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Abstract 24 

Macroclimate warming is often assumed to occur within forests despite the potential for tree cover 25 

to modify microclimates. Using paired measurements (under the canopy vs. in the open) at 98 sites 26 

across five continents, we show that forests function as a thermal insulator, cooling the understory 27 

when ambient temperatures are hot and warming when ambient temperatures are cold. The 28 

understory vs. open temperature offset is magnified as temperatures become more extreme and is of 29 

greater magnitude than the warming of land temperatures over the past century. Tree canopies may 30 

thus reduce the severity of warming impacts on forest biodiversity and functioning.  31 
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Main text 32 

Biological impacts of macroclimate warming are increasingly evident across a wide array of 33 

ecosystems1-5. Many responses of biological communities and ecosystem processes, however, are 34 

lagging behind warming of the macroclimate6-11. Such time lags may be the inevitable consequence 35 

of slow dispersal and demography3, 7, 8, but may also be due to the buffering of localized 36 

microclimates by vegetation and topography, such that organisms do not necessarily experience the 37 

same degree of warming as measured at weather stations12-18. Biotic and abiotic features near the 38 

ground create heterogeneous microclimates, mostly via effects on radiation, air mixing, 39 

evapotranspiration and soil properties, all of which can influence biodiversity and ecosystem 40 

functioning17, 18. 41 

To better predict the biotic consequences of climate change, we need to further our 42 

understanding of how the local temperature experienced by living organisms (referred to as the 43 

‘microclimate’) changes in space and time. Macroclimates outside forests (sometimes referred to as 44 

‘free-air temperatures’ in the literature) are characterized by an extensive global network of weather 45 

stations established in the well-mixed air of open areas (e.g. short grasslands) c. 2 m above the soil 46 

surface19, 20 — habitat conditions that are not representative of the conditions experienced by the 47 

majority of terrestrial species on Earth21, 22. The study of microclimates is not new, since 48 

microclimatological measurements began more than a century ago, but most climate-change studies 49 

rely on weather station data that are specifically designed to correct for these microclimatic effects15-50 

20. Hence, future projections of climate change relying solely on macroclimate ignore the potential 51 

impact of microclimates on biodiversity and ecosystem functioning1, 2, 5. 52 

Microclimates are particularly evident in forests, where the large majority of species live 53 

underneath the canopy of trees that strongly influences local thermal conditions10-13. This is of major 54 
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concern for global-change science because forests cover one-quarter of the Earth’s land surface and 55 

harbor two-thirds of all terrestrial biodiversity20-23, and some studies have already shown that 56 

microclimatic buffering can mediate the response of forest communities to climate change8-11. 57 

Here we report a systematic, global meta-analysis quantifying the thermal buffering capacity of 58 

the Earth’s dominant forested ecosystems (tropical to boreal forests) across five continents (Fig. 1). 59 

Drawing on empirical studies with a strictly paired design (i.e. comparing microclimate with 60 

macroclimate), we quantify the average temperature offset of forests and also how the magnitude of 61 

such offsets depends on the macroclimatic context (i.e. outside forests). From a total of 98 sites and 62 

74 studies, we retrieved paired temperature time series and/or summary statistics (i.e. minimum, 63 

mean, or maximum temperatures) for exactly the same time period in (i) understory conditions in 64 

forests (i.e. microclimate) and (ii) an adjacent open habitat without shade (i.e. macroclimate). Offset 65 

values were always calculated as temperatures inside minus macroclimate temperatures outside 66 

forests such that negative values reflect cooler forest temperatures. 67 

In our global analysis of 714 paired temperature data, we found that tree canopies buffer 68 

forest floors against both high and low macroclimatic temperatures. Mean and maximum understory 69 

temperatures were, on average, cooler by 1.7 ± 0.3 and 4.1 ± 0.5 °C (mean ± S.E., mixed-effects 70 

models: both P < 0.001) than macroclimate temperatures, respectively. Conversely, minimum 71 

temperatures of the forest understory were 1.1 ± 0.2 °C warmer than the macroclimate outside the 72 

forest (mixed-effects model: P < 0.001; Fig. 1, Supplementary Figs. 1-2). Thus, forest understories 73 

are not only cooler on average than nearby open habitats, but negative maximum temperature 74 

offsets (cooler in forests) and positive minimum temperature offsets (warmer in forests) also 75 

indicate lower temperature variation below the forest canopy. 76 
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Across the globe, the thermal offset of forests was negatively correlated with the macroclimate 77 

temperature outside forests. Thermal offsets became more negative (i.e. lower temperatures in 78 

forests) as macroclimate temperature increased, and more positive (i.e. higher temperatures in 79 

forests) as macroclimate temperature decreased (Fig. 2a, Supplementary Figs. 3-4). The cooling of 80 

mean and maximum temperatures was highest in tropical forests (probably partly as a result of the 81 

latitudinal gradient in macroclimate temperatures; Fig. 2a) while minimum temperatures were highest 82 

in boreal forests, relative to the macroclimate temperature (Fig. 2b). This means that the latitudinal 83 

gradient of forest-floor temperatures is less steep than the latitudinal gradient in macroclimate 84 

temperature and that the amplitude of change within a given microhabitat does not always equate to 85 

the amplitude of macroclimate change11
. 86 

To control for the effects of spatiotemporal changes in macroclimate temperatures (e.g. 87 

sampling of tropical vs. boreal forests, low vs. high elevations or warm vs. cold years) on the 88 

magnitude of the offset, we computed macroclimate temperature anomalies relative to the average 89 

conditions over the period 1970-2000 for each of the 98 study sites, and subsequently used it as a 90 

predictor variable instead of actual temperatures outside the forest reported in the original studies. 91 

The results are in line with those using raw temperature values rather than anomalies: the cooling 92 

effect on maximum and mean temperatures, as well as the warming effect on minimum 93 

temperatures, are consistent along the gradient of temperature anomalies, with very similar slope 94 

estimates compared to the models with actual macroclimate temperatures (Supplementary Fig. 5).  95 

Together, these results suggest that the thermal offsetting capacity of forests across the globe 96 

may translate into lower warming in the forest understory compared to warming trends using 97 

weather-station data from non-forested areas. Forests across the globe are thus effectively serving as 98 

a thermal insulator compared with open areas, with such a buffering effect potentially reducing the 99 
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severity of climate change impacts on forest ecosystems. The offset values we report here now have 100 

to be compared to the thermal sensitivities of species and ecosystem processes to better predict 101 

ecological responses to increasing temperatures. 102 

In addition to spatiotemporal variability, we also tested for additional factors that might 103 

explain some of the variation among studies in the magnitude of temperature offsets, such as forest 104 

composition (evergreen, mixed or deciduous), tree height, topography, distance to the coast, or the 105 

height of the temperature sensors (e.g. aboveground or belowground) (Supplementary Figs. 6-7; 106 

Supplementary Table 5). Sensor height indeed impacted the magnitude of the offset: the buffering in 107 

forests was strongest close to the ground while the difference in temperatures between forests and 108 

open habitats disappeared higher up above-ground, both for minimum and maximum temperatures 109 

(Supplementary Fig. 7). Contrary to what we expected based on the scientific literature24, we did not 110 

detect an effect of the type of dominant tree species (evergreen, deciduous or mixed), topography, 111 

distance to the coast or forest height on the offset; more targeted studies will be needed to provide 112 

stronger tests of such factors. 113 

Paleoecological records show that temperature changes of greater magnitude and rate have 114 

stronger biological consequences5, 25. Here we have shown that microclimate buffering in forests has 115 

the potential to partly offset the warming experienced in the forest understory due to anthropogenic 116 

climate change, effectively reducing the severity of impacts from heating of the atmosphere. As 117 

such, closed forest canopies might provide a line of defense against the impacts of current and 118 

future warming on the ecological processes that influence forest ecosystems (e.g. tree regeneration, 119 

demography and community reshuffling, litter decomposition, and soil water and nutrient cycling). 120 

In addition, because offsetting was strongest for maximum temperatures, we might expect extreme 121 

events such as heat waves to be more strongly attenuated than gradual temperature changes. 122 
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Our results underpin a neglected function of forests: an offset of within-forest temperatures 123 

that is of greater magnitude than the global warming of land and ocean temperatures over the past 124 

century (~0.85 °C, ref. 4) and also the warming of regional surface temperatures following 125 

deforestation (usually < 1 °C, ref. 26). Forest canopies serve as thermal insulating layers, likely 126 

offsetting the impacts of anthropogenic climate change in the understory, where a large share of 127 

forest biodiversity resides and key ecosystem processes take place21, 22. It is thus essential to 128 

incorporate microclimates into biodiversity and climate science as well as into forest management 129 

and policy. As forest loss, degradation, and conversion to monoculture crops continues27, 28, human 130 

land use might undermine ecosystems’ natural ability to mediate climate warming (a positive 131 

feedback). Such feedbacks to climate systems may be further exacerbated via effects of 132 

microclimates on soil CO2 and CH4 fluxes and sub-canopy evapotranspiration rates29. 133 

Advances in studies of micro- vs. macroclimate change have thus far been limited by the 134 

availability of suitable spatial data to model and map small-scale heterogeneity of microclimate 135 

conditions10-17,24. Our global analysis shows the importance of forests in moderating climate 136 

warming, and the next step will be to incorporate fine-grained thermal variability into bioclimatic 137 

modelling of future species demography and distributions14-17. Our findings indicate that well-138 

quantified microclimates are key to improving predictions of climate-change impacts and assisting 139 

management decisions. Forest managers and policy makers alike can potentially exploit microclimate 140 

buffering as a regulating service when developing mitigation and adaptation plans to safeguard forest 141 

biodiversity and functioning as well as human well-being in a future, warmer world.  142 
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Methods 143 

Literature search and data extraction 144 

We performed a literature search on ISI Web of Science to compile suitable published studies 145 

assessing the thermal offsetting capacity of forest ecosystems. This search was updated until 15 June 146 

2017 and performed by each of three authors (PDF, FZ, JL) independently, using keywords such as 147 

microclimat*, microrefug*, microhabitat*, forest*, temperature* and buffer*. The combined number 148 

of potentially suitable papers found by these three independent searches was 706. We then screened 149 

the titles and abstracts to find studies that potentially met our requirements for data extraction (see 150 

the next paragraph). We considered forest microclimates to represent the suite of climatic conditions 151 

measured in localized areas near the ground and within the forest understory (below tree canopies). 152 

Microclimatic conditions include temperature, precipitation, wind and humidity, but the focus here 153 

was on the temperature of the air layer below tree canopies and the temperature of the topsoil due 154 

to their importance for the responses of forest organisms and ecosystem functioning to 155 

macroclimate warming. The macroclimate was considered as the climate in free-air conditions, 156 

representative of a large geographic region without direct canopy effects. This definition follows the 157 

definition used by meteorologists who record synoptic or macroclimate conditions from 158 

standardized weather stations19-20. 159 

Our criteria for study inclusion were the following: studies had to report temperature values 160 

(time series or summary statistics such as minimum, mean or maximum values) according to a 161 

strictly paired design comparing microclimate below trees (inside forests) with temperatures 162 

recorded from a reference neighbouring site outside the forest without any influence of trees (i.e. 163 

macroclimate conditions). Reference sites were either a nearby open site equipped with the same 164 

type of (shielded) temperature loggers, a nearby weather station (as long as the distance did not 165 

confound with the temperature offset of the canopy, e.g. due to significant topographic differences), 166 
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or a logger placed above the upper canopy surface. Constancy of the location of temperature sensors 167 

within a pair of observations (e.g. forest soil temperatures were only compared with control soil 168 

temperatures) was a requirement. Temperature data presented in tables or text were entered directly 169 

into our database. Temperature data not available directly in the text, raw data or as tables but 170 

presented in figures in the original papers (42.3 % of the total number of offset values) were 171 

extracted using the digitalization software WebPlotDigitizer 172 

(https://automeris.io/WebPlotDigitizer/). We did not set any limit on the study duration, i.e. we 173 

extracted data from studies that quantified paired temperature time series during single days up to 174 

several years. If studies were performed along an edge-to-core transect, we only considered the 175 

measurements outside the forest farthest away from the edge versus the measurement closest to the 176 

core of the forest (as far away from the edge as possible). We screened the titles and abstracts of all 177 

above-mentioned 706 publications. In addition, we included a formal process of scanning references 178 

lists of relevant papers and further added potentially relevant papers extracted from these reference 179 

lists. In total, we identified 74 studies published between 1939 and 2017 that met our above-180 

mentioned requirements for data extraction. The majority of the studies were reported in peer 181 

reviewed journal articles, but also 2 PhD theses, 1 book and 2 institutional reports were included. 182 

When raw temperature data were available, we computed three summary statistics: maximum, 183 

mean and minimum temperatures across time. If available, we extracted temperatures outside and 184 

inside the forest and then calculated the magnitude of the offset as understory temperature minus 185 

temperature outside the forest; negative values thus reflect cooler temperatures below tree canopies 186 

while positive values reflect warmer understory temperatures. A third of the studies (34 % of offset 187 

values) only reported the macroclimate vs. understory temperature difference (and not the forest and 188 

macroclimate temperatures separately). In these instances, only the offset value itself was directly 189 

entered in our database. Replicate forest sites (at least several kilometers apart), seasons 190 

http://arohatgi.info/-WebPlotDigitizer/)
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(meteorological seasons, later aggregated to growing vs. non-growing season) and temperature 191 

metrics (maximum, mean, minimum, air or soil temperatures) within the same study were entered on 192 

different rows into the database. Temperature values of longer time series were always aggregated 193 

per season and/or year. 194 

All authors contributed to the data extraction from the original papers. After the first data 195 

extraction, however, all entries into the database were thoroughly double-checked by four authors 196 

(PDF, FZ, FRS, JL), working together closely to resolve any discrepancies or ambiguities and to 197 

ensure a standardized protocol across all papers. We used the following R packages for data 198 

management, cleaning and visualization: readxl30, dplyr31, CoordinateCleaner32, knitr33, rmarkdown34, 199 

ggplot235, and cowplot36, as well as custom R code37. 200 

In total, our final database consisted of 714 paired temperature offset data points from 74 201 

independent studies spread across five continents. Our full database with all variables used in the 202 

analyses, as well as all source code, is reported in ref. 37. 203 

 204 

Predictor variables 205 

Apart from the temperature variables, we also extracted the following attributes for each offset value 206 

and/or study, if available in the original source article: 207 

 Location: Latitude, longitude and elevation (meters above sea level). 208 

 Biome: Based on the geographical coordinates, we classified each site into one of the 209 

following three biomes: tropical (latitude was between 23.5°S and 23.5°N); temperate 210 

(latitude was between 23.5° and 55°); or boreal (latitude was higher than 55°). 211 
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 Vegetation type: Based on the original source article, or, if needed, additional sources (e.g. 212 

other papers from the same study site and/or authors), the forest type was classified into 213 

each of three categories: deciduous (if dominant tree species was deciduous; 1 in dataset via 214 

ref. 37); evergreen (if dominant tree species was evergreen; 2); or mixed (3). 215 

 Study length: number of days during which temperatures were measured, ranging from 1 day 216 

to 10 years. 217 

 Forest density: We extracted for each study site, if available, any of the following variables 218 

relating to forest density: canopy cover (%); tree basal area (m2 ha-1); tree density (number ha-219 

1); and leaf area index (LAI). Each of the above-described variables was available for a 220 

minority of offset values: 16 % for canopy cover, 23 % for basal area, 7 % for tree density 221 

and 8 % for LAI. For reasons of paucity of these data, we do not consider these variables 222 

further in our analyses, but the raw data are available in ref. 37. 223 

 Forest height: We extracted for each study site, if available (39 % of offset values), the height 224 

of the dominant tree individuals (in meters). 225 

 Topographic heterogeneity and distance to the coast: because of known effects of topography24 on 226 

microclimates, we also extracted topographic heterogeneity using raster layers derived from 227 

the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) at 250 m 228 

resolution38. We here focused on two variables that capture topographic heterogeneity within 229 

a 1 km² pixel around each pair of measurements (forest and macroclimate outside forest): (i) 230 

the standard deviation of elevation values aggregated per 1 km² (further referred to as 231 

‘elevational variation’), and (ii) the median of the topographic position index (TPI) values at 232 

1 km resolution. The TPI is the difference between the elevation of a focal cell and the mean 233 

of its eight surrounding cells. Positive and negative values correspond to ridges and valleys, 234 

respectively, while zero values correspond to flat areas38. Finally, we also extracted the 235 
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distance from each pair of measurements (forest and macroclimate outside forest) to the 236 

nearest coastline. 237 

 Season of sampling: Temperature measurements were classified as having taken place during 238 

the growing season, the non-growing season, or whether the whole year was sampled 239 

(annual). This was aggregated based on reported meteorological seasons and/or climate 240 

information in the original study. The dry and winter season were classified as the non-241 

growing season in tropical and temperate biomes, respectively. 242 

 Height of the sensor (continuous variable, in meters above or below the soil surface): positive 243 

for aboveground, negative for belowground sensors. While soil temperatures obviously do 244 

not reflect macroclimate temperatures, they still allow for a comparison of forests’ thermal 245 

buffering capacity on soil organisms and processes. The effects of macroclimate 246 

temperatures on the offset were similar when only considering sensors placed > 0 cm above 247 

the soil surface. 248 

 Macroclimate temperature anomalies: We calculated the difference between each macroclimate 249 

temperature and the long-term average temperature for a given site. This was done in order 250 

to test if the increase in temperature offset with warmer macroclimate temperatures was due 251 

in part to temporal variation in macroclimate, rather than only spatial variation. 252 

Macroclimate temperatures are thus compared to a common baseline. Using these 253 

temperature anomalies, we asked how the magnitude of the thermal offset capacity of forests 254 

varies along a gradient of deviations from long-term temperature averages, analogous to 255 

IPCC definitions of climate change4. We used 1970-2000 as reference period to compare our 256 

macroclimate temperatures outside forests against a common base period. Location-specific 257 

long-term averages (1970-2000) of mean annual temperatures were extracted from 258 
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WorldClim version 2 at 30 arc-second spatial resolution (approximately equivalent to 0.86 259 

km² at the equator) for each study site39. 260 

 261 

Data analyses 262 

To report summary statistics of the thermal offset capacity of forests globally (Supplementary Table 263 

1), two contrasting approaches were adopted. First, the raw mean, median and quantiles were 264 

calculated. Then, we carried out a multilevel modeling framework using intercept-only linear mixed-265 

effects models (LMMs) without fixed predictor variables but with ‘study’ as a random intercept term 266 

to account for pseudo-replication in some of the 74 selected studies. The intercept of intercept-only 267 

models represents the average magnitude of the thermal offset of forests while accounting for the 268 

non-independence among replicates from the same study. When fitting our intercept-only LMMs, 269 

we used the restricted maximum likelihood method in the lmer function from the lme4-package40 as 270 

recommended by Zuur et al.41. 271 

Applying a conventional meta-analytical model sensu stricto with weighting of different 272 

observations by means of variance estimates42 was not possible here: an estimate of uncertainty 273 

(standard error, deviation, coefficient of variation or confidence intervals) of the offset values was 274 

reported for only a small minority (13.6 %) of offset values included in our database. 275 

Next, we assessed how macroclimate temperatures and macroclimate temperature anomalies 276 

predicted variation in the temperature offset of forests globally. As above, we fitted LMMs with 277 

macroclimate temperatures and macroclimate temperature anomalies as fixed effects and ‘study’ as a 278 

random effect using restricted maximum likelihood in the lmer function from the lme4-package40. We 279 

also performed χ²-tests by comparing the univariate LMM including a single predictor with the 280 
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baseline intercept-only model41. Goodness-of-fit was determined by calculating marginal and 281 

conditional R² values following ref. 43 using the r.squaredGLMM function in the MuMIn-package44. 282 

We also determined how variables such as absolute latitude, biome, elevation, vegetation type, 283 

distance to the coast, the elevational variation and topographic position, season, and sensor height 284 

influenced variation in the offset of forests, and how they interacted with macroclimate 285 

temperatures. We first ran seven separate univariate LMMs, one per predictor variable as a fixed 286 

effect in our LMMs. As earlier, we again fitted LMMs with a random effect term ‘study’ using 287 

restricted maximum likelihood in the lmer function from the lme4-package40. In order to test 288 

interactions, we finally also ran LMMs with two predictor variables each: the macroclimate 289 

temperature and each of these seven other predictors (i.e. one-by-one of these seven variables * 290 

macroclimate temperature); for the sake of simplicity, higher level interactions were not considered 291 

(Supplementary Table 6). 292 

Finally, the linearity of the relationship between the temperature offset and macroclimate 293 

temperatures was tested with General Additive Mixed Models with the gamm-function in the mgcv-294 

package45 and again study was added as random term (Supplementary Fig. 4). Our main findings were 295 

robust to the decisions to (i) analyze understory temperatures as the response variable against 296 

macroclimate temperature as a fixed effect in LMMs, instead of intercept-only LMMs based on 297 

offset values (Supplementary Fig. 3), and (ii) add random intercepts into LMMs, instead of random 298 

slopes (Supplementary Table 7). Omitting a few outlier values from a single study120 from the 299 

analyses also did not affect our conclusions (Supplementary Table 8). 300 

All analyses were performed in R version 3.4.4 (ref. 46) and all retained papers are in the 301 

reference list47-120. All raw data and code are available in ref. 37. Full results of the statistical analyses 302 

are reported in Supplementary Tables 1-8. We followed best practices for reporting meta-analyses 303 
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recommended by the PRISMA guidelines121 and included a flow diagram summarising the search 304 

criteria in Supplementary Fig. 8.  305 
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Figure Legends 589 

Fig. 1 | Forests buffer temperatures under canopies globally. a, Distribution of the 98 study 590 

sites and their vegetation type (deciduous, evergreen or mixed forests). b, Histograms display the 591 

714 paired temperature offset values for maximum (Tmax), mean (Tmean) and minimum (Tmin) 592 

temperatures. Maximum and mean temperatures are consistently cooler, and minimum temperatures 593 

consistently warmer, within forests compared to macroclimate temperatures. Offsets were always 594 

calculated as temperatures inside minus macroclimate temperatures outside the forest such that 595 

negative (positive) values reflect cooler (warmer) forest temperatures. Offset means and standard 596 

errors are based on mixed-effects models with study as a random-effect term. Full statistical 597 

analyses, data and code are reported in Supplementary Information and ref. 37. 598 

Fig. 2 | Forest temperature offsets under canopies are negatively related to warming air 599 

temperatures and dependent on the biome. a, The magnitude of the temperature offset within 600 

forests depends on ambient macroclimate temperature: the higher the warming, the more offsetting 601 

of temperatures (Tmax and Tmean). For minimum temperatures, positive offsets increase with colder 602 

temperatures. b, Study sites were classified into boreal, temperate or tropical, based on their latitude. 603 

Offset values were always calculated as temperatures inside minus macroclimate temperatures 604 

outside the forest such that negative (positive) values reflect cooler (warmer) forest temperatures. 605 

Regression slopes, 95% confidence intervals (grey shading), and offset means (red lines), are based 606 

on mixed-effects models with study as a random-effect term. Full statistical analyses, data and code 607 

are reported in Supplementary Information and ref. 37. 608 
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Fig. 1 | Forests buffer temperatures under canopies globally 609 
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Fig. 2 | Forest temperature offsets under canopies are negatively related to warming air 610 

temperatures and dependent on the biome 611 
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