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Cećilia Hognon,† Simon Garaude,† Joanna Timmins,‡ Christophe Chipot,†,§,∥ Franco̧is Dehez,*,†,∥

and Antonio Monari*,†

†Universite ́ de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
‡Universite ́ Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
§Department of Physics, University of Illinois at UrbanaChampaign, 1110 West Green Street, Urbana, Illinois 61801, United
States
∥Laboratoire International Associe ́ Centre National de la Recherche Scientifique et University of Illinois at Urbana−Champaign,
54506 Vandoeuvre-les̀-Nancy Cedex, France

*S Supporting Information

ABSTRACT: DNA compaction is essential to ensure the packaging of the genetic
material in living cells and also plays a key role in the epigenetic regulation of gene
expression. In both humans and bacteria, DNA packaging is achieved by specific well-
conserved proteins. Here, by means of all-atom molecular dynamics simulations,
including the determination of relevant free-energy profiles, we rationalize the molecular
bases for this remarkable process in bacteria, illustrating the crucial role played by
positively charged amino acids of a small histone-like protein. We also present
compelling evidence that this histone-like protein alone can induce strong bending of a
DNA duplex around its core domain, a process that requires overcoming a major free-
energy barrier.

DNA packaging is essential for all living organisms to allow
the compaction of the long nucleic acid polymers into

the confined environment of bacterial cells or nuclei. The
compaction of DNA is achieved by the action of two types of
proteins: (i) large enzymes that alter the topology of the DNA
(relax or supercoil the DNA), including DNA topoisomerases
or DNA gyrases, and (ii) small, basic proteins such as histones
that possess a high-density of positive charges on their surface
to engage in strong electrostatic interactions with the
negatively charged DNA backbone.1−3 Interestingly, even
limited mutations in such proteins are usually lethal to the
cell, pointing out the crucial importance of DNA compaction.4

In addition to its space-saving role, compaction of DNA is also
important to enhance the global stability of DNA5,6 and to
regulate gene expression.7−11 Indeed, the transition from the
more compact heterochromatin to euchromatin is known to
increase the accessibility of the genes to the promoting factors
and hence enhance gene expression.12−16 Chromatin remodel-
ing is also finely tuned by complex cross-talks between DNA
and histone epigenetic marks, such as methylation or
acetylation.17,18

In eukaryotes, DNA packaging is largely achieved by
histones, whose complex of eight monomers, called nucleo-
some, constitutes the basic unit of chromatin, and

chromosomes.19,20 Conversely, in bacteria in which genome
organization is much simpler than in eukaryotes, a set of
proteins known as nucleoid-associated proteins (NAPs) or
histone-like proteins play a similar role in DNA pack-
aging.21−26 There are different classes of histone-like proteins,
the most common ones being HU27−32 and the integration
host factor (IHF),33−39 whose combined action is necessary to
induce DNA compaction in Escherichia coli.40−45

In this Letter, we specifically focus on the behavior of the
histone-like protein, Hbb, from the pathogenic bacterium
Borrelia burgdorferi,46−48 known to be the causative agent of
Lyme disease.49−51 Unlike E. coli, this organism does not
possess HU and IHF encoding genes but instead encodes for
an HU variant, Hbb. Although the crystal structure of a
complex between Hbb and a 35-nucleotide double-stranded
DNA oligomer was solved by Mouw and Rice46 and several
key amino acids necessary to ensure Hbb’s biological functions
have been identified,46,47 a global picture, at atomistic scale
resolution, of its mechanism of action is still lacking and
constitutes the object of the present contribution.
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From a structural point of view,46 Hbb is a homodimer,
consisting of two separated functional units: a globular core
domain composed largely of α-helices (α-helix core) and
displaying a high density of positively charged amino acids and
two tweezers formed by the two β-hairpin structures that
constitute the β-DNA binding domain (Figure 1). At
equilibrium, the latter insert into the DNA minor-groove,
further enhancing the contact region and hence the stability of
the protein−DNA complex. Apart from the positioning of the
β-DNA binding domain in the groove region, the other main
contacts in the crystal structure are exerted by arginine (R6
and R58), lysine (K8, K11, and K97), and proline (P7)
situated in the α-helix core and stabilized by electrostatic
interactions with the backbone phosphates. As expected, this
results in important structural modifications of the DNA
oligomer that experiences a strong global bending of about
160°. Starting from these observations, we decided to perform
extended classical molecular dynamics (MD) simulations to
decipher the mechanism by which Hbb induces bending in a
DNA duplex.
Our MD simulations made use of the Hbb/DNA crystal

structure reported by Mouw and Rice46 that was solvated in a
water box to which K+ counterions were added to ensure
electroneutrality. In addition to the native DNA/Hbb complex,
additional systems were investigated, including the isolated
DNA duplex, the wild-type Hbb dimer alone, as well as several
Hbb point mutants, as detailed below and in the Supporting
Information. Equilibrium MD, reaching up to the microsecond
time scale, were run considering periodic boundary conditions
in the constant pressure and temperature (NPT) ensemble at
300 K and 1 atm. Amberff99 force field,52 including the bsc1

corrections53,54 in the case of DNA, was used consistently,
while water was described using the TIP3P force field.55 In
addition to equilibrium MD, we also performed enhanced
sampling dynamics, using the recently developed combination
of extended adaptative biased force (eABF)56 and metady-
namics (meta-eABF)57 to obtain the energetic penalty related
to DNA bending. Indeed, the common denominator of
adaptive biasing force (ABF)-based algorithms is to flatten
the free-energy landscape by means of a time-dependent bias
on collective variables. In stark contrast, the key characteristic
of metadynamics (MtD) and its variants is the fast exploration
of undersampled regions of the free-energy landscape. It has
been observed that the properties of these two classes of
algorithms are complementary. Merging their relative merits, a
new importance-sampling algorithm, coined meta-eABF, has
been put forward which combines MtD and an extended-
Lagrangian variant of ABF (eABF). Through simultaneous
addition of eABF biasing forces and a suitable form of the MtD
Gaussian potentials, meta-eABF proves particularly efficient for
the rapid exploration of the free-energy landscape. The
algorithm possesses remarkable convergence properties over
a broad range of applications, with as much as a 5-fold
speedup, compared with standard ABF.
All MD simulations were performed using NAMD code,58

together with the Colvar module,59 while trajectories were
visualized and analyzed using VMD60 and Curves+.61

The results of the equilibrium MD for the Hbb/DNA
complex are presented in Figure 1 and globally indicate that
the complex consists of a very stable and rigid structure as
illustrated by the very low RMSD values for both DNA and
Hbb (between 1 and 2 Å). In addition, the DNA is maintained

Figure 1. (A) Structure of the DNA/Hbb complex (ref 46) highlighting the two chains composing the homodimer. (B) MD simulation box
composed of the DNA/Hbb complex together with water and added salt ions (yellow spheres). (C) Time series of the Hbb RMSD extracted from
the MD simulation of the DNA/Hbb complex. (D) Time series of the DNA RMSD and total bending extracted from the MD of the DNA/Hbb
complex.
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in a highly bent configuration characterized by an average
bending value of ∼155°, oscillating marginally on the time
scale of our MD simulations. In agreement with the literature,
DNA bending is mainly maintained by salt bridges between the
negatively charged backbone of the DNA and a series of
positively charged amino acids in Hbb (see the Supporting
Information). As for Hbb, the oscillation of the RMSD is also
very limited for both the core and the β-DNA binding
domains, with the latter being engaged permanently in strong
interactions with the DNA minor groove, thereby adding to
the stability of the complex. Interestingly, and as reported in
the Supporting Information (Figure S1), the Hbb/DNA
complex remains stable even when shortening the DNA
oligomers up to 4 nucleobases at each end (3′- and 5′)
The dynamics of the isolated Hbb is strikingly different, as

illustrated in Figure 2. In the absence of interactions with the
DNA oligomer, while the protein core remains extremely rigid
(illustrated by the small RMSD values), the β-DNA binding
domain exhibits a much larger flexibility with RMSD values
ranging between 5 and 20 Å resulting from a polymorphism
characterized by the coexistence of open and closed structures
and their rapid interconversion. This high flexibility and

apparent absence of significant free-energy barrier for the
opening of the β-DNA binding domain may be critical to
facilitate DNA recognition during the first steps of the bending
process.
As expected, the same instability is also observed for the

bent isolated DNA oligomers that very rapidly adopt a straight
B-DNA conformation, as evidenced by the sharp increase of
the RMSD at the start of the MD simulations (Figure 3).
Although this transition requires a significant structural
rearrangement of the DNA, it takes place very rapidly in
about 20 ns. By performing meta-eABF simulations along the
ΔRMSD global variable, we determined the free-energy
penalty necessary to bend the DNA oligomer in the absence
of Hbb. Note that the ΔRMSD variable was chosen because it
allows us to follow the global variation of the DNA structure
with respect to an arbitrary initial condition. In particular,
values of the ΔRMSD close to −20 Å are indicative of a
globally linear DNA oligomer while ΔRMSD of +20 Å
indicates a bent conformation equivalent to the one observed
in the DNA/Hbb crystal complex. As inferred from Figure 3B,
this penalty is estimated to be around 35−40 kcal/mol; the
rather flat free-energy potential observed for a large interval of

Figure 2. MD simulations of the isolated Hbb dimer. (A) Time evolution of the RMSD for the whole Hbb protein, the α-helical core, and the β-
DNA binding domain during the course of the MD simulation of the isolated Hbb dimer. (B) Representative snapshots retracing the evolution of
the Hbb structure and showing the coexistence and the rapid interconversion between open and closed conformations for the β-DNA binding
domain. The snapshots are colored as a function of time going from blue (0 ns) to red (200 ns).

Figure 3. Equilibrium MD simulations of the 35-nucleotide DNA duplex. (A) Time evolution of the RMSD and total bending of the solvated
DNA. (B) Free-energy profile showing the cost of DNA bending. The statistical errors are also reported. Representative snapshots for the straight
and bent conformations are also shown at their corresponding ΔRMSD values.
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the ΔRMSD is due to the known relatively high flexibility of
DNA oligomers, while the sharp increase around 15 Å is due to
the sampling of a highly bent conformation that is normally
not accessible for solvated DNA and requires the presence of
compaction proteins. Note that the modeling of such an
unusual conformation by a simpler elastic model would
constitute a methodological challenge because of the difficulty
in sampling highly distorted conformations. Together, these
observations strongly suggest that Hbb is able to convert
electrostatic interactions into mechanical work on the DNA
duplex that exceeds 40 kcal/mol.
Next, in order to better characterize the molecular bases

underlying this remarkably efficient energy conversion, we
mutated several residues in the Hbb core to the neutral alanine
amino acid (see Figure 4 and the Supporting Information) to
identify the key residues responsible for the electrostatic
interactions with the DNA.
As shown in Figure 4, the mutation of only one residue

(R58) on each of the Hbb monomers induces a significant
decrease of the average bending as compared to the wild-type,
while it has little influence on the standard deviation, i.e. on the
spread of the distribution of the bending angles. Hence, while
the mutation of R58 shifts the equilibrium toward a less bent
DNA configuration it seems to affect only marginally the
stability of the complex, as reflected by the width of the
distribution. The cumulative mutation of the subsequent
residue, R6, while not impacting the average bending, induces
a significant increase in the distribution width that can be
correlated with a more pronounced destabilization of the
complex. This is also supported by the establishment of an
equilibrium between bent and straight DNA forms, as can be
seen in the representative snapshots reported in the Supporting
Information (Figures S2−S7). Interestingly, the further
mutation of K11 residue has almost no effect on the average
bending value and on the distribution, and the equilibrium
between bent and straighter DNA forms is still preserved. The
additional mutations of residues constituting the α-helical core
triad K97, P8, and K7 shifts the average bending toward
straighter forms closer to the ones typical of linear B-DNA,
while preserving, however, an equilibrium with bent structures,
as evidenced by the analysis of the distribution of the bending
angles and the representative snapshots reported in the

Supporting Information. The analysis of these snapshots
(Figures S2−S7) also indicates that the β-DNA binding
domain remains stable and interacting with the DNA minor
groove in all cases. As a result, because of the constraints
imposed by this β-DNA binding domain on the DNA, a
significant extent of bending of the oligomer is observed in all
cases (Figure 4).
From these results, it is evident that both the electrostatic

interactions in the core and the constraints exerted by the β-
DNA binding domain of Hbb are necessary to overcome the
significant free-energy penalty associated with DNA bending
by Hbb. However, although it is clear that Hbb can maintain
the constrained configuration of the DNA, it is still unclear
whether Hbb alone is able to induce this major bending of the
DNA. To address this issue, we thus performed equilibrium
MD simulations in which a straight DNA duplex was manually
placed in contact with an Hbb dimer in an open conformation
in which the β-DNA binding domains were out of the DNA
major groove and no longer contacting the DNA (Figure 5).
Although a fully bent structure as seen in the crystal structure
was not observed during the course of our MD simulations, we
did evidence the occurrence, and the persistence, of metastable
states in which a consistent though partial bending was
observed, in particular for one-half of the DNA duplex, as
reported in Figure 5 and as can be appreciated from the movie
of the MD trajectory presented in the Supporting Information.
These results represent, to the best of our knowledge, the first
observation of DNA bending induced by a bacterial histone-
like protein, although the spontaneous coiling of DNA around
a nanoparticle has been previously reported,62 and definitively
point toward the capability of Hbb alone to induce this major
DNA rearrangement, in agreement with the apparent absence
of other histone-like proteins in Borrelia burgdorferi.
Even if we did not observe persistent intermediates that

could allow discriminating between productive and abortive
trajectories, we have also evidenced a complex interplay
between the position of the β-DNA binding domain and the
extent of DNA bending. Indeed, strong bending of the DNA,
reproducing the one observed in the crystal structure, was
observed only for the region of the DNA oligomer in which the
β-hairpin tweezers were correctly positioned in the minor
groove (right of Figure 5 C−F). The interaction between the

Figure 4. (A) Box plot reporting the extent of DNA bending induced by the wild-type (WT) and mutated Hbb dimers. Values were extracted from
the equilibrium MD averaged over the entire trajectory (N > 700; boxes represent mean ± standard deviation); some of the corresponding
representative snapshots are also reported in the Supporting Information. For the different Hbb mutants, the mutated amino acids are indicated
below the y axis. All amino acids were substituted with alanine. (B) Cartoon representation of the Hbb dimer highlighting the position of the
mutated amino acids.
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concerted motion of some well-conserved histone residues and
AT-rich DNA sequences has also been recently evidenced in
nucleosomal DNA unwrapping by MD simulations.63

Furthermore, we also observed a partial unfolding of the
amino-terminal residues of Hbb during the course of the MD
simulations. These largely basic residues were seen to move
away from the α-helical core of Hbb and to approach the DNA
duplex to engage in energetically favorable electrostatic
interactions with the DNA backbone during the initial steps
of the bending process. Extensive DNA bending thus appears
to be achieved by the combined action of the kinking induced
by the β-DNA binding domain and the tethering of the DNA
ends by positively charged residues from the amino-terminus
of Hbb in order to pull the DNA toward the α-helical core of
Hbb where the bent conformation of the DNA is stabilized by
additional electrostatic contacts. Hence, it is obvious that the
peculiar structure and properties of Hbb play a fundamental

role in the coordinated and controlled compaction of the DNA
genome for its correct packaging within the cell. This complex
process cannot be described simply by the bending of DNA
oligomers around a positively charged rigid and globular
protein core.
In this work, thanks to high-level full atom MD simulations,

we have characterized the behavior of the histone-like protein
Hbb in the presence and absence of DNA and have in
particular highlighted the stability of the complex formed with
DNA. Furthermore, we estimated the mechanical work
necessary to maintain the highly bent DNA structure to
amount to at least 35−40 kcal/mol, i.e. a value largely
exceeding the free-energy barrier of many chemical reactions.
The extremely high mechanical constraints exerted by both the
charged Hbb core and the flexible β-DNA binding domain
have also been confirmed by point mutations and in particular
by the necessity to disrupt almost all the salt bridges to

Figure 5. Microsecond MD simulation of the Hbb/DNA recognition process. (A) Time series of the RMSD of the full Hbb dimer, the α-helical
core, and the β-DNA binding domain. (B) Time series of the RMSD and global bending of the DNA. The average values of the bending for the
solvated DNA (29°) and DNA complexed with Hbb (155°) are reported as magenta lines. (C−F) Representative snapshots extracted from the MD
simulation showing the Hbb/DNA recognition and the induction of the DNA bending.
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persistently switch the equilibrium toward a straighter DNA
form. Finally, we have provided the first, although partial,
observation of DNA bending by Hbb. These data strongly
support the hypothesis that Hbb alone not only maintains but
also promotes DNA bending. Our results are also coherent
with the observations of Rubio-Cosials et al.64 who have
identified the strong mechanical constraints induced by the
human mitochondrial transcription factor A, inducing a strong
bending and U-turning of DNA oligomers. Finally, even if the
standard force field may overestimate the interactions between
charged amino acids and phosphate65,66 we believe that our
results, and in particular the free-energy profile providing the
penalty for bending the DNA in absence of the Hbb protein,
are strong enough to provide a consistent picture of the
bending process.
In the future, we plan to provide a full free-energy profile of

the Hbb-assisted DNA packaging through the use of biased
MD simulations and the definition of proper collective
variables able to take into account the interplay between the
β-DNA binding domain positioning and the DNA bending. In
addition, the full DNA bending process will also be
characterized experimentally, also in the presence of point
mutations in the Hbb sequence via suitable techniques such as
Förster resonance energy transfer.
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