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Abstract 10 

Species distribution models (SDMs) are widely used to make predictions and assess questions 11 

regarding the spatial distribution and redistribution of species under environmental changes. Current 12 

SDMs are, however, often based on free-air or synoptic temperature conditions with a coarse 13 

resolution, and thus may fail to capture apparent temperature (cf. microclimate) experienced by living 14 

organisms within their habitats. Microclimate is nevertheless crucial in habitats characterized by a 15 

vertical component (e.g. forests, mountains, or cities) or by horizontal variation in surface cover. The 16 

mismatch between how we usually express climate (cf. coarse-grained free-air conditions) and the 17 

apparent microclimatic conditions that living organisms experience has only recently been 18 

acknowledged in SDMs, yet several studies have already made considerable progress in tackling this 19 

problem from different angles. In this review, we summarize the currently available methods to obtain 20 

meaningful microclimatic data for use in distribution modelling. We discuss the issue of extent and 21 

resolution, and propose an integrated framework using a selection of appropriately-placed sensors in 22 

combination with both detailed measurements of the habitat 3D structure, for example derived from 23 

digital elevation models or airborne laser scanning, and long-term records of free-air conditions from 24 

weather stations. As such, we can obtain microclimatic data with finer spatiotemporal resolution and 25 

of sufficient extent to model current and future species distributions.  26 
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microrefugia, remote sensing, temperature 28 
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Introduction 30 

Species distribution models (SDMs), also known as environmental niche models, are widely used to 31 

make predictions and assess questions regarding the spatial distribution and redistribution of species 32 

under environmental changes (Elith and Leathwick 2009). Applications of SDMs range from studies on 33 

the effects of anthropogenic climate change to predictions of biological invasions (Guisan and Thuiller 34 

2005). SDMs are usually created by relating known species occurrence (or presence-absence) data with 35 

information about the environmental conditions at these locations (Guisan and Thuiller 2005, Elith and 36 

Leathwick 2009, Jiménez-Valverde et al. 2011). The most common strategy is to work with a set of 37 

bioclimatic variables at 30 arc-second resolution (ca. 1 km at the equator) or coarser (Hijmans et al. 38 

2005, Warren et al. 2008, Sears et al. 2011, Slavich et al. 2014, Gonzalez-Moreno et al. 2015) which 39 

usually represent free-air conditions averaged over 30 years or more. While such macroclimatic data 40 

might be sufficient in flat terrains with little variation in land use, they may not adequately characterize 41 

the microclimatic conditions organisms experience. Differences between macro- and microclimate are 42 

expected to be particularly pronounced where habitat includes a vertical dimension with significant 43 

variation along it, originating from either biotic, abiotic or human-made features (e.g. in mountains, 44 

forests, or cities) (Bramer et al. 2018). 45 

For example, in mountain regions with heterogeneous topography, microclimate can vary 46 

noticeably over short distances due to a steep elevational gradient and rugged terrain (Gottfried et al. 47 

1999, Holden et al. 2011, Sears et al. 2011, Opedal et al. 2015, Graae et al. 2018). Annual average 48 

temperatures have been found to vary up to 6°C within spatial units of 1 km² in Northern Europe 49 

(Lenoir et al. 2013). This large temperature variation also affects snow distribution (both snow depth 50 

and cover) in cold environments and consequently the local length of the growing season and many 51 

associated processes (Körner 2003, Aalto et al. 2018). The fine-grained thermal variability in mountains 52 

is usually attributed to physical processes such as air motion and solar radiation, interacting with 53 

topographic complexities such as aspect, slope angle and roughness; i.e. topoclimate (Geiger and Aron 54 

2003), with vegetation cover and anthropogenic disturbance additionally known to affect local 55 

temperatures (Lembrechts et al. 2017). Consequently, the necessity to incorporate topoclimatic 56 

processes into SDMs for organisms in mountainous regions is now well acknowledged (Randin et al. 57 

2009, Dobrowski 2011). 58 

Similar microclimate heterogeneity has been reported for forest systems, where daily maximum 59 

temperatures in the understory, i.e. sub-canopy temperatures, have been found to be more than 5°C 60 

lower – and occur significantly later in the day – than in comparable clear-cuts (Chen et al. 1999). It 61 

has also been recently suggested that sub-canopy temperatures are not only instantly buffered, but 62 

also partially decoupled from free-air temperatures (Ewers and Banks-Leite 2013, Varner and Dearing 63 
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2014, Locosselli et al. 2016, Lenoir et al. 2017, Aalto et al. 2018), with important consequences for 64 

forest-dwelling species redistribution under anthropogenic climate change (Lenoir et al. 2017). 65 

Temperature buffering is defined here as a reduction in climatic extremes, which increases stability 66 

over time, while the term decoupling is used for a deviation from the 1:1 reference line of perfect 67 

coupling between sub-canopy and free-air temperatures. In cities, the urban heat island (UHI) effect 68 

results in higher air and surface temperatures than in rural surroundings, especially at night (Grimm et 69 

al. 2008). Differences between urban and adjacent rural temperatures are increasing (from around 70 

0.5°C differences in 1950 to 1.5°C in 2005 for Brussels) as urbanisation has increased in the last decade 71 

(Hamdi 2010), indicating a similar decoupling between urban microclimate and the background free-72 

air conditions as observed in forests. The UHI effect results from the interaction between the vertical 73 

use of space (e.g. buildings) with the different land cover in urbanised areas, with a lower evaporative 74 

cooling and reductions in heat convection to the atmosphere thought to be the driving factors (Zhao 75 

et al. 2014). In general, temperature variation occurs at multiple scales, from the smallest boundary 76 

layer of air to the landscape level (Pincebourde et al. 2016, Bramer et al. 2018). 77 

In order to accurately predict species distributions in natural or anthropogenic environments 78 

with such small-scale climatic variability (e.g. arctic-alpine, forest, urban), fine resolution climate data 79 

is needed (Illan et al. 2010, Scherrer and Körner 2011, Suggitt et al. 2011, Graae et al. 2012, Opedal et 80 

al. 2015). This is important for example in regard to holdouts, which are isolated populations that 81 

persist in a favourable microclimate for a limited period of time amidst deteriorating climatic 82 

conditions; and microrefugia, where these isolated populations can persist for a longer time until 83 

climatic conditions return to baseline or suitable (Ashcroft 2010, Dobrowski 2011, Hannah et al. 2014, 84 

Lenoir et al. 2017, Meineri and Hylander 2017). Indeed, the spatial heterogeneity in temperature 85 

computed from local measurements has been shown to be almost twice as large as the one computed 86 

from global interpolated temperatures (Lenoir et al. 2013), suggesting local persistence opportunities 87 

through short-distance escapes for populations experiencing anthropogenic climate change (Graae et 88 

al. 2018). Overlooking such microrefugia likely results in overestimations of future species’ range shifts 89 

(Lenoir et al. 2013). Climatic variability within an area can also buffer climate warming effects 90 

considerably (Lenoir et al. 2013, Lenoir et al. 2017), yet this buffering likewise often remains 91 

undetected using macroclimatic data at coarse spatial resolution (e.g. CHELSA (Karger et al. 2017), 92 

WorldClim (Fick and Hijmans 2017), TerraClimate (Abatzoglou et al. 2018) or ENVIREM (Title and 93 

Bemmels 2017)). Overlooking this buffering can lead to overestimation of extinction rates (Willis and 94 

Bhagwat 2009). Another use of microclimatic data lies in the assessment of stepping stones, referring 95 

to areas with favourable microclimates that facilitate species’ range shifts, e.g. upward or poleward 96 

movement during climate change (Hannah et al. 2014). Such stepping stones can exist in mountain 97 
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environments (Lembrechts et al. 2017), yet the urban matrix can also act as such for the poleward 98 

expansion of both heat-loving native and non-native species (Menke et al. 2011). 99 

This mismatch between how we traditionally use climate (cf. free-air conditions) and the 100 

apparent microclimatic conditions that living organisms experience has only recently been 101 

acknowledged in SDMs (Dobrowski 2011, Pradervand et al. 2014, Slavich et al. 2014), yet considerable 102 

progress in tackling this problem has been made and has produced improvements in SDM predictions 103 

(e.g. Ashcroft et al. 2008, Dobrowski 2011, Pradervand et al. 2014, Slavich et al. 2014, Meineri and 104 

Hylander 2017, Bramer et al. 2018). In the following sections, we shortly summarize the current 105 

available methods to obtain meaningful microclimatic data for ecology, after which we show their 106 

current application in SDMs. 107 

Sources of microclimatic data 108 

In-situ measurements 109 

Miniature data-loggers can provide high-resolution measurements of surface, soil and air 110 

temperatures, with the major advantage that conditions can be measured where they are expected to 111 

be ecologically most relevant to living organisms (Rae et al. 2006, Ashcroft et al. 2008, Bramer et al. 112 

2018). Small sensors can even be attached to the organisms themselves to obtain temperature 113 

information at the level of the study object (Potter et al. 2013). Such measurements also allow high 114 

temporal detail, and focusing on extreme weather conditions has as such been shown to be often more 115 

relevant for species distributions than the average climate over seasons with many different weather 116 

patterns (Ashcroft and Gollan 2012). However, a drawback of microclimate data from in-situ loggers 117 

lies in the short temporal extent (Table 1). These techniques are currently indeed limited to the 118 

measurement of “micro-weather” data instead of microclimate data. To improve the accuracy of 119 

SDMs, the high spatial and temporal accuracy of these in-situ measurements will need to be combined 120 

with long-term records, either by maintaining loggers in the field over periods of several years or by 121 

coupling these loggers with historical data from the long-established networks of national weather 122 

stations. The use of such loggers over large geographic extents is also still limited by the cost (Lenoir 123 

et al. 2013), despite the increasing availability of small, relatively cheap and robust temperature 124 

sensors (Bramer et al. 2018). In-situ measurements with miniature data-loggers additionally provide 125 

opportunities to measure air humidity (Ashcroft and Gollan 2012), yet techniques to accurately 126 

measure long-term soil moisture and precipitation at numerous locations are currently not readily 127 

available (Lenoir et al. 2017), even though global databases of soil moisture have been under 128 

development for decades (Robock et al. 2000, Dorigo et al. 2011). 129 
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Modelling microclimate 130 

For spatial predictions in SDMs, the above-mentioned in-situ measurements first have to be converted 131 

into gridded data across the spatial extent covered by the network of sensors, using interpolation 132 

techniques similar to those used to create global climate models based on a global network of weather 133 

station data (e.g. WorldClim) (Ashcroft et al. 2008, Meineri and Hylander 2017). As for interpolation 134 

techniques, one can use mixed-effects models or geostatistical approaches such as spatial kriging or 135 

geographically weighted regressions (Fotheringham et al. 2003, Ashcroft et al. 2008, Fridley 2009, 136 

Ashcroft and Gollan 2012, Meineri and Hylander 2017). Although geostatistical approaches may 137 

outperform mixed-effects models to spatially interpolate microclimate, the former cannot be used to 138 

extrapolate microclimate outside the spatiotemporal extent covered by the data. Mixed-effect models 139 

can be used to extrapolate microclimate, yet spatiotemporal extrapolations should always be used 140 

with extreme care, and must remain inside the range of conditions covered by the predictor variables 141 

used to calibrate the model. This is an important limitation with repercussions for SDMs. These 142 

interpolation techniques allow the integration of detailed regional variables (e.g. derived from digital 143 

elevation models (DEMs) or similar datasets) in accurate interpolations of microclimate (Bramer et al. 144 

2018). Such methods accounting for well-known topographic climate-forcing have been shown to 145 

significantly improve SDMs in regional trials (Ashcroft et al. 2008, Ashcroft and Gollan 2012). 146 

Microclimatic interpolation can capture variation at high temporal resolution, yet is limited in its 147 

temporal extent by the baseline in-situ temperature data (e.g. Ashcroft et al. 2008) (Table 1). The 148 

combination of a high (hourly) temporal resolution and a long temporal extent has however been 149 

realized thanks to the application of similar techniques (e.g. mixed-effect models) to interpolate long-150 

term hourly weather station data at 25-m² resolution (with the help of fine-scaled DEMs , e.g. Bennie 151 

et al. 2013, Meineri and Hylander 2017) or lower (< 10 m, thanks to airborne light detection-and-152 

ranging (LiDAR) images, George et al. 2015; see the last paragraph of this section and the next section 153 

for the use of remote sensing technologies). However, such interpolations are currently limited to free-154 

air temperature (Table 1).  155 

 Similar statistical approaches can be used to downscale macroclimate, i.e. translating 156 

macroclimatic variables to a finer spatial resolution by linking global climate models to regional or local 157 

variables at that finer resolution. Such downscaling approaches use statistical relationships between 158 

local and global climate patterns to estimate local climate (Dobrowski et al. 2009, Ashcroft and Gollan 159 

2013a). They can provide long-term averages of local climate with a long temporal extent, yet have a 160 

coarse temporal resolution and are again limited to free-air temperatures (Table 1, Woods et al. 2015, 161 

Carroll et al. 2016). Additionally, while regional datasets often include estimates of climate extremes 162 

(e.g. the warmest temperature of the warmest month, Hijmans et al. 2005), they do not allow the 163 
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assessment of variation in frequency and/or intensity of climate extremes over time, as is possible with 164 

in-situ measurements.  165 

As opposed to the above-mentioned statistical models, process-based or mechanistic methods 166 

seek to model microclimate using mathematical relationships between the processes driving it (e.g. 167 

coastal influences, altitudinal effects or cold-air drainage). They originate in meteorology and 168 

incorporate the physical processes like energy and mass fluxes or wind speed to predict climate at the 169 

local scale, which makes them more likely to provide reliable predictions under future conditions 170 

(Bennie et al. 2008, Evans and Westra 2012, Felicísimo Pérez and Martín-Tardío 2017, Kearney and 171 

Porter 2017). Mechanistic models still require inputs from weather stations or climate models, but 172 

crucially the downscaling process is based on known mechanisms rather than using interpolation or 173 

statistical algorithms (Bramer et al. 2018). Finally, one can also use empirically calibrated mechanistic 174 

models, which combine a mechanistic understanding of microclimatic processes (e.g. cold-air 175 

drainage) with empirical testing using in-situ measurements (Maclean et al. 2017). Such a hybrid model 176 

combines the accuracy of empirical models with the transferability of mechanistic models. 177 

The spatial resolution of interpolation and downscaling approaches is unavoidably linked to the 178 

resolution of the underlying environmental data: it can only ‘fill in the gaps’ in a coarser dataset if other 179 

fine-grained environmental information is available. Most downscaling approaches make use of DEMs 180 

to capture topoclimate. High-resolution DEMs are currently available at horizontal resolutions of 25 m 181 

or finer at the global extent (Randin et al. 2009, Hannah et al. 2014, Davis et al. 2016), allowing a 182 

significant improvement over the 1-km resolution of global climate data (e.g. WorldClim, CHELSA, 183 

ENVIREM). With not only elevation defining microclimate, other topoclimatic variables (e.g. aspect, 184 

cold-air drainage, solar insolation) are being derived from high-resolution DEMs to further improve  185 

models (Dobrowski 2011, Ashcroft and Gollan 2013b, Lenoir et al. 2017). Recent years have also seen 186 

a rapid increase in remote sensing techniques using satellite-based, airborne or terrestrial sensors, and 187 

consequently a strong increase in the accuracy and resolution of remotely-sensed gridded data (Table 188 

1, Parmentier et al. 2014, Pradervand et al. 2014, Bramer et al. 2018). At resolutions finer than the 25 189 

x 25 m available in DEMs, both physiographic and biophysical processes affect microclimate (Suggitt 190 

et al. 2011, Lenoir et al. 2017, Greiser et al. 2018). Remote sensing techniques such as airborne LiDAR 191 

sensors as well as hyperspectral images can provide a 3D analysis of canopy structure and height of 192 

the vegetation and ground surface at an unprecedented resolution (Lefsky et al. 2002, Bramer et al. 193 

2018), thus providing structural properties of the landscape. To transform this information into 194 

microclimatic values, one can use either empirical regressions, or a process-based modelling approach, 195 

in which the effects of microtopography and vegetation on temperature are incorporated (Lenoir et 196 

al. 2017). Using remote sensing data thus provides climate data with a high spatial resolution and broad 197 



7 
 

extent, and either a high temporal resolution (from interpolation of in-situ data), a broad temporal 198 

extent (from downscaling of coarse-grained climatic grids) or both (from interpolation of weather 199 

station data). Although the potential of LiDAR tools to assess detailed physiographic and biophysical 200 

processes has recently been highlighted (Keppel et al. 2012), their use in SDMs is relatively 201 

underexplored (Lenoir et al. 2017). Finally, note that downscaling and interpolation approaches 202 

become exponentially more computationally intense with each linear increase in scale-precision (cf. 203 

finer resolutions for a given extent), both temporarily and spatially (Potter et al. 2013, Hannah et al. 204 

2014). 205 

 206 

Remotely-sensed land surface temperature 207 

The most straightforward option to infer microclimate from remote sensing is by directly measuring 208 

it through thermal remote sensing – via satellites (e.g. MODIS, Wan et al. 2015) or portable infra-red 209 

(IR) cameras (Scherrer and Körner 2010). These techniques can play a crucial role when spatial 210 

variation in temperature needs to be measured with extreme accuracy, or in out-of-reach areas such 211 

as forest canopies (Faye et al. 2016). However, the outcomes have so far only been occasionally used 212 

as microclimatic data input in SDMs (e.g. Bisrat et al. 2012, Neteler et al. 2013), as IR images are 213 

limited to surface temperatures, and suffer from either temporal extent or spatial resolution 214 

limitations  when using airborne or satellite-borne sensors, respectively (Potter et al. 2013). 215 

Moreover, the use of both airborne and satellite-borne sensors is usually biased towards cloudless 216 

days, which mathematically leads to biased spatial representations of climatic conditions. The 217 

currently available spatial resolution of land surface temperatures (LSTs) (ca. 1 km at the equator) 218 

(Wan et al. 2015) does however not provide an absolute increase in spatial resolution  compared to 219 

the traditionally used free-air temperature gridded datasets like WorldClim or CHELSA (yet see 220 

EuroLST at 250-m resolution across Europe: Neteler et al. 2014). LSTs nevertheless give the 221 

advantage of a direct measurement for each pixel, instead of an interpolation of weather station 222 

data. In addition to the direct measurement of surface temperature, remote sensing can also play an 223 

important role in obtaining information on other variables that matter for microclimate, like cloud 224 

cover (Wilson and Jetz 2016) and much-needed information on soil moisture (Njoku et al. 2003, 225 

Entekhabi et al. 2010). 226 

 227 
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Inclusion of microclimatic data in SDMs 228 

Current status of microclimate in SDMs 229 

With the recent rapid advances in microclimatic data sources described above, there has been a 230 

corresponding steady increase in the application of this data in SDMs (Fig. 1, Table 2), with existing 231 

examples often showing significant improvement of model accuracy compared to models using coarse-232 

grained climate data. For example, Ashcroft et al. (2008) showed that local temperature better 233 

predicted the distribution of 68% of their 37 studied plant species, and model performance also 234 

improved significantly using topoclimate for most species living in cold extremes in a study on 235 

mountain grasses and ferns (Slavich et al. 2014). 236 

Current applications of microclimate modelling techniques into SDMs include both interpolation 237 

of in-situ measurements (e.g. Ashcroft et al. 2008, Ashcroft et al. 2009, Slavich et al. 2014) and 238 

statistical downscaling to regional topoclimate (e.g. Randin et al. 2009), with studies across a range of 239 

spatiotemporal scales (Fig. 1). However, as microclimate data with a spatial resolution of less than 10 240 

m² have only recently become available through the use of high-resolution LiDAR-techniques (George 241 

et al. 2015, Lenoir et al. 2017), fine-scale data has currently not been integrated into SDMs at broad 242 

spatial extents (dashed line in Fig. 1a). Up till the recent introduction of LiDAR into SDMs (Lenoir et al. 243 

2017), microclimatic data with the highest spatial resolution for use in SDMs was usually obtained 244 

through mechanistic modelling using fine-scaled DEMs at 25 m² (as in Gillingham et al. 2012). Using 245 

such techniques in combination with long-term hourly weather station data also allows for the desired 246 

combination of a broad temporal scale with a high temporal resolution (Fig. 1b, top left). Such a 247 

combination of high temporal accuracy and large temporal extent obtained with downscaling 248 

approaches has however not yet been applied in SDMs. 249 

In-situ measurements of temperature and other microhabitat characteristics – without 250 

interpolation – have additionally been shown to be valuable for descriptive distribution modelling at 251 

the local scale (Opedal et al. 2015, Frey et al. 2016). For example, strong correlations have been 252 

observed between changes in the frequency of plant species over time and the in-situ temperature of 253 

their preferred microhabitat on mountain summits in Switzerland (Kulonen et al. 2018). Sometimes, 254 

topoclimatic variables derived directly from DEMs (like elevation, solar radiation or cold-air pooling) 255 

are also used independently in SDMs, thus using an indirect topoclimatic derivative instead of actually 256 

downscaled climate to improve the spatial resolution of SDMs (see e.g. Roslin et al. 2009, Maclean et 257 

al. 2015, Shinneman et al. 2016, Patsiou et al. 2017). 258 

The use of microclimatic data in SDMs in a changing future climate has been explored less 259 

frequently, yet some recent papers have shown that the inclusion of higher temporal and spatial 260 
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resolution data can improve such predictions, for example by identifying windows of opportunity with 261 

both a limited spatial and temporal extent for oak seedlings (Davis et al. 2016). Incorporating 262 

microclimatic processes into projections of SDMs under climate change also resulted in lower rates of 263 

predicted local extinctions of Swedish alpine species by 2085 (Meineri and Hylander 2017), while it 264 

also increased the probability of occurrence of a theoretical species at its warm range edge (Lenoir et 265 

al. 2017).  266 

Even though several studies have thus successfully demonstrated the usefulness of accounting 267 

for microclimatic processes into SDMs, we identified the need for an integrative approach, maximizing 268 

both the spatiotemporal scale and resolution, whilst allowing both descriptive and predictive models 269 

at scales relevant to the study species. We propose our framework in the next sections. 270 

Scale: a matter of choosing the right extent and resolution at which key processes operate 271 

 272 

First of all, we want to highlight the importance of the scale – both the extent and the resolution – 273 

issue when relating climatic data to species distributions. In order to maximally improve the descriptive 274 

and predictive power of SDMs, researchers should be aware of the scale at which species experience 275 

the microclimate (Potter et al. 2013, Hannah et al. 2014, Carroll et al. 2016). Importantly, the scale of 276 

microclimate does not necessary imply fine spatiotemporal resolutions; the temporal extents of the 277 

data matters as well, as does the spatiotemporal resolution at which the underlying processes operate: 278 

the “process resolution”. For example, the geographic distribution of tree species will be strongly 279 

dependent on long-term patterns of average air temperature, yet also on extremes like minimum 280 

winter air temperatures, as the latter affects the vulnerable aboveground tissues (Körner 2003, 281 

Williams et al. 2015). Moreover, a tree species could be persisting outside its climatic niche for 282 

substantial parts of its life span, e.g. when climate changes throughout its life span (cf. tolerance niche) 283 

(Sax et al. 2013) or just due to changing requirements for the growing individual (cf. ontogenetic niche 284 

shift) (Werner and Gilliam 1984, Bond and Midgley 2001). Seedlings will react more strongly to 285 

seasonal fluctuations in temperatures at the soil surface than later growth stages. Indeed, the 286 

environment experienced by germinating seeds, as compared to the one experienced by adult trees, 287 

is likely more decoupled from free-air temperatures and more constrained by temperatures near the 288 

ground. Yet, the meaningful spatial resolution at which microclimatic processes are operating for a 289 

sessile tree seedling is still likely greater than the centimetre scale, as it also depends on the vertical 290 

complexity of the vegetation layers from the surrounding individuals that could be located several 291 

metres away.  292 
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While the necessary spatiotemporal resolution at which microclimatic processes operate is usually 293 

finer than the available coarse-grained global and long-term climatic data, this spatiotemporal 294 

resolution will thus likely be different for different species, species groups or even different life stages 295 

or ontogenetic stages of the same species (e.g. life cycle of a tree or a dragonfly). In general, refining 296 

the spatial resolution has been shown to be less important for organisms in spatially homogeneous 297 

environments, while fine temporal resolution might matter less in environments where diurnal or 298 

seasonal variability is smaller than the environmental tolerance of the studied species (like for plants) 299 

(Hannah et al. 2014). For small animals, however, which can buffer their environment by moving, both 300 

a fine spatial and temporal resolution could be key. For a temperature-sensitive mammal like the 301 

American pika (Ochotona princeps), for example, their preferred micro-environment under rocks has 302 

been shown to be up to 30°C cooler than ambient temperature maxima (Varner and Dearing 2014), 303 

implying that both the availability of habitat at low elevations and the possibility of survival under 304 

warming climate conditions is being underestimated in SDMs that do not incorporate these 305 

microclimatic effects.. 306 

Process resolution also relates to the data quality of the explanatory variables. For example, one 307 

could use a limited, or spatially unbalanced, climatic dataset, use too simple extrapolation techniques 308 

or ignore important microclimatic process (e.g. cold-air drainage) when applying downscaling 309 

procedures (Daly 2006). Even though the resulting spatiotemporal resolution might still be high, the 310 

process resolution – and thus true accuracy – of the data would then be lower. It is thus critical to focus 311 

not only on the use of high-resolution datasets, yet to also include the relevant spatiotemporal 312 

resolution of the underlying climate-forcing factors and ground-truth models with in-situ 313 

measurements. In Table 2, we give additional insight in the realized process resolution of the studies 314 

depicted in Fig. 1 by listing the used techniques, included drivers, the use of in-situ measurements, and 315 

whether climate was extrapolated in space or time.   316 

Finally, the search for better microclimatic data thus does not necessarily imply a blind run for 317 

an increasing refinement in the spatiotemporal resolution of climatic data at the global extent. While 318 

thermal physiology is interesting in its own regard, coarse-grained SDMs should maintain their focus 319 

on the actual distribution of the species, on a regional, continental or even global scale. Microclimatic 320 

precision or resolution is thus only valuable down to the level at which an increased resolution does 321 

not affect the actual distribution of a species anymore (Bennie et al. 2014). For example, microclimatic 322 

data improved models of moth distribution at the site level, yet not at the regional scale of the full 323 

species range in the tropical Andes (Rebaudo et al. 2016). The question of scale thus also relates to the 324 

accuracy at which predictions are needed and to situations where mean field approximations are not 325 

accurate (Bennie et al. 2014), as is for example the case for microrefugia, holdouts and stepping stones. 326 
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However, when fine resolution data are available, one can also add the assessment of (both spatial 327 

and temporal) heterogeneity within a certain pixel to the commonly used averages and extremes. By 328 

doing so, it is possible to capture and assess the impact of local environmental heterogeneity on 329 

metapopulation and metacommunity dynamics (Graae et al. 2018). Such a hierarchical approach, 330 

including environmental variation obtained at finer resolution into models of a species distribution at 331 

a coarser scale promises to bridge the gap between local and global species distribution questions. 332 

A framework to obtain adequate microclimatic data for use in SDMs 333 

How do we best answer to both the need for an increased level of detail and a high flexibility and 334 

adaptability to specific case studies? Certainly our goal should not be to fill the entire climatic grid with 335 

in-situ temperature sensors, as this is neither desirable nor possible (Potter et al. 2013). On the other 336 

hand, however, mechanistically or statistically downscaling macroclimate without relying on 337 

microclimate measurements is also limited, as we need a better understanding and validation of the 338 

processes underlying microclimate at very fine spatial and temporal resolutions in order to improve 339 

the accuracy or process resolution of our models. Combining in-situ microclimate measurements with 340 

fine-grained environmental variables derived from remotely sensed images to spatially interpolate 341 

microclimate helps solve the spatial issue (Greiser et al. 2018). However, these microclimatic grids are 342 

unlikely to reflect the long-term dynamics of climate over time (Lenoir et al. 2017) and instead capture 343 

the weather conditions that prevailed during the year the microclimatic data where recorded. To solve 344 

this issue, we argue in favour of an improved and unified statistical framework of spatiotemporal 345 

interpolations that would combine the use of in-situ microclimate measurements, long-term synoptic 346 

measurements from meteorological stations and high-resolution remote sensing images (e.g. airborne 347 

LiDAR and hyperspectral images) (Fig. 2). Linking in-situ microclimate measurements at fine temporal 348 

resolution with variables derived from remote sensing images at high spatial resolution and with a 349 

broad spatial extent will help facilitate spatial interpolation of microclimate (Lenoir et al. 2017, see the 350 

left side in Fig. 2). At the same time, linking the high temporal resolution of in-situ microclimate 351 

measurements with long-term synoptic measurements from the closest meteorological stations with 352 

a broad temporal extent will allow the reconstruction of long-term temporal dynamics of climate 353 

change (Wason et al. 2017, see the right side in Fig. 2). The generated grids of microclimate time series 354 

at fine spatiotemporal resolution and with a rather broad spatiotemporal extent (e.g. from landscape 355 

to regional level) can then be used to generate meaningful predictor variables in SDMs.  356 

The framework described above highlights the need for accurate in-situ climate measurements, 357 

as they provide our best option for assessing microclimate at the level of the studied organism. 358 

However, by linking microclimate measurements with remote sensing data at fine spatial resolution, 359 
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and long-term data from meteorological stations, both the amount of sensors as well as the extent of 360 

the measurement period can be limited. This does require a careful sampling design, however, as one 361 

should attempt to cover the full range of microclimatic variation available within the study region to 362 

avoid the need for extrapolation outside the measured range, and measurements at locations and time 363 

intervals relevant to the study organism (Ashcroft and Gollan 2013a). As stated earlier, the selection 364 

of candidate predictor variables and the choice of the meaningful spatial resolution for averages, 365 

extremes and heterogeneity should also be done carefully and in light of the biology of the studied 366 

species. For example, it has been shown that the degree of deviation from perfect coupling between 367 

microclimate and the ambient climate depends on the assessed bioclimatic variable, implying that the 368 

beneficial effects of microrefugia are limited to species that are restricted by these climatic conditions 369 

that are partially decoupled from the regional climate (Hylander et al. 2015, Wason et al. 2017). 370 

To spatially interpolate the microclimate measurements from physiographic, biophysical and 371 

anthropogenic variables derived from the above-mentioned remotely-sensed images (e.g. aspect, 372 

slope, solar insulation, land cover, disturbance intensity), geostatistical tools (e.g. geographically 373 

weighted regressions; Fotheringham et al. 2003) can be used. These tools extend traditional regression 374 

techniques by adding variation across space to the estimated regression parameters within the 375 

spatiotemporal limits of the available data. The ability to accommodate spatial variation makes 376 

geostatistical tools highly relevant for exploring the scale-dependent and spatially variable 377 

relationships between measured temperatures and physiographic, biophysical or anthropogenic 378 

drivers of temperature (Su et al. 2012). Depending on the scale of the study and the focal organism 379 

under study, remote sensing data can be satellite-borne, airborne or even ground-based (e.g. Lenoir 380 

et al. 2017). As more and more – mostly satellite-borne – remote sensing data is becoming freely 381 

available, the actual costs of our proposed approach can even be limited to those that are related to 382 

the maintenance of a carefully designed in-situ sensor network.  383 

To perform temporal extrapolation, an approach as used in George et al. (2015) could be 384 

applied. They used temperature logger measurements spread across a forest in Missouri (USA) as the 385 

response variable and different combinations of both spatial variables, derived from LiDAR images, 386 

and temporal covariates, derived from the closest weather station, as predictors in a mixed-effect 387 

model to estimate air temperatures at any time (hourly) of any day between 2012 and 2013, 388 

corresponding to the calibration period. Extrapolation before this period is then possible thanks to the 389 

long-term records from the weather station. However, extrapolation should be handled with care as 390 

one would also need historical information on the likely spatial distribution of the LiDAR-derived 391 

variables. In the case of the forest in Missouri, this extrapolation would be possible only if older LiDAR 392 

images are available across the study area or by hindcasting tree growth based on a combined use of 393 
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allometric equations (i.e. a mechanistic approach) and information on past forest management 394 

practices. In general, however, hybrid models that combine a mechanistic understanding of the 395 

processes underlying microclimate (e.g. dynamic changes in vegetation cover) with a statistical 396 

validation based on in-situ measured data provide a promising research avenue to accurately predict 397 

microclimatic conditions in space and time (Maclean et al. 2017), especially if applied in multi-regional 398 

studies.  399 

Once calculated, the microclimate data can be used to calibrate SDMs and predict the 400 

distribution of the studied species at the desired scale (spatiotemporal extent and resolution) (Fig. 2). 401 

Ideally, one integrates metapopulation and metacommunity dynamics in dynamic SDMs of the focal 402 

species to include their potential to actually explore the thermal heterogeneity within the environment 403 

(Graae et al. 2018). The broad temporal extent (e.g. several decades) and high temporal resolution 404 

(e.g. daily maxima or minima) of the microclimatic data creates unprecedented opportunities here to 405 

link available long-term species distribution data to the actual environmental conditions at the 406 

moment of the measurement, or to the past environmental conditions occurring several days, weeks, 407 

months or years before (cf. legacy or lagging effects). This does, however, require (process-based or 408 

empirical) assessments of the relevant temporal window to consider for a certain (group of) focal 409 

species. It will also prove valuable to compare the obtained models with “control” or “baseline” models 410 

using the traditional coarse-grained climate data to quantify the actual improvement of the SDMs by 411 

including microclimate. This can help in the interpretation of the role of microclimate in describing and 412 

predicting actual species distributions. 413 

Extrapolating microclimate to the future 414 

The same framework as described in the previous chapter can now be applied to improve our 415 

extrapolations of microclimate into the future (Fig. 2, Box). Current practice involves downscaling 416 

approaches to obtain future microclimate (Davis et al. 2016). Again, statistical methods can be used, 417 

linking current downscaled climate to scenarios of climate change (Lenoir et al. 2017). Yet these 418 

approaches starting from a static climate scenario miss many of the dynamics that can be expected 419 

from climate change at the smallest scale, like local climatic stability, the process by which local 420 

microclimatic conditions are partially decoupled from macroclimatic fluctuations over time (Keppel et 421 

al. 2015, Lenoir et al. 2017). 422 

The above-mentioned integration of the high temporal resolution of in-situ microclimate 423 

measurements with the long-term measurements from the closest meteorological stations can 424 

however be used to reconstruct long-term temporal dynamics by calculating the offset and the thermal 425 

coupling between the measurement location (e.g. near-surface soil temperatures) and the atmosphere 426 
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for use in predictions of the future microclimate (Pepin et al. 2011, Joly and Gillet 2017, Lenoir et al. 427 

2017). Aalto et al. (2018) have recently shown that estimation of the offset and thermal coupling has 428 

potential, even for one year of in-situ temperature data, yet they also stress the need for continuous 429 

multi-year measurements to improve validity. Nevertheless, with the recent explosive interest in 430 

microclimate, dataset quality and spatial and temporal extent of in-situ measurements is growing 431 

steadily, indicating that spatiotemporal extrapolation of microclimate will soon become feasible. 432 

Integrating these dynamic processes in our predictions of future (micro)climate will greatly increase 433 

the accuracy of our predictions of future species distributions under climate change (Wason et al. 434 

2017).  435 

Conclusions 436 

Recent advances in both measuring and modelling techniques have greatly enhanced the resolution of 437 

the climatic data available for SDMs. In this review, we suggested that all the necessary techniques and 438 

resources are now available to obtain a wide range of spatiotemporal microclimatic resolutions, if 439 

needed over regional and decadal extents. With the help of statistical models to link in-situ 440 

microclimate measurements with remote sensing data at fine spatial resolutions and synoptic 441 

measurements from meteorological stations covering several decades, accurate microclimatic data for 442 

the past, present and the future can now be obtained to dynamically model species distributions and 443 

redistributions at exactly the scale that matters. Developing microclimatic datasets at very fine 444 

spatiotemporal resolutions should however not be a goal on its own, yet be embedded in a framework 445 

to obtain environmental predictor variables at relevant spatiotemporal resolutions to improve the 446 

ecological validity of SDMs, and that similar frameworks can be developed for other relevant 447 

predictors, like land use change and habitat availability. 448 
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Tables and figures 
 

Table 1: Measurement locations and main advantages (+) and disadvantages (-) of the different sources 

of microclimatic data for use in SDMs. Spatial and temporal resolution: a more detailed spatiotemporal 

accuracy provides an advantage. Spatial and temporal extent: data across a larger area and over a 

longer period provides an advantage. 

 Measurement  
location 

Spatial 
resolution 

Temporal 
resolution 

Spatial 
extent 

Temporal 
extent 

In-situ 
measurements 
 

In-situ - + - - 

Interpolation of in-
situ measurements 
 

In-situ + + + - 

Interpolation of 
weather station 
data 
 

Free-air + + + + 

Downscaling of 
macroclimate 
 

Free-air + - + + 

Remote sensed land 
surface temperature 
 

Surface + - + - 
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Table 2: Specifics of the studies described in Fig. 1, including drivers and techniques, whether microclimate was validated with in-situ data, whether 

microclimate was extrapolated across space or time, and for which and how many species the data was used in SDMs. 

Paper Used technique (included drivers) In-situ 
measurement
s 

Extrapolated relationship in 
space or time 

Modelled species 

1 Ashcroft et al. (2008) Linear regression (elevation, exposure, moisture, radiation) Yes Space 37 plant sp. 
2 Trivedi et al. (2008) Linear regression (elevation) No Time 20 plant sp. 
3 Randin et al. (2009) Inverse distance weighted interpolations (elevation) No Time 78 plant sp. 
4 Ashcroft et al. (2009) Linear regression linking air and soil temperatures Yes Time 37 plant sp. 
5 Gillingham et al. (2012) Mechanistic model (wind speed, air temperature, radiation, slope, aspect, 

topographic shading) 
Yes Space and time 2 insect sp. 

6 Haby et al. (2012) Thin-plate spline models (elevation) No Space 4 mammal sp. 
7 Franklin et al. (2013) Gradient-Inverse-Distance-Squared downscaling (elevation) No Time 52 plant sp. 
8 Peterman and Semlitsch 
(2013) 

Hierarchical mixed-effects model (elevation, exposure, vegetation cover) Yes Space Plethodon albagula (amphibia) 

9 Bennie et al. (2013) Mechanistic model (wind speed, air temperature, radiation, slope, aspect, 
topographic shading) 

Yes Space Hesperia comma (insect) 

10 Slavich et al. (2014) Linear regression (elevation, exposure, relative elevation, canopy cover, 
distance to coast) 
Thin-plate spline smoothing (elevation, latitude, longitude) 

Yes Space and time 295 plant sp. 

11 Ashcroft et al. (2014) Topoclimate: linear regression (elevation, exposure, relative elevation, 
canopy cover, distance to coast) 
Macroclimate: thin-plate spline smoothing (elevation, latitude, longitude) 

Yes Space Petrogale penicillata (mammal) 

12 Hodgson et al. (2015) Mechanistic model (wind speed, air temperature, radiation, slope, aspect) Yes Space and time Plebejus argus (insect) 
13 West et al. (2015) Partial derivative functions of temperature change 

Elevation 
Yes Time Bromus tectorum (plant) 

14 Davis et al. (2016) Gradient-Inverse-Distance-Squared downscaling (elevation) No Time 2 plant sp. 
15 Rebaudo et al. (2016) Linear regression linking air and sub-canopy temperatures Yes Time Phthorimaea operculella 

(insect) 
16 Meineri and Hylander 
(2017) 

Linear regression + thin-plate spline geographic interpolation 
Latitude, elevation, solar radiation, aspect, relative elevation, topographic 
wetness index, distance to sea/water bodies 

Yes No 78 plant sp. 

17 Keppel et al. (2017) Cubic convolution resampling No Space 2 plant sp. 
18 Lenoir et al. (2017) Geographically weighted regression + mechanistic transformation 

Physiographic: elevation, slope, eastness, northness, distance to the coast, 
clear-sky insolation time, land cover, relative concavity 
Biophysical: canopy density  

No Time 1 virtual plant sp. 

19 Isaak et al. (2017) Moving averages Yes Space and time 14 fish and amphibian sp. 
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Figure 1: Overview of the use of microclimate data in SDMs as a function of their spatial resolution and 

extent (a, log-scale) and temporal resolution and extent (b, pseudo log-scale). Studies marked in blue 

used interpolation techniques (with mechanistic modelling approaches in bold), while studies marked 

in red used topographic downscaling. Infographics in each corner of each graph visualise the theoretical 

look of the data in question. The dashed line in (a) marks a trade-off, i.e. the lack of studies 

incorporating microclimate into SDMs with both a high spatial resolution and a broad spatial extent. 

Literature list obtained through a search of Google Scholar and Web of Science using the search term 

‘species distribution modelling microclimate’, and following appropriate citation trails. Studies using 

in-situ climate measurements without interpolation (i.e. no clear spatial resolution nor extent), as well 

as studies using topoclimatic proxies (e.g. solar radiation intensity) are excluded.      
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Figure 2: Schematic overview of the proposed strategy for integrated interpolation, in space and time, 

of microclimate and its implementation in species distribution modelling. The strength of this unified 

framework is to combine environmental data at fine spatial resolution thanks to remote sensing 

approaches with long-term time series from weather stations, and link these data to in-situ 

microclimatic measurements. For more details, see main text. 

 


