combination 24 

restricts the detected wavelength to ~350-400 nm, encompassing the peak OSL emission of quartz 25 

(Huntley et al. 1991; Lomax et al. 2015). For testing potential feldspar contamination, IR laser diodes 26 
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(850±3 nm) and a filter combination with a Semrock HC414/46 and a Schott BG39 were used. 1 

Irradiation was performed with a Sr-90 β-source, delivering a dose rate of ~0.13 Gy s-1 to fine grain 2 

quartz samples. This value was verified by measuring fine grain quartz calibration samples.  3 

The quartz coarse grain fraction was also tested for its suitability for age determination. This 4 

fraction yielded a large scatter in saturation behaviour and in resulting equivalent dose (De) values, as 5 

well as underestimated De values (in comparison to the quartz fine grain and feldspar coarse grain 6 

fraction). This behaviour is exemplarily shown in Fig. 3, presenting the dose response curves of four 7 

aliquots of sample GI05. Measurement were performed using a conventional Single Aliquot 8 

Regenerative Dose (SAR) protocol (Murray & Wintle, 2000, 2003) with a preheat-cutheat temperature 9 

of 220-200 °C. The analysis resulted in an overdispersion of 19% for the four De values (mask size of 10 

4 mm). Very striking is the different saturation behaviour, with one aliquot saturating already at 11 

around 100 Gy, and another aliquot showing no onset of saturation even at around 200 Gy. A dose 12 

recovery test was also performed for this grain size, which yielded an unsatisfactory dose recovery 13 

ratio (recovered/given dose) of 0.92±0.05 (n = 8). This behaviour of underestimated dose recovery 14 

tests and of strongly different saturation levels was neither seen in the fine grain quartz nor coarse 15 

grain feldspar fraction. For these reasons, the quartz coarse grain fraction of all the samples was not 16 

further analysed. 17 

De values of the fine grain quartz fraction were measured using a conventional SAR with four to 18 

five regeneration doses, a zero dose, and one recycling dose. A typical growth curve and typical OSL 19 

shine down curve are shown in Fig. 4A, B. Figure 4B also shows the IRSL response to a dose of 21 20 

Gy, demonstrating that there is negligible feldspar contamination in the quartz fine grain fraction.  21 

Preheat conditions were determined on the base of preheat plateau tests (PHT), and combined 22 

preheat-dose recovery tests (PHT-DRT). Results of these tests are shown in Fig. S1. The PHT shows a 23 

trend in decreasing De values with increased stimulation temperatures. It is thus difficult to detect a 24 

plateau region. In contrast, when measuring known artificial doses in the PHT-DRT, the recovered 25 

dose seems independent of the preheat temperature in the temperature region of 180-260 °C. In the 26 
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standard measurements, a preheat-cutheat temperature combination of 220-200 °C was chosen. These 1 

preheat conditions are similar to preheat-cutheat temperatures of 220-180 °C chosen by Timar-Gabor 2 

et al. (2011, 2012) for their samples from nearby sites in Mostistea and Mircea Voda (Romania). 3 

However, their samples were stimulated with blue LEDs. 4 

Standard rejection criteria such as a recycling ratio of >10% and a recuperation value of  <10% of 5 

the natural signal were applied when analysing the measurements. None of the measured aliquots 6 

needed to be rejected for poor recuperation behaviour or recycling ratio. Average recycling ratios for 7 

all samples ranged between 0.96 and 1.01, with an overall average of 0.99. As expected from fine 8 

grain aliquots where millions of grains are measured at the same time, signal averaging lead to low 9 

overdispersion values between 0 and 4.8% for all samples. This resulted in the application of the 10 

Central Age Model (Galbraith et al. 1999) as mode of the mean De calculation. In case of an 11 

overdispersion of 0%, the model reduces to the Common Age Model, stating that all observed scatter 12 

of De values can be explained by photon counting statistics and instrumental variablility alone.  13 

Growth curves were fitted with a saturating exponential plus linear function. The linear component 14 

is very pronounced in the high dose region, suggesting potential De determination up to at least 420 15 

Gy. However, previous studies have observed this growth behaviour for other quartz fine grain 16 

samples, and have come to the conclusion that it may lead to De and age underestimation (e.g. Lowick 17 

et al. 2010; Lowick & Preusser 2011; Kreutzer et al. 2012; Timar-Gabor et al. 2017).  18 

In order to gain more information on the saturation level of the quartz fine grain samples, extended 19 

dose recovery tests (DRTs) were performed on the quartz fraction (Duller 2012; Lowick et al. 2015). 20 

For these tests, samples were bleached in the Lexsyg reader using green LEDs (70 mW cm-2) at 125 21 

°C for 100 s. Subsequently, five sets of samples consisting of three aliquots each were irradiated with 22 

known doses of 244, 305, 366, 427, 488 and 549 Gy. These doses were then attempted to be recovered 23 

with the same SAR protocol used for the standard measurements. Results indicate that doses of 305 24 

Gy and higher are systematically underestimated but are still in the range of 10% deemed acceptable 25 

in DRTs (Murray & Wintle 2003) (Fig. 5). Also noted in Fig. 5 is the maximum dose level of the 26 
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natural samples GI12 to GI20, hence all samples below the prominent paleosol. These samples all 1 

yield De values between 330 and 350 Gy, although they would be expected to have De values of more 2 

than 500 Gy. It thus appears that in artificially irradiated samples, doses of 500 Gy can be achieved, 3 

but not in the natural samples. This behaviour is in agreement with previous studies carried out by e.g. 4 

Chapot et al. (2012) and Timar-Gabor et al. (2015a), who found that natural dose response curves 5 

saturate much earlier than laboratory generated dose response curves. It has also been shown in the 6 

past that quartz signals from different regions such as the Alpine Foreland or the Chinese loess plateau 7 

may suffer from thermal instability, which can lead to age underestimations (e.g. Lai & Fan 2014; 8 

Klasen et al. 2016; Lowick & Valla 2018). Since our study area in Bulgaria is very close to the study 9 

areas of Timar-Gabor et al. (2015a), we tentatively adopt the saturation level obtained in their study 10 

for fine grained quartz of ~200 Gy, based on natural dose response curves. Considering the dose rates, 11 

this translates to an upper age limit of around 60-70 ka for our quartz samples. Beyond this limit, ages 12 

can be obtained but are assumed to be underestimates.  13 

 14 

Coarse grain feldspar dating 15 

Given the potential underestimation of the older quartz fine grain ages, the MET-pIRIR protocol of Li 16 

& Li (2011) was applied to a selected set of coarse grain feldspar samples. The protocol of Li & Li 17 

(2011) uses consecutively higher stimulation temperatures, ranging from 50 °C to 250 (or 300) °C. 18 

Ideally, the resulting De values form a De-plateau, for which it is assumed that it is based on a stable, 19 

non-fading luminescence signal.  20 

The feldspar coarse grain fraction was mounted onto stainless steel cups using a mask size of 2 mm 21 

diameter. All measurements were carried out on a Lexsyg Reader using stimulation through IR laser 22 

diodes (830±3 nm, 300 mW cm-2) and signal detection through an interference filter centred at 410 23 

nm. Signals were stimulated for 200 s at each different temperature step. Integration limits were set to 24 

the first second for the initial signal, subtracted by a background signal measured at the last 40 seconds 25 

of signal detection. The protocol of Li & Li (2011) was slightly modified in this study, by using a 26 
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slightly lower hot bleach temperature of 290 °C (100 s) instead of 320 °C, and a lower preheat 1 

temperature of 270 °C (60 s) instead of 300 °C. This adjustment was made because it has been shown 2 

in the past that high preheat temperatures (>300 °C) used in pIRIR protocols can cause an 3 

overestimation of the De (Roberts 2012). Stimulation temperatures were set at 50, 100, 150, 200 and 4 

250 °C, following the original protocol of Li & Li (2011). 5 

Dose recovery test, fading experiment and residual measurements. – Residual doses were measured 6 

after exposing sample GI07 and sample GI11 to full sunlight for 3 hours. Residual doses for both 7 

samples and the respective stimulation temperatures of the MET-pIRIR protocol are listed in Table 2. 8 

Surprisingly, the residual doses of the two samples are very similar, despite the different natural doses 9 

of ~220 Gy in sample GI07 and ~500 Gy in sample GI11. When transferred into ages (by dividing the 10 

residual doses by a typical dose rate of 3.4 Gy ka-1), this corresponds to ages of a maximum of c. 7 ka, 11 

when using the highest stimulation temperature of 250 °C. This may lead to significant age 12 

overestimation in Late Pleistocene samples but becomes less significant for Middle Pleistocene 13 

samples. However, it is assumed that bleaching in nature is much longer than the 3 hours applied in 14 

our test. Non-bleached residuals are therefore most likely not an issue for the samples investigated in 15 

this study, irrespective of stimulation temperature in the MET-pIRIR protocol. 16 

The same aliquots used in the residual dose test were subsequently irradiated and used for a dose 17 

recovery test in sample GI07. A dose of 260 Gy was administered, and dose recovery ratios (i.e. 18 

recovered/administered dose) of 0.97±0.03 (50 °C), 1.02±0.09 (100 °C), 0.99±0.04 (150 °C), 19 

1.02±0.09 (200 °C), and 1.06±0.10 (250 °C) were observed. The MET-pIRIR protocol is thus able to 20 

recover a known beta dose, irrespective of the stimulation temperature. Furthermore, a fading test 21 

based on Auclair et al. (2003), adapted to the MET-pIRIR protocol was applied to test for fading rates 22 

in relation to the stimulation temperature. Three aliquots (2 mm mask size) of sample GI09 were 23 

prepared by bleaching the natural signal in the Lexsyg reader and subsequently giving regeneration 24 

doses of 300 s, followed by test doses of 100 s. Different storage times up 24 h were inserted between 25 

application of the preheat temperature and measurement of the respective IRSL signals. Results of 26 

these tests are shown in Fig. S2. As expected, the signals measured at a stimulation temperature of 50 27 
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°C show the highest fading rate, with a g-value of 3.8±0.2% per decade. Signals measured at 100, 150, 1 

and 200 °C show low fading rates with g-values between 1.0±0.4 and -1.5±0.8% per decade, and 2 

signals measured at 250 °C show a strong negative fading rate with a g-value of -2.8±0.9% per decade. 3 

The latter might be explained by a laboratory artefact and/or the relatively low precision due to dim 4 

signals when stimulating the signals with this temperature. Based on the test, De values based on 5 

stimulation temperatures between 100 and 200 °C appear acceptable, showing little or negative fading 6 

rates, which can be treated as laboratory artefacts. 7 

Analyses of De versus stimulation temperature in the MET-pIRIR protocol. – Fig. 6 shows De values of 8 

the analysed samples in relation to the stimulation temperatures. Also shown is the expected dose 9 

according to the quartz fine grain measurements of sample GI05 and GI07. It is observed that only 10 

sample GI05 and GI09 show an obvious plateau. Most of the other samples show constantly rising De 11 

values with increasing stimulation temperature, although there is a slowing of the increase of De values 12 

in the region from 100 to 200 °C for many samples. For the two samples which still yield reliable 13 

quartz De values (GI05 and GI07) the De values which result from the 250 °C and from the 200 °C 14 

stimulation temperature seem to be overestimated when compared to the dose expected from the 15 

quartz fine grain measurements. A possible explanation for the overestimated De values at the two 16 

high stimulation temperatures could be unnoticed sensitivity changes before measurement of the 17 

natural signal, which would not be detected either in a dose recovery test nor by the recycling ratio. 18 

This behaviour was observed by e.g. Roberts (2012) and Vasiliniuc et al. (2012) and was cited as 19 

causing overestimated De values when using high temperature protocols such as the pIRIR-290 20 

protocol (Thiel et al. 2011). Unbleachable residuals and/or incomplete bleaching as another potential 21 

reason for the rising De values with increasing stimulation temperatures we rule out as the main 22 

reason, because our bleaching test showed only little differences in the size of the residuals at the 23 

different stimulation temperatures. 24 

Because it is hard to choose the correct feldspar De value independently (thus only from the 25 

feldspar measurements based on a De plateau), we decided to make use of the comparison with the De 26 

expected from the quartz fine grain measurements. We consider the quartz De values reliable in the 27 
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two youngest samples (GI05 and GI07). When transferring this to the feldspar measurements by 1 

considering the slightly higher dose rates of the feldspar coarse grains, a stimulation temperature of 2 

100 or 150°C seems best suited. This result is supported by the low fading rates determined for these 3 

stimulation temperatures. All feldspar ages reported in the following and shown in Table 3 as well as 4 

in Fig. 2 are based on a stimulation temperature of 150 °C, and were not corrected for fading. 5 

For the stimulation temperature of 150 °C, average recycling ratios between 0.95 and 0.99 were 6 

obtained, with an overall average of 0.98, and no aliquots with recycling ratios >10% needed to be 7 

rejected. Overdispersion values ranged between 3.1 and 11.4%, justifying the use of the Central Age 8 

Model (Galbraith et al. 1999) as mode of mean De calculation. 9 

Luminescence ages 10 

Luminescence ages for the quartz fine grain fraction are shown in Table 3 and in Fig. 2. Note that for 11 

three samples (GI06, GI13 and GI16), there was not enough material left after etching for OSL 12 

measurements. It is assumed that the quartz ages for the upper part of the sequence (Unit 1a-d, GI05 13 

and GI07) are reliable, and that all older ages are underestimated, since doses in these samples exceed 14 

the saturation level of 200 Gy provided by Timar-Gabor et al. (2015a).  15 

The two uppermost feldspar ages agree within errors with the quartz ages. As mentioned above, 16 

these feldspar ages were deliberately matched with the quartz ages, and are thus not totally 17 

independent. Down to Unit 3b, the feldspar ages are in correct chronostratigraphic order and appear to 18 

make sense from a pedostratigraphic point of view. Sample GI13 and GI17 show a slight inversion of 19 

ages, with GI17 appearing underestimated. With regard to the lowermost sample GI20, both overlying 20 

samples agree within errors though.  21 

 22 

Discussion 23 

Based on the methodological considerations we preliminarily assigned the uppermost loess layer and 24 

the weakly developed paleosol to MIS 4 (Unit 1d), and MIS 3 (Units 1c and 1b), the prominent 25 
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paleosol to MIS 5 (Units 2b-2a) and the underlying loess unit as well as the alluvial base of the 1 

sequence to MIS 6 (Units 3a-14). Following this interpretation, we try to compare the loess and 2 

paleosol layers to other sequences nearby (Lower Danube plain) and further to the west in the 3 

Carpathian Basin, in order to further secure the established chronology by stratigraphic correlation. 4 

The main sequences used for the correlation including their luminescence chronology are shown in 5 

Fig. 7. 6 

 7 

Youngest loess unit including weakly developed interstadial paleosol (L1 and L-S1) 8 

The uppermost loess layer was accumulated around 60 to 40 ka. Presumably, more loess was 9 

accumulated during MIS 2, but this part of the sequence has been most likely subject to strong erosion 10 

by human agricultural activities. In addition, during MIS 2, the sediment trap formed by the junction 11 

between the steep slope and the alluvial plain on the left bank of the Ogosta River was already filled 12 

by previous loess deposition. The weakly developed paleosol is recognised in the magnetic 13 

susceptibility but hardly results in a visible colour change in the field. Based on the luminescence 14 

ages, it must have formed before 40 ka, thus at least in the middle or early part of MIS 3. In the 15 

Danube Plain (Bulgaria and Romania), this paleosol seems widespread, but equally weakly developed. 16 

It is recognised in Koriten and Viatovo by slightly increased magnetic susceptibility values (Jordanova 17 

& Petersen 1999; Jordanova et al. 2008). At Viatovo, the MIS 3 paleosol nearly directly merges into 18 

the modern S0 (Jordanova et al. 2008), indicating erosion of parts of the MIS 2 loess such as in the 19 

Harletz sequence. The weakly developed paleosol was also detected in the Romanian loess sequences 20 

of Tuzla and Mircea Voda, by means of field observations, magnetic susceptibility values and 21 

constraining luminescence ages (Balescu et al. 2003, 2010; Buggle et al. 2009; Timar et al. 2010) but 22 

is not as obvious in the Romanian sequence Mostistea (Balescu et al. 2010). In the latter section, this 23 

paleosol is possibly eroded or so close to the surface (due to erosion of the MIS 2 loess) that it is 24 

overprinted by the Holocene soil formation. To the west of the Carpathians, the MIS 3 paleosol 25 

appears more prominent, of greater thickness and, at Surduk, of greater complexity (e.g. Fuchs et al. 26 
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2008; Antoine et al. 2009; Újvári et al. 2014). Here, the paleosol complex seems to have developed 1 

between about 55 ka and 35 ka during the Middle Pleniglacial chronoclimatic phase. 2 

At Harletz, the Campanian ignimbrite layer was not observed through magnetic susceptibility data. 3 

The tephra was distributed in south and southeastern Europe shortly after 40 ka (De Vivo et al. 2001; 4 

Fitzsimmons et al. 2013) due to the eruption of the Phlegraean Fields (Italy). Local thickness at other 5 

sites in Romania was found to be up to 80 cm (Veres et al. 2013). The reason for not detecting this 6 

tephra in Harletz is most likely erosion of this part of the sequence. In summary, loess deposition in 7 

MIS 4 and 3, and a weakly developed MIS 4/MIS 3 interstadial paleosol are widespread features in the 8 

Danube Plain. Also common is the strong erosion of probably accumulated MIS 2 loess, possibly 9 

including erosion of the Campanian ignimbrite layer as well. 10 

 11 

Paleosol complex (S1) 12 

The prominent paleosol complex at 6-4 m below the modern top surface (Unit 2) yields magnetic 13 

susceptibility values which are around three time higher than those of the weakly developed paleosol 14 

at about 2.5 m and nearly twice as high as those of the modern soil. The paleosol is bracketed by 15 

luminescence ages in the over- and underlying loess units of 63±6 and 141±13 ka, which probably 16 

places it into MIS 5. From the luminescence ages within the soil complex, ranging between around 70 17 

and 90 ka (MIS 5a-5b), it seems that the soil formation falls into the later part of this marine isotope 18 

stage. In this regard, it needs to be reminded that luminescence does not date the soil formation, but 19 

the loess accumulation before the proper soil development, or the colluvial deposition of particles in 20 

the case of upbuilding soils like those occurring in the MIS 5 Early Glacial soil complexes (Antoine et 21 

al. 2016). On the other hand, bioturbation in soils, especially in chernozems may be strong and may 22 

lead to rejuvenation of loess layers due to bleaching of the luminescence signal through burrowing 23 

activities near the surface (e.g. Bateman et al. 2003). Based on our results, it is not totally clear, if the 24 

paleosol is an interglacial soil sensu lato (MIS 5), or even sensu stricto (MIS 5e). Usually, studies 25 

based on magnetic susceptibility roughly place this paleosol into MIS 5. Luminescence ages 26 

determined in other sequences yield values which seem “too young”, thus loess deposition in middle 27 
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or late MIS 5 within the paleosol, such as in Hungary (Novothny et al. 2010, 2011; Újvári et al. 2014). 1 

Other studies did not sample the paleosol complex itself, but yielded luminescence ages of about 105 2 

to 125 ka in the directly underlying loess (e.g. Fuchs et al. 2008, 2013; Stevens et al. 2011).  3 

 4 

Older loess unit (L2) 5 

The loess unit underlying the prominent paleosol complex dates to c. 130 to 185 ka, based on the 6 

feldspar MET-pIRIR ages, hence can be assigned to MIS 6. Numerous other studies within the 7 

Carpathian and Lower Danube Basin equally assigned this loess unit to MIS 6 or early MIS 5, either 8 

based on luminescence ages or on magnetic susceptibility variations (e.g. Jordanova & Petersen 1999; 9 

Jordanova et al. 2008; Fuchs et al. 2008; Buggle et al. 2009; Marković et al. 2009; Balescu et al. 10 

2010; Novothny et al. 2010, 2011; Stevens et al. 2011; Timar-Gabor et al. 2011; Vasiliniuc et al. 11 

2012; Murray et al. 2014; Újvári et al. 2014). In the nearby sequence of Viatovo (Bulgaria), the loess 12 

is described as a unit with low secondary alterations and bioturbation (Jordanova et al. 2008). In 13 

several other loess sequences in southeastern Europe, a tephra was discovered in the L2 loess unit; e.g. 14 

in Batajnica, Ruma and Stalać in Serbia (Buggle et al. 2009; Marković et al. 2009, Vandenberghe et 15 

al. 2014; Obreht et al. 2016), and at Mostistea in Romania (Balescu et al. 2010; Panaiotu et al. 2001). 16 

A potential tephra in this loess unit is also detected at Harletz. Potentially, the tephra of these 17 

sequences is of the same origin, and may serve as important marker for further investigations. In this 18 

study, it was dated to >171±14, and at Mostistea, to between 132±14 and 171±22 (Balescu et al. 19 

2010). Obreht et al. (2016) also place it to around 175 ka in Ruma and Stalać, based on their age 20 

model and magnetic susceptibility data. As it is so thin, it requires high resolution sampling to be 21 

detected. 22 

Based on the feldspar MET-pIRIR ages, the alluvial base of the sequence would be assigned to 23 

MIS 6. However, the soil complex at the base of the sequence exhibits both in field and thin sections 24 

pedological features typical of interglacial conditions and some shells of land snails typical for 25 
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arboreal vegetation (Cepaea sp.), arguing for an assignment to MIS 7. If this is the case, then the 1 

luminescence ages are underestimated.  2 

 3 

Conclusions 4 

The application of the SAR protocol to the quartz fine grain fraction led to age underestimation for the 5 

lower part of the sequence, as commonly shown in other loess studies from many regions. Thus the 6 

MET-pIRIR protocol was applied to the coarse grain feldspar fraction. As laboratory tests yielded low 7 

fading rates for the elevated stimulation temperatures of 100, 150 and 200 °C, and as laboratory 8 

bleaching tests yielded low residual doses, the MET-pIRIR protocol seems applicable to the loess 9 

sequence at Harletz. The loess sequence inculdes a MIS 3 weakly developed paleosol, a MIS 3-4 loess 10 

unit, a MIS 5 Interglacial/Early Glacial paleosol complex, and a thick (±10m) underlying MIS 6 loess 11 

unit. At the base, even the pIRIR luminescence ages appear underestimated from a stratigraphical 12 

point of view. Two main further conclusions can be drawn from the chronostratigraphy and may be of 13 

importance for future investigations in the area.  14 

• The potentially accumulated MIS 2 loess layer seems to be completely or partially eroded or was 15 

not deposited at Harletz. This needs to be cautiously considered when analysing other loess 16 

sequences without applying numerical dating, such as magnetic susceptibility.  17 

• Like in Mostistea, Batajnica, Ruma and Stalać, the L2 loess unit includes a tephra layer, which may 18 

serve as an important marker horizon in future studies. However, more information on this tephra, 19 

such as a mineralogical characterisation and an individually determined age and origin, are 20 

required. 21 
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Figure captions 1 

Fig. 1 Study area showing the location of the loess sequence Harletz and other important loess 2 

sequences discussed in the text. Loess distribution in yellow, after Haase et al. (2007).  3 

Fig. 2. Stratigraphy of the studied loess sequence in Harletz (Bulgaria), with pedosedimentary units 4 

presented in Table 1 and magnetic susceptibility data measured in the field (bottom scale) and in the 5 

laboratory (top scale). Unit differentiation is based on field observations and was refined by 6 

sedimentological and magnetic property data. Location of the samples taken for luminescence dating 7 

with their laboratory numbers and luminescence ages estimates in ka are indicated. Unreliable ages are 8 

given in grey. Q FG = Quartz fine grain; FS CG = Feldspar coarse grain. 9 

Fig. 3. Growth curves of four 4mm-aliquots of the quartz coarse grain fraction. Natural doses were 10 

measured using a conventional SAR protocol with four regeneration doses, and an exponential or 11 

exponential + linear fitting. 12 

Fig. 4. A. Growth curves of the quartz fine grain sample GI14 using an exponential + linear fitting. B. 13 

Natural luminescence signal, luminescence signal of the first test dose, and response to IR stimulation 14 

of the same sample. 15 

Fig. 5. Extended Dose Recovery Tests of the fine grain quartz fraction of sample GI14. Laboratory 16 

doses of 244, 305, 366, 427, 488 and 549 Gy were applied (red bars) and recovered with the same 17 

SAR protocol used for the standard measurements (black dots). Also indicated is the respective dose 18 

recovery ratio and the approximate maximum dose of the naturally irradiated samples. 19 

Fig. 6. Equivalent doses (De) versus stimulation temperature of the MET-pIRIR protocol of all 20 

measured feldspar coarse grain samples. Also shown is the feldspar dose, which would be expected 21 

from the quartz fine grain measurements, after transferring the quartz dose rate to the feldspar dose 22 

rate. Resulting feldspar ages presented in Table 3 and Fig. 2 are based on a stimulation temperature of 23 

150 °C.  24 
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Fig. 7. Main loess sequences in southeastern Europe (Carpathian Basin and Danube Plain) discussed in 1 

the text, with their luminescence based chronologies. Dunaszeckcső (Újvári et al. 2014), Crvenka 2 

(Stevens et al. 2011), Surduk (Fuchs et al. 2008), Mostistea and Mircea Voda (Balescu et al. 2010) 3 

(see locations in Fig. 1). Luminescence ages of Timar et al. (2010), Timar-Gabor et al. (2011) and 4 

Vasiliniuc et al. (2012) for the Mostistea and Mircea Voda section are not considered in the figure, but 5 

are discussed in the text. For Harletz (this study), ages based on the MET-pIRIR protocol with a 6 

stimulation temperature of 150 °C are shown. 7 

 8 

Table captions 9 

Table 1. Simplified description and pedosedimentary interpretation of the various pedosedimentary 10 

units (soil labelling according to FAO UNESCO soil classification). 11 

Table 2. Residual doses of feldspar coarse grain samples GI07 and GI11after three hours bleaching on 12 

the window sill in full sunlight. Also given is the corresponding age, resulting from division with an 13 

average dose rate of 3.4 Gy ka-1.  14 

Table 3. Radionuclide concentrations, dose rates, De values and resulting luminescence ages of the 15 

quartz fine grain and feldspar coarse grain fraction.  16 

 17 

Supporting Information 18 

 19 

Fig. S1. Preheat tests of fine grain quartz sample GI05. PHT (A) and PHT-DRT (B). The black line 20 

marks the administered dose (134 Gy). 21 

Fig. S2. Results of a fading test on the feldspar coarse grain fraction of sample GI09, following 22 

Auclair et al. (2003), adapted to the MET-pIRIR protocol. 23 
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Unit Description (field and thin sections) Pedosedimentary interpretation 

0 Brown greyish to blackish sandy silts with granular structure and 

numerous fine root tracks. Sharp basal contact. In the lateral profile 

(Hz.P-Soil), the base of this horizon is strongly bioturbated by 

numerous tacks of burrowing animals (±5 cm in diameter). 

Ploughing horizon of the surface chernozem soil 

(topsoil). In the lateral profile (Hz.P-soil), this 

horizon is thicker (0.4 m), darker, and 

corresponds to an in situ Ah horizon of 

chernozem. 

1a Light brownish calcareous sandy silt with abundant root tracks and 

biogalleries with black clayey coatings and large burrows up to 5 

cm in diameter. 

Upper part of loess Unit 1b with abundant 

bioturbations originating from the topsoil. 

Evidences of weak pedogenic processes (higher 

MS/TOC and clay values) prior to topsoil 

formation. 

1b Light brown calcareous sandy silt with numerous root tracks and 

biogalleries with black clayey coatings and burrows up to 5 cm in 

diameter. Scattered little CaCO3 concretions (“loess dolls” ≤1 cm) 

between 0.8 and 1.1 m depth.  

Sandy loess strongly affected by bioturbation 

resulting from the biological activity of the 

surface soil (CCa calcic horizon of the eroded 

surface soil) 

1c Light brown calcareous sandy silt with numerous root tracks and 

biogalleries with black clayey coatings. 

Weakly weathered sandy loess (mainly evidenced 

by grain size, spectro-colorimetry and MS 

parameters), polluted by recent bioturbations 

infilled by clayey-humic coatings originating from 

the surface organic horizon. 

1d Pale light brown homogeneous calcareous sandy silt with scattered 

root tracks and biogalleries with dark clayey coating (insects / 

earth-worms). In depth, this unit appears less and less affected by 

bioturbations. Small calcareous gravel bed (≤2 cm) at the base. 

Typical calcareous sandy loess polluted by recent 

bioturbations (insect galleries), partly infilled by 

clayey-humic coatings originating from the 

surface organic horizon. 

2a Brown to brown greyish compact clayey sandy silt with strong 

granular structure (2-3 mm), apparent coarse sand grains (1-2 

mm). Abundant fine roots porosity (≤1 mm) and mollusc shells. 

Bioturbated upper limit with large galleries (crotovinas) in the 

upper 10-15 cm. Discontinuous small gravel bed (≤5 mm) at the 

basal boundary with 2b. TOC: 0.4%. 

B-horizon of steppe soil intensely bioturbated and 

developed on colluviated coarse sandy silts. This 

horizon corresponds to an argic to cambic 

horizon of a luvic cambisol of luvic phaeozem 

(FAO). 

2b Brown to brown greyish compact clayey sandy silt with strong 

coarse granular structure and aggregates (2-5 mm) and “crunchy 

facies”. Abundant in situ fine porosity (≤1mm) roots and 

bioturbations (1-2 mm) by insects (and earthworms?). Strong 

secondary CaCO3 accumulation in the lower 30 cm (matrix and 

nodules ≤1 cm). Lower boundary strongly bioturbated with large 

galleries of burrowing animals (diam.: 5-10 cm). 

B-horizon of steppe soil intensely bioturbated 

developed on sandy loess. This horizon 

corresponds to an in situ Bv horizon of a 

cambisol, the intensity of which appears in thin 

sections stronger than in overlying horizon 2a. 

3a Light grey brown homogeneous calcareous sandy silt with 

numerous scattered mollusc shells (-6/-7 m). Some large burrows 

with loess infilling. Biogalleries with clayey-humic coatings 

originating from the soil horizon of Unit 2b. Upper 0.5 cm very rich 

in secondary carbonate (matrix) and concretions. 

Calcareous sandy (fine sands) loess, with weak 

(incipient) syn-sedimentary pedogenesis 

developed prior to the overlying 2b soil, indicated 

by sedimentological and MS parameters (clay-

TOC-MS). Strong secondary CaCO3 accumulation 

in the upper 0.5 cm (CCa horizon of soil in Unit 

2b). 

3b Light brown to yellowish homogeneous calcareous sandy silt with 

rare thin (1-2 mm) and discontinuous sandy laminations between 

10.5 and 12 m.  

Typical calcareous sandy loess (fine sands) with 

high accumulation rate. 

4 Light brown to light greyish brown massive calcareous sandy silt 

with strong fine root tracks porosity (≤1 mm), pseudomycelium, 

little FeMn concretions and FeMn coatings on biogalleries. 

Incipient (embryonic) humic soil horizon (rooting 

Hz. with lowering of the loess deposition rate). 

5 Light brown massive homogeneous calcareous (fine) sandy silt.  Typical homogeneous sandy calcareous loess. 

6 Light brown to light greyish brown massive calcareous sandy silt 

strong fine root tracks porosity (≤1 mm), pseudomycelium, little 

FeMn concretions and FeMn coatings on biogalleries. Bioturbated 

Incipient (embryonic) humic soil horizon (rooting 

Hz. with lowering of loess deposition rate). The 

weathering appears more developed than in 
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basal contact with Unit 7. incipient soil of Unit 4. 

7 Light brown massive homogeneous calcareous (fine) sandy silt. Typical homogeneous sandy calcareous loess. 

8 Light brown to light greyish brown massive calcareous sandy silt 

with strong fine root tracks porosity (≤1 mm), pseudomycelium, 

little FeMn concretions and FeMn coatings on biogalleries, diffuse 

lower boundary. 

Incipient (embryonic) humic soil horizon (rooting 

Hz. with lowering of the loess deposition rate). 

The weathering intensity appears more or less 

the same than in incipient soil of Unit 6. 

9 Light brown massive homogeneous calcareous (fine) sandy silt 

with scattered pseudomycelium and numerous FeMn concretions 

(≤1 mm) in the upper 20 cm.  

Typical homogeneous sandy calcareous loess with 

more marked rooting evidences. 

10 Homogeneous brown to grey brownish sandy silt with fine 

granular structure. Abundant fine root tracks (≤1 mm), 

pseudomycelium and little FeMn concretions and FeMn coatings on 

biogalleries. Strongly bioturbated lower boundary (30 cm) with 

large burrows (5-10 cm). 

Steppe soil horizon (cambic Hz.?) markedly more 

developed than in Units 4, 6 and 8 showing a 

strong bioturbation by burrowing animals at the 

base. 

11 Light brown to whitish massive sandy calcareous silt with 

numerous CaCO3 concretions and deep CaCO3 impregnation on root 

tracks. Numerous large biogalleries infilled by material originating 

from the overlying soil horizon. 

Homogeneous sandy calcareous loess enriched in 

CaCO3 in relation to the overlying soil of Unit 10 

(calcic horizon CCa) and deeply bioturbated by 

burrowing animals. 

12 Brown compact clayey coarse sandy silt weakly calcareous with 

diffuse granular structure, scattered mollusc in the upper part, 

including debris of large terrestrial species (Arianta?). Strong 

bioturbation with very abundant biogalleries and casts. A few 

discontinuous sandy layers. Very progressive passage to 

underlying Unit 13a. 

Fluvial sandy clayey (overbank deposits) with a 

well developed pedogenesis (cambic horizon) and 

strong bioturbation by insects and earthworms 

(upbuilding/aggrading soil of alluvial plain). 

13a Brown clayey coarse sandy silt slightly lighter than in Unit 12 with 

scattered mollusc shells, some from large species (4-6 mm). Well-

marked thick coarse to medium sand laminations (>1 cm) In situ 

bioturbation less developed than in Unit 12. 

Bioturbated fluvial sandy clayey silts (overbank 

deposits) weakly affected by soil processes (Bw 

horizon of cambisol). 

13b Brown and very compact clayey coarse sandy silt with a few 

scattered sandy layers and diffuse granular structure. Strong 

bioturbation with very abundant biogalleries and casts (stronger 

than in Unit 13a). Mollusc shells including debris of large 

terrestrial species (Cepaea?). Sharp lower boundary underlined by 

a coarse sand layer. 

Fluvial sandy clayey silts (overbank deposits) 

affected by pedogenesis (Bv horizon of cambisol) 

and strong bioturbation by insects and 

earthworms (upbuilding soil dynamics less 

marked than in Unit 12). 

14 Brown and very compact clayey coarse sandy. Strong bioturbation 

with very abundant biogalleries and casts. Prismatic structure with 

thick reddish clayey coatings. Numerous scattered CaCO3 

concretions (2-8 cm) mainly between 19 and 19.5 m. The 

occurrence of numerous scattered stones at the base of this unit 

indicates the proximity of the underlying alluvial gravels. 

In situ Bt horizon or leached cambisol developed 

upon fluvial sandy clayey silts (overbank 

deposits). 
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Stimulation 

temperature (°C) 

GI07 residual 

dose (Gy) 

Approximate age 

equivalent (ka) 

GI11 residual 

dose (Gy) 

Approximate age 

equivalent (ka) 

50 1.5±0.0 0.5 1.6±0.3 0.5 

100 9.7±1.0 2.9 9.2±0.6 2.7 

150 13.9±0.9 4.1 13.6±1.0 4.0 

200 18.2±2.7 5.3 18.1±0.8 5.3 

250 24.9±0.8 7.3 23.5±1.5 6.9 
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Sample Depth 

(m) 

Unit Water 

(%) 

n De (Gy) U 

(ppm) 

Th 

(ppm) 

K 

(%) 

Dose rate (Gy ka
-1

) Age (ka) 

(Q/FS) Q FS Q FS Q FS 

Gi05 1.35 1b 12 6/5 142±5 141±7 3.85±0.32 9.52±1.05 1.52±0.08 3.56±0.21 3.65±0.23 40±3 39±3 

Gi06 2.80 1c - -/- - - 3.76±0.32 8.59±1.00 1.47±0.07 - - - - 

Gi07 4.00 1d 12 6/8 197±6 217±9 4.12±0.29 7.59±0.96 1.53±0.08 3.43±0.21 3.53±0.23 57±4 62±5 

Gi08 4.45 2a 15 6/- 227±7 - 3.34±0.30 7.48±0.93 1.50±0.08 3.06±0.18 - 74±5 - 

Gi09 5.20 2b 15 6/6 267±9 252±14 3.26±0.26 7.53±0.85 1.39±0.07 2.93±0.17 3.07±0.20 91±6 82±7 

Gi10 7.60 3b 12 6/5 297±10 485±30 3.46±0.28 9.07±0.94 1.50±0.07 3.29±0.20 3.40±0.22 90±6 142±13 

Gi11 8.70 3b 12 6/4 320±10 480±22 3.58±0.28 8.48±0.91 1.50±0.08 3.27±0.20 3.38±0.22 98±7 142±11 

Gi12 9.90 3b 12 4/5 339±13 502±17 3.04±0.31 10.90±1.01 1.49±0.07 3.30±0.20 3.41±0.23 103±7 147±11 

Gi13 11.45 3b 12 -/5 - 579±28 3.69±0.30 8.52±0.98 1.50±0.07 - 3.39±0.23 - 171±14 

Gi14 12.80 5 12 6/- 324±13 - 3.94±0.30 8.53±1.00 1.60±0.08 3.45±0.21 - 94±7 - 

Gi15 14.05 8 12 6/- 339±14 - 4.01±0.31 8.95±1.03 1.64±0.08 3.54±0.22 - 96±7 - 

Gi16 14.10 9 15 -/- - - 4.32±0.30 7.64±0.97 1.64±0.08 - - - - 

Gi17 15.55 11 15 6/5 331±11 429±16 3.30±0.33 10.62±1.08 1.42±0.07 3.16±0.19 3.28±0.22 105±7 131±10 

Gi18 17.55 13a 20 6/- 345±13 - 4.34±0.29 7.15±0.94 1.40±0.07 2.99±0.18  115±8 - 

Gi19 18.40 13b 20 6/- 355±12 - 3.80±0.27 8.29±0.90 1.47±0.07 2.99±0.18  119±8 - 

Gi20 19.75 14 25 5/5 332±12 469±19 3.66±0.26 7.61±0.86 1.77±0.09 2.99±0.17 3.14±0.20 111±7 149±11 
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