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Abstract—Information and Communication Technology takes
a growing part in the worldwide energy consumption. One of
the root causes of this increase lies in the multiplication of
connected devices. Each object of the Internet-of-Things often
does not consume much energy by itself. Yet, their number and
the infrastructures they require to properly work have leverage.
In this paper, we combine simulations and real measurements
to study the energy impact of IoT devices. In particular, we
analyze the energy consumption of Cloud and telecommunication
infrastructures induced by the utilization of connected devices,
and we propose an end-to-end energy consumption model for
these devices.

Index Terms—IoT devices, energy consumption, clouds, end-
to-end model

I. INTRODUCTION

In 2018, Information and Communication Technology (ICT)
was estimated to absorb around 3% of the global energy
consumption [1]. This consumption is estimated to grow at
a rate of 9% per year [1]. This alarming growth is explained
by the fast emergence of numerous applications and new ICT
devices. These devices supply services for smart building,
smart factories and smart cities for instance. Through con-
nected sensors producing data, actuators interacting with their
environment and communication means – all being parts of the
Internet of Things (IoT) – they provide optimized decisions.

This increase in number of devices implies an increase in the
energy needed to manufacture and utilize them. Yet, the overall
energy bill of IoT also comprises indirect costs, as it relies
on computing and networking infrastructures that consume
energy to enable smart services. Indeed, IoT devices employ
Cloud computing infrastructures to store, analyze and share
their data.

In February 2019, a report by Cisco stated that “IoT
connections will represent more than half (14.6 billion) of
all global connected devices and connections (28.5 billion) by
2022” [2]. This will represent more than 6% of global IP traffic
in 2022, against 3% in 2017 [2]. This increasing impact of IoT
devices on Internet connections induces a growing weight on
ICT energy consumption.

The energy consumption of IoT devices themselves is only
the top of the iceberg: their use induce energy costs in commu-
nication and cloud infrastructures. In this paper, we estimate
the overall energy consumption of an IoT device environment
by combining simulations and real measurements. We focus
on a given application with low bandwidth requirements, and
we evaluate its overall energy consumption: from the device,

through telecommunication networks, and up to the Cloud data
center hosting the application. From this analysis, we derive
an end-to-end energy consumption model that can be used to
assess the consumption of other IoT devices.

While some IoT devices produce a lot of data, like smart
vehicles for instance, many others generate only a small
amount of data, like smart meters. However, the scale matters
here: many small devices can end up producing big data
volumes. As an example, according to a report published by
Sandvine in October 2018, the Google Nest Thermostat is the
most significant IoT device in terms of worldwide connections:
it represents 0.16% of all connections, ranging 55th on the
list of connections [3]. As a comparison, the voice assistants
Alexa and Siri are respectively 97th and 102nd with 0.05%
of all connections [3]. This example highlights the growing
importance of low-bandwidth IoT applications on Internet
infrastructures, and consequently on their energy consumption.

In this paper, we focus on IoT devices for low-bandwidth
applications such as smart meters or smart sensors. These
devices send few data periodically to cloud servers, either to
store them or to get computing power and take decisions. This
is a first step towards a comprehensive characterization of the
global IoT energy footprint. While few studies address the
energy consumption of high-bandwidth IoT applications [4], to
the best of our knowledge, none of them targets low-bandwidth
applications, despite their growing importance on the Internet
infrastructures.

Low-bandwidth IoT applications, such as the Nest Thermo-
stat, often relies on sensors powered by batteries. For such
sensors, reducing their energy consumption is a critical target.
Yet, we argue that end-to-end energy models are required to
estimate the overall impact of IoT devices, and to understand
how to reduce their complete energy consumption. Indeed,
shifting computations to the cloud is often used to reduce
the consumption of IoT devices [5], without studying the
additional cost for the cloud infrastructure. Consequently, such
an energy-saving technique, from the IoT device point of view,
can result on an higher overall energy consumption. Using
end-to-end models could prevent these unwanted effects.

Our contributions include:

• a characterization of low-bandwidth IoT applications;
• an analysis of the energy consumption of a low-

bandwidth IoT application including the energy consump-
tion of the WiFi IoT device and the consumption induced



by its utilization on the Cloud and telecommunication
infrastructures;

• an end-to-end energy model for low-bandwidth IoT ap-
plications relying on WiFi devices.

The paper is organized as follows. Section II presents
the state of the art. The low-bandwidth IoT application is
characterized in Section III, and details on its architecture
are provided in Section IV. Section V provides our experi-
mental results combining real measurements and simulations.
Section VI discusses the key findings an the end-to-end energy
model. Finally, Section VII concludes this work and presents
future work.

II. RELATED WORK

A. Energy consumption of IoT devices

The multiplication of smart devices and smart applications
pushes the limits of Internet: IoT is now used everywhere
for home automation, smart agriculture, e-health, smart cities,
logistics, smart grids, smart buildings, etc. [6], [7], [8]. IoT
devices are typically used to optimize processes and the envi-
sioned application domains include the energy distribution and
management. It can for instance help the energy management
of product life-cycle [9]. Yet, few studies address the impact
of IoT itself on global energy consumption [10], [4] or CO2
emissions [11].

The underlying architecture of these smart applications usu-
ally includes sensing devices, cloud servers, user applications
and telecommunication networks. Concerning the computing
part, the cloud servers can either be located on Cloud data
centers, on Fog infrastructures located at the network edge,
or on home gateways [6]. Various network technologies are
employed by IoT devices to communicate with their nearby
gateway; either wired networks with Ethernet or wireless
networks: WiFi, Bluetooth, Near Field Communication (NFC),
ZigBee, cellular network (like 3G, LTE, 4G), Low Power
Wide Area Network (LPWAN), etc. [12], [13]. The chosen
technology depends on the smart device characteristics and the
targeted communication performance. The Google Nest Ther-
mostat can for instance use WiFi, 802.15.4 and Bluetooth [14].
In this paper, we focus on WiFi as it is broadly available and
employed by IoT devices [12], [15].

Several works aim at reducing the energy consumption
of the device transmission [16] or improving the energy
efficiency of the access network technologies [13]. An ex-
tensive literature exists on increasing the lifetime of battery-
based wireless sensor networks [5], [6]. Yet, IoT devices
present more diversity than typical wireless sensors in terms
of hardware characteristics, communication means and data
production patterns.

Based on real measurements, previous studies have pro-
posed energy models for IoT devices. Yet, these models are
specific to a given kind of IoT device or a given transmis-
sion technology. Martinez et al. provide energy consumption
measurements for wireless sensor networks using SIGFOX
transmissions and employed for smart-parking systems [17].

Wu et al. implement an energy model for WiFi devices in the
well-known ns3 network simulator [15].

These models can be used to evaluate the energy efficiency
of communication protocols or computation offloading tech-
niques [5]. However, they do not provide an overall view of the
energy consumption of the entire system architecture: from the
IoT device to the cloud server. To the best of our knowledge,
one previous work targets an end-to-end energy model for IoT
devices [4]. However, this work focus on high-bandwidth IoT
devices with data streaming-oriented applications. This study
shows that, in this case (high-bandwidth IoT applications), the
cloud server hosting the application consumes more energy per
IoT devices than the device itself (an IP camera in the case
study) [4]. In our context of low-bandwidth devices, conclu-
sions could be the opposite as the IoT devices’ consumption
is optimized since they are often powered through batteries.

B. Energy consumption of network and cloud infrastructures
IoT architecture rely on telecommunication networks and

Cloud infrastructures to provide services. The data produced
by IoT devices are stored and exploited by servers located
either in Cloud data centers or Fog edge sites. While studies
exist on the energy consumption of network and cloud in-
frastructures in general [18], they do not consider the specific
case of IoT devices. To the best of our knowledge, no study
estimates the direct impact of IoT applications on the energy
consumption of these infrastructures.

Most work focusing on energy consumption, Cloud archi-
tecture and IoT applications tries to answer the question: where
to locate data processing in order to save energy [10], to
reduce the CO2 impact [11], or to optimize renewable energy
consumption [4].

In both cases, the network and cloud infrastructures, at-
tributing the energy consumption to a given user or application
is a challenging task. The complexity comes from the shared
nature of these infrastructures: a given Ethernet port in the core
of the network processes many packets coming from a high
number of sources [10]. Moreover, the employed equipment
is not power proportional: servers and routers consume conse-
quent amounts of energy while being idle [19], [4]. The power
consumed by a device is divided into two parts: a dynamic part
that varies with traffic or amount of computation to process,
and a static part that is constant and dissipated even while
being idle [18]. This static part implies that a consequent
energy cost of running an application on a server is due to the
device being simply powered on. Consequently, sharing these
static energy costs among all the concerned users requires an
end-to-end model [4].

In this paper, we focus on IoT devices using WiFi transmis-
sion and generating low data volumes. Our model, extracted
from real measurements and simulations, can be adapted to
other kinds of devices and transmission technologies.

III. CHARACTERIZATION OF LOW-BANDWIDTH IOT
APPLICATIONS

In this section, we detail the characteristics of the considered
IoT application. While the derived model is more generic, we



focus on a given application to obtain a precise use-case with
accurate power consumption measurements.

A. IoT device side

The Google Nest Thermostat relies on five sensors: tempera-
ture, humidity, near-field activity, far-field activity and ambient
light [14]. Periodical measurements, sent through wireless
communications on the Internet, are stored on Google data
centers and processed to learn the home inhabitants habits.
The learned behavior is employed to automatically adjust the
home temperature managed by heating and cooling systems.

Fig. 1. Overview of IoT devices.

Each IoT device senses periodically its environment. Then,
it sends the produced data through WiFi (in our context) to
its gateway or Access Point (AP). The AP is in charge of
transmitting the data to the cloud using the Internet. Figure 1
illustrates this architecture. Several IoT devices can share the
same AP in a home. We consider low-bandwidth applications
where devices produces several network packets during each
sensing period. The transmitting frequency can vary from one
to several packet sent per minute [2].

B. Cloud server side

We consider that the link between the AP and the Cloud
is composed of several network switches and routers using
Ethernet as shown in Figure 2. The number of routers on the
path depends on the location of the server, either in a Cloud
data center or in a Fog site at the edge of the network.

We assume that the server hosting the application data for
the users belongs to a shared cloud facility with classical
service level agreement (SLA). The facility provides redundant
storage and computing means as virtual machines (VMs). A
server can host several VMs at the same time.

Fig. 2. Overview of the IoT architecture.

The Cloud part of the application gathers the data sent by
the IoT devices. These data are treated either on the fly (e.g.

threshold detection) or periodically, and action commands are
sent back to the device if required. For instance, if the user has
set a targeted temperature, the connected thermostat sends the
measured temperature regularly, and once the target is reached,
the Cloud server detects it, and sends back to the IoT device
the command to pause the heater.

In the following, we describe the experimental setup, the
results and the derived end-to-end model. For all these steps,
we decompose the overall IoT architecture into three parts:
the IoT device part, the networking part and the cloud part, as
displayed on Figure 2.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup employed
to acquire energy measurements for each of the three parts of
our system model. The IoT and the network parts are modeled
through simulations. The Cloud part is modeled using real
servers connected to wattmeters. In this way, it is possible to
evaluate the end-to-end energy consumption of the system.

A. IoT Part

In the first place, the IoT part is composed of several sensors
connected to an Access Point (AP) which form a cell. This cell
is studied using the ns3 network simulator. In the experimental
scenario, we setup between 5 and 15 sensors connected to
the AP using WiFi 5GHz 802.11n. The sensors are placed
randomly in a rectangle of 400m2 around the AP which
corresponds to a typical use case for a home environment.

All the cell sensors employ the default WIFI energy model
provided by ns3. This model comprises different power levels
depending on the state of the WiFi device (i.e. idle, trans-
mitting, receiving). The power consumption of receiving and
transmitting states depends on the data rate of the device at a
given time. In this paper, we consider only one data rate as the
target is low-bandwidth devices in a home environment. The
different energy values used by the energy model are provided
in Table I. These parameters were extracted from previous
work [20], [4] on IEEE 802.11n. Besides, we suppose that
the energy source of each sensor is not limited during the
experiments. Thus, each sensor can communicate until the end
of all the simulations.

As a scenario, sensors send 192 bits packets to the AP
composed of: 1) A 128 bits sensors id 2) A 32 bits integer
representing the temperature 3) An integer timestamp repre-
senting the temperature sensing date. They are stored as time
series. The data are transmitted immediately at each sensing
interval I that we vary from 1s to 60s. Finally, the AP is in
charge of relaying data to the cloud via the network part.

B. Network Part

The network part represents the network section starting
from the AP to the Cloud excluding the server. It is also
modeled into ns3. We consider the server to be 9 hops away
from the AP with a typical round-trip latency of 100ms from
the AP to the server [4]. Each node from the AP to the
Cloud is a network switch with static and dynamic network



TABLE I
SIMULATIONS ENERGY PARAMETERS

(a) IoT part
Parameter Value

Supply Voltage 3.3V
Tx 0.38A
Rx 0.313A
Idle 0.273A

(b) Network part
Parameter Value

Idle 0.00001W
Bytes (Tx/Rx) 3.4nJ
Pkt (Tx/Rx) 192.0nJ

energy consumption. The first 8 hops are edge switches and
the last one is consider to be a core router as mentioned
in [10]. ECOFEN [21] is used to model the energy con-
sumption of the network part. ECOFEN is an ns3 network
energy module dedicated to wired networks. It is based on an
energy-per-bit and energy-per-packet model for the dynamic
energy consumption [22], [23], and it includes also a static
energy consumption. The different values used to instantiate
the ECOFEN energy model for the network part are shown in
left part of Table I and come from previous work [24].

C. Cloud Part

Finally, to measure the energy consumed by the Cloud
part, we use a real server from the large-scale test-bed
Grid’5000. Grid’5000 provides clusters composed of several
servers which are connected to wattmeters. The wattmeters
provide 50 instantaneous power measurements per second
and per server. This way, we can benefit from real energy
measurements. The server used in the experiment embeds two
Intel Xeon E5-2620 v4 processors with 64 GB of RAM and
600GB of disk space on a Linux based operating system. This
server is configured to use KVM as virtualization mechanism.
We deploy a classical Debian x86 64 distribution on the
Virtual Machine (VM) along with a MySQL database. We use
different amounts of allocated memory for the VM namely
1024MB/2048MB/4096MB to highlight its effects on the
server energy consumption. The server only hosts this VM
in order to easily isolate its power consumption.

Fig. 3. Grid’5000 experimental setup.

The data sent by the IoT devices are simulated using another
server from the same cluster. This server is in charge of
sending the data packets to the VM hosting the application
in order to fill its database. In the following, each data packet
coming from an IoT device and addressed to the application
VM is called a request. Consequently, it is easy to vary the
different application characteristics namely: 1) The number
of requests, to virtually add/remove sensors 2) The requests
interval, to study the impact of the transmitting frequency.
Figure 3 presents this simulation setup. We consider here a
simple IoT application able to store the sensed values and
provide them upon request. We do not include any data mining
or machine learning techniques as they are highly dependent
on the targeted application and quality of service. They can
be added a posteriori to the derived end-to-end model if they
are known, or estimated from specific energy models.

V. EVALUATION

In this section, we analyze the experimental results. All
the experiments concerning IoT devices and network parts
(Table II and Figure 4) are based on simulations using ns3,
while all the experiments on Cloud servers (Figures 5, 6, 7,
and 8) are real measurements performed on the Grid’5000
experimental platform.

A. IoT and Network Power Consumption

In a first place, we start by studying the impact of the
sensors’ transmission frequency on their energy consumption.
To this end, we run several simulations in ns3 with 15 sensors
using different transmission frequencies. The results provided
by Table II show that the transmission frequency has a very
limited impact on the energy consumption of sensor and
network parts, and on the average end-to-end application delay.
This is due to the fact that in such a scenario with very
small number of communications spread over the time, sensors
do not have to contend for accessing to the WiFi channel.
Note that for the network part, we include the dynamic
power consumption due to the traffic generated by the sensors
themselves, and we split the static power consumption of the
routers according the the utilization ratio taken by the sensors.
This model is detailed in Section VI.

TABLE II
SENSORS TRANSMISSION INTERVAL EFFECTS WITH 15 SENSORS

Transm. Interval Sensor Power Network Power Application Delay

10s 13.51794W 0.44188W 0.09951s
30s 13.51767W 0.44177W 0.10021s
50s 13.51767W 0.44171W 0.10100s
70s 13.51767W 0.44171W 0.10203s
90s 13.51761W 0.44171W 0.10202s

Previous work [4] on a similar scenario shows that in-
creasing application accuracy impacts strongly the energy
consumption in the context of data stream analysis. However,
in our case, application accuracy is driven by the sensing
interval and thus, the transmission frequency of the sensors. In



our case with small and sporadic network traffic, these results
show that with a reasonable transmission interval, the energy
consumption of the IoT and the network parts are almost not
affected by the variation of this transmission interval. In fact,
transmitted data are not large enough to leverage the energy
consumed by the network.

We then vary the number of sensors in the WiFi cell.
Figure 4 represents the energy consumed by the sensor and
the network (from the AP to the cloud) parts according to
the number of sensors. Similarly to the results of Table II,
the network part is almost not affected by the number of
sensors as their traffic is negligible compared to the network
devices capacities. Consequently, sensors energy consumption
is dominant, as each sensor adds its own consumption.

Fig. 4. Analysis of the variation of the number of sensors on the IoT/Network
part energy consumption for a transmission interval of 10s.

B. Cloud Energy Consumption

In this end-to-end energy consumption study, cloud accounts
for a huge part of the overall energy consumption. According
to a report [25] on United States data center energy usage, the
average Power Usage Effectiveness (PUE) of an hyper-scale
data center is 1.2. This metric accounts for indirect data center
power costs, such as the cooling infrastructure and the power
distribution losses.

In our analysis, we use the PUE to account for these costs
and all energy measurement on cloud servers use it. It means
that the power consumption of the server is multiplied by the
PUE [18].

Firstly, we analyze the impact of the VM allocated memory
on the server energy consumption. Figure 5 depicts the server
energy consumption according to the VM allocated memory
for 20 sensors sending data every 10s. Note that the horizontal
red line represents the average energy consumption for the
considered sample of energy values.

We can see that at each transmission interval, the server
faces spikes of energy consumption. However, the amount of
allocated memory to the VM does not significantly influence
the server energy consumption. In fact, simple database re-
quests do not need any particular heavy memory accesses and

processing time. Thus, remaining experiments are based on
VM with 1024MB of allocated memory.

Here, for clarity’s sake, we use VMs with one virtual CPU
(i.e. one physical CPU core). The influence of the number
of core on the server’ energy consumption has been widely
studied in the literature [26]. For a given application that scales
smoothly when adding cores, the relation between number of
cores and power consumption is linear. In other words, adding
cores for the execution of a parallel application multiplies
accordingly the dynamic energy consumption on the server
part.

Next, we study the effects of increasing the number of
sensors on the server energy consumption. Figure 6 presents
the results of the average server energy consumption when
varying the number of sensors from 20 to 500, while Figure 8
presents the average server energy cost per sensor according
to the number of sensors. These results show a clear linear
relation between the number of sensors and the server energy
consumption.

Moreover, we can see that the more sensors we have per
VM, the more energy we can save. In fact, since the server’s
idle power consumption is high (around 97 Watts), it is more
energy efficient to maximize the number of sensors per server.
As shown on Figure 8, a significant amount of energy can be
save when passing from 20 to 300 sensors per VM. Note that
these measurements are not the row measurements taken from
the wattmeters: they include the PUE but they are not shared
among all the VMs that could be hosted on this server.

For the studied server, its static power consumption (also
called idle consumption) is around 83.2 Watts. We consider a
PUE of 1.2, this value is taken from [25]}. Since traditionally
cloud servers host several VMs at the same time, our model
proportionally shares the static power consumption of the
server among the VMs it can host, depending on their VM
size (allocated CPU and RAM). This model is detailed in
Section VI.

A last parameter can leverage server energy consumption,
namely sensors transmission interval. In addition to increas-
ing the application accuracy, sensors transmission frequency
increases network traffic and database accesses. Figure 7
presents the impact on the server energy consumption when
changing the transmission interval of 50 sensors to 1s, 10s and
30s. We can see that, the lower sensors transmission interval is,
the more server energy consumption peaks occur. Therefore,
it leads to an increase of the server energy consumption.

In the next section, we use the hints detailed here and
extracted from the real and simulated experiments in order
to provide an end-to-end energy model that can be used for
low-bandwidth IoT applications.

VI. END-TO-END CONSUMPTION MODEL

To have an overview of the energy consumed by the overall
system, it is important to consider the end-to-end energy
consumption. We detail here the model used to attribute the
energy consumption of our application for each part of the
architecture.



Fig. 5. Server power consumption multiplied by the PUE (= 1.2) using 20 sensors sending data every
10s for various VM memory sizes

Fig. 6. Average server power consumption
multiplied by the PUE (= 1.2) for sensors
sending data every 10s

Fig. 7. Server power consumption multiplied by the PUE (= 1.2) for 50 sensors sending requests at
different transmission interval.

Fig. 8. Average sensors power cost on the
server hosting only our VM with PUE (=
1.2) for sensors sending data every 10s

For a given IoT device, we have:

1) For the IoT part, the entire consumption of the IoT
device belongs to the system’s accounted consumption.

2) For the network part, the data packets generated by the
IoT device travel through network switches, routers and
ports that are shared with other traffic.

3) For the cloud part, the VM hosting the data is shared
with other IoT devices belonging to the same application
and the server hosting the VM also hosts other VMs.
Furthermore, the server belongs to a data center and
takes part in the overall energy drawn to cool the server
room.

Concerning the IoT part, we include the entire IoT device
power consumption. Indeed, in our targeted low-bandwidth
IoT application, the sensor is dedicated to this application.
From Table I, one can derive that the static power consumption
of one IoT sensor is around 0.9 Watts. Its dynamic part
depends on the transmission frequency. So the power con-
sumption of an IoT device:

P IoTdevice = P IoT
static + P IoT

dynamic

=
Pidle × (T − tRX − tTX)

T
+

PRX × tRX + PTX × tTX

T

where P IoT
static and P IoT

dynamic are respectively the static and
dynamic power consumption of the IoT device, tRX , tTX ,
and tidle are the duration spent in each mode (receiving,
transmitting and idle) and PRX , PTX , and Pidle the respective
power consumption of each mode, and T is the transmission
interval between two communications from the IoT device to
the cloud server.

Concerning the sharing of the network costs, for each
router, we consider its aggregate bandwidth (on all the ports),
its average link utilization and the share taken by our IoT
application. For a given network device, we compute our share
of the static energy part as follows:

Pnetdevice
static =

P device
static ×Bandwidthapplication

AggregateBandwidthdevice × LinkUtilizationdevice



where P device
static is the static power consumption of the

network device (switch fabrics for instance or gateway),
Bandwidthapplication is the bandwidth used by our IoT
application, AggregateBandwidthdevice is the overall ag-
gregated bandwidth of the network device on all its ports,
and LinkUtilizationdevice is the effective link utilization
percentage. The Bandwidthapplication depends on the trans-
mission frequency in our use-case. The formula includes the
link utilization in order to charge for the effective energy cost
per traffic and not for the theoretical upper bound which is
the link bandwidth. Indeed, using such an upper bound leads
to greatly underestimate our energy part, since link utilization
typically varies between 5 to 40% [27], [28].

Similarly, for each network port, we take the share at-
tributable to our application: the ratio of our bandwidth utiliza-
tion over the port bandwidth multiplied by the link utilization
and the overall static power consumption of the port. Table III
summarizes the parameters used in our model, they are taken
from [19], [27]. These are the parameters used in our formula
to compute the values that we used in the simulations and that
are presented in left part of Table I.

TABLE III
NETWORK DEVICES PARAMETERS

Device Parameters

Gateway Static power = 8.3 Watts
Bandwidth = 54Mbps
Utilization = 10%

Core router Static power = 555 Watts
48 ports of 1 Gbps
Utilization = 25%

Edge switch Static power = 150 Watts
48 ports of 1 Gbps
Utilization = 25%

The dynamic consumption of the network part includes a
cost per packet and a cost per byte for each network device
as detailed in [21]:

Pnetdevice
dynamic =

P device
byte ×NbBytes+ P device

pkt ×NbPkts

T

with NbBytes and NbPkts respectively the number of bytes
and packets sent by the application during one transmission
interval and P device

byte and P device
pkt the power consumption per

network device for each byte and each packet respectively.
For the sharing of the Cloud costs, we take into account the

number of VMs that a server can host, the CPU utilization of
a VM and the PUE. For a given Cloud server hosting our IoT
application, we compute our share of the static energy part as
follows:

PCloudserver
static =

P server
static × PUEDataCenter

HostedVMsserver

Where P server
static is the static power consumption of

the server, PUEDataCenter is the data center PUE, and
HostedVMsserver is the number of VMs a server can host.
This last parameter should be adjusted in the case of VMs

with multiple virtual CPUs. We do not consider here over-
commitment of Cloud servers. Yet, the dynamic energy part is
computed with the real dynamic measurements, so it accounts
for VM over-provisioning and resource under-utilization.

In our case, the Cloud server has 14 cores, which corre-
sponds to the potential hosting of 14 small VMs with one
virtual CPU each, and each vCPU is pinned to a server
core. We consider that for fault-tolerance purpose, the IoT
application has a replication factor of 2, meaning that two
cloud servers store its database.

The Figure VI represents the end-to-end system energy con-
sumption using the model described above while varying the
number of sensors for a transmission interval of 10 seconds.
The values are extracted from the experiments presented in
the previous section.

Fig. 9. End-to-end network energy consumption using sensors interval of 10s

Note that, for small-scale systems, with WiFi IoT devices,
the IoT sensor part is dominant in the overall energy con-
sumption. Indeed, the IoT application induces a very small
cost on Cloud and network infrastructures compared to the
IoT device cost. But, our model assumes that a single VM is
handling multiple users (up to 300 sensors), thus being energy-
efficient. Conclusions would be different with one VM per
user in the case of no over-commitment on the Cloud side.
For the network infrastructure, in our case of low-bandwidth
utilization (one data packet every 10 seconds), the impact is
almost negligible.

Another way of looking at these results is to observe that
only for a high number of sensors (more than 300), the power
consumption of Cloud and network parts start to be negligible
(few percent). It means that, if IoT applications handle clients
one by one (i.e. one VM per client), the impact is high
on cloud and network part if they have only few sensors.
The energy efficiency is really poor for only few devices:
with 20 IoT sensors, the overall energy cost to handle these
devices is almost doubled compared to the energy consumption
of the IoT devices themselves. Instead of increasing the
number of sensors, which would result in a higher overall
energy consumption, one should focus on reducing the energy
consumption of IoT devices, especially WiFi devices which



are common due to WiFi availability everywhere. One could
also focus on improving the energy cost of Cloud and network
infrastructure for low-bandwidth applications and few devices.

VII. CONCLUSION

Information and Communication Technology takes a grow-
ing part in the worldwide energy consumption. One of the root
causes of this increase lies in the multiplication of connected
devices. Each object of the Internet-of-Things often does not
consume much energy by itself. Yet, their number and the
infrastructures they require to properly work have leverage.

In this paper, we combine simulations and real measure-
ments to study the energy impact of IoT devices. In par-
ticular, we analyze the energy consumption of Cloud and
telecommunication infrastructures induced by the utilization
of connected devices. Through the fine-grain analysis of a
given low-bandwidth IoT device periodically sending data
to a Cloud server using WiFi, we propose an end-to-end
energy consumption model. This model provides insights on
the hidden part of the iceberg: the impact of IoT devices on
the energy consumption of Cloud and network infrastructures.

On our use-case, we show that for a given sensor, its larger
energy consumption is on the sensor part. But the impact
on the Cloud and network part is huge when using only
few sensors with low-bandwidth applications. Consequently,
with the IoT exploding growth, it becomes necessary to
improve the energy efficiency of applications hosted on Cloud
infrastructures and of IoT devices.

Our future work includes studying other types of IoT
wireless transmission techniques that would be more energy-
efficient. We also plan to study other IoT applications in order
to increase the applicability of our model and provide advice
for increasing the energy-efficiency of IoT infrastructures.
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