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Abstract 22 

Microclimates at the land-air interface affect the physiological functioning of organisms 23 

which, in turn, influences the structure, composition and functioning of ecosystems. We 24 

review how remote sensing technologies that deliver detailed data about the structure and 25 

thermal composition of environments are improving the assessment of microclimate over 26 

space and time. Mapping landscape-level heterogeneity of microclimate advances our ability 27 

to study how organisms respond to climate variation, which has important implications for 28 

understanding climate-change impacts on biodiversity and ecosystems. Interpolating in-situ 29 

microclimate measurements and downscaling macroclimate provide an organism-centred 30 

perspective for studying climate-species interactions and species distribution dynamics. We 31 

envisage that mapping of microclimate will soon become commonplace, enabling more 32 

reliable predictions of species and ecosystem responses to global change. 33 
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Importance of microclimate maps 34 

Local modification of the climate (See Glossary) by topography and vegetation produces 35 

microclimates at the land-air interface which can differ greatly from the climatic means [1,2]. 36 

Surface temperatures between north- and south-facing mountainsides, for example, can vary 37 

by 20 °C, equivalent to a latitudinal gradient of about 2000 km [3]. Additionally, forest 38 

canopies can buffer the diurnal amplitude of air temperature in the forest understorey by 7 39 

°C [4]. Such differences in temperature within landscapes matter to organisms, affecting 40 

processes such as respiration, heat and energy exchange which, in turn, set thermodynamic 41 

constraints on species behaviour, growth, reproduction and survival [5–7]. Innumerable 42 

papers over the past century have quantified microclimates and their influences on ecological 43 

processes at all levels of organization, from physiological processes of single organisms to 44 

ecosystem-level productivity and nutrient cycling [4–6,8–10]. Microclimate is also relevant to 45 

evolution because phenotypic and genotypic adaptations are driven by environmental 46 

conditions actually experienced by the organisms [11]. Moreover, microclimate mapping and 47 

monitoring have been recognised as key to effective natural resource management, with 48 

forestry, agroforestry and agriculture being prominent examples [6,12]. 49 

Microclimate ecology is attracting renewed attention due to its fundamental importance 50 

in understanding how organisms respond to climate change [2]. Species distributions are 51 

typically modelled using macroclimate data obtained from national networks of weather 52 

stations [13,14]. These standard meteorological data are measured in open areas at 1.5 - 2 m 53 

height above short grass, and capture synoptic conditions that are unrepresentative of a range 54 

of microclimates that most organisms experience [15,16]. These inaccuracies and biases can 55 

have serious implications when predicting organismal responses to climate change. For 56 

example, recent studies suggest that many plant and animal communities are accumulating a 57 

climatic debt because they are migrating more slowly than needed to keep up with 58 

macroclimate warming [17–22]. However, temperature buffering near the ground – due to 59 
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local radiation regimes, soil characteristics and topography – means that organisms may not 60 

have to migrate, or adapt, as quickly as previously thought to keep pace with the shifting 61 

macroclimate [23,24] (Box 1). Thus, extinction risk from climate change for plants and 62 

insects is considerably reduced by the occurrence of microrefugia within landscapes with 63 

highly heterogeneous microclimate [25]. Yet, the modulating effects of microclimate 64 

variability on climate change impacts have only recently started to be quantified [3,21,25–29]. 65 

A key impediment to progress in incorporating microclimate into models of climate 66 

change impacts on organisms has been our limited ability to map and monitor microclimatic 67 

variation over large spatial scales and over time. Networks of microclimate sensor provide 68 

point-based measurements and weather stations provide macroclimate data, but we have 69 

lacked approaches to effectively interpolate and downscale this information. Remote sensing 70 

is now offering opportunities to lift this technical barrier, by producing detailed and spatially 71 

continuous data-layers that can be used as explanatory variables to understand and model the 72 

horizontal and vertical variation in microclimatic conditions over large spatial and temporal 73 

scales. Here, we review how these emerging technologies are advancing microclimate 74 

modelling and mapping, and highlight some of the opportunities they provide for ecology, 75 

conservation and climate change research. 76 

Box 1 Shifts in species distributions in response to global warming 77 

Microclimate – the local modulation of macroclimate by vegetation canopies and topographic position 78 

– affects species re-distribution under climate change (Figure I). Maps of microclimate predicted from 79 

remote sensing data can improve habitat suitability maps and predictions of how species will respond 80 

to climate change. 81 

 82 

Eureka: remote sensing advances for modelling and mapping microclimate 83 

Remote sensing technologies are increasingly capable of mapping the structural complexity 84 

and thermal composition at the ground-atmosphere boundary at scales relevant to studying 85 
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organismal responses to environmental variation [27].  We discuss the contributions that laser 86 

scanning, photogrammetry, hyperspectral imaging and thermal imaging are making.  87 

Airborne Light Detection and Ranging (LiDAR) (aka airborne laser scanning) is 88 

particularly valuable for modelling and mapping microclimate because it provides spatially 89 

continuous, sub-metre-scale information on two key modifiers of climate at the ground-90 

atmosphere interface: ground topography and vegetation structure [30]. To construct maps, 91 

microclimate measurements taken on the ground using sensor networks are related to LiDAR 92 

structural information, such as topographic position and light incidence at very high 93 

resolutions (Boxes 2-4), using statistical modelling approaches, and the function generated by 94 

this approach is then used to predict microclimate across the entire LiDAR-mapped landscape 95 

(Figure 1) [13,31–35]. Effective interpolation requires that the sensor networks sample 96 

contrasting sites within the study area. The sensor data must also be summarised in 97 

ecologically meaningful ways, guided by clear research questions [36]. For example, the 98 

frequency of extremely cold or hot temperatures, calculated over timescales relevant for the 99 

growth and survival of organisms, are more meaningful for biogeographic applications than 100 

average conditions [2,36]. 101 

Aerial photography provides an alternative approach to assessing topography and forest 102 

structure, using photogrammetry and structure-from-motion (SfM) techniques to construct 3D 103 

surfaces (Figure 2) [37]. These inexpensive and easy-to-use methods are increasingly applied, 104 

but are less accurate than LiDAR at deriving terrain elevation beneath tree canopies, or for 105 

measuring vertical vegetation structure, because photos only record reflectance off the upper 106 

surface [38,39]. One-off mapping of large areas using LiDAR and aerial photography is 107 

normally conducted from manned aircrafts, while unmanned aerial vehicles (UAV, e.g. 108 

drones) equipped with miniaturised cameras and LiDAR sensors are becoming available to 109 

map smaller areas at even higher spatiotemporal resolutions. Using UAVs and SfM 110 

techniques, Milling et al. [40] found that summer maximum temperatures may vary up to four 111 
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degrees Celsius over just a few metres within sagebrush-steppe landscapes – habitats that 112 

were previously considered relatively homogeneous. A key advantage of UAVs is that 113 

deployment is very flexible, enabling the collection of time-series of aerial imagery over a 114 

period of interest at relatively low costs. SfM techniques applied to image time-series offer 115 

novel opportunities for monitoring microclimate in ecosystems in which phenology creates 116 

strong temporal variation in microclimate [41,42]. 117 

Terrestrial laser scanning (TLS) provides immensely detailed datasets of vegetation 118 

structure that can be used to model microclimate. Complementary to airborne laser scanning, 119 

which maps 3D vegetation structure from above, TLS maps vegetation in extraordinary detail 120 

from below, thus providing information on the understorey structure. Kong et al. [43] found 121 

that TLS-based reconstructions of canopy volumes coupled with microclimate measurements 122 

revealed cooling effects in the understorey that varied among tree species, suggesting that 123 

TLS can pick up subtle effects of different leaf sizes on understorey microclimate. Moreover, 124 

Ehbrecht et al. [44] found that TLS-derived measurements of canopy openness were 125 

positively related to diurnal temperature ranges in managed temperate forests in Germany. 126 

TLS measurements are restricted to a few hectares and are of limited use, compared to 127 

airborne laser scanning, for modelling microclimate over large areas. Yet, the forest 128 

understorey-structure information TLS provides at the plot level has been shown to improve 129 

landscape-level vertical vegetation structure mapping based on full-waveform airborne 130 

LiDAR [45]. 131 

Complementing maps of 3D vegetation structure, maps of leaf functional traits and 132 

species obtained by hyperspectral remote sensing [46,47] are likely to improve the 133 

statistical fit of microclimate models. We expect this improvement because the quality and 134 

quantity of solar radiation transmitted by canopies vary according to leaf traits and tree 135 

species, leading to species-specific microclimatic conditions in the understorey [48]. 136 
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However, we are unaware of studies using hyperspectral remote sensing to map microclimate 137 

(see Outstanding Questions). 138 

Box 2: Measuring how plant canopies affect solar radiation fluxes 139 

Solar radiation flux has strong effects on the energy budget and performance of organisms living 140 

beneath vegetation canopies. Radiation regimes along the vertical canopy profile of forests can be 141 

estimated from a Light Detection and Ranging (LiDAR) point cloud by creating a 3D map of foliage 142 

presence/absence in voxels (i.e. 3D pixels) and then apply ray tracing algorithms to evaluate whether 143 

beams entering the canopy in different locations and angles are likely to be intercepted [31,49]. 144 

Alternatively, LiDAR data can be used to generate synthetic hemispherical images from which fluxes 145 

of non-directional diffuse sky radiation and direct solar radiation, or light extinction following the 146 

Beer-Lambert law [50], can be calculated for any time in the day or year (Figure I). These approaches 147 

are computationally intensive but better represent light conditions experienced by forest organisms 148 

than simple approaches based on canopy cover [51]. Vegetation structure thus drives the interception 149 

of solar radiation, which means that the importance of vegetation structure for microclimate will vary 150 

between day and night and different weather conditions, with the temperature offsets highest on bright 151 

sunny days. Advances in physically based radiative transfer modelling now make it possible to 152 

estimate the 3D radiative budget in forests and open lands at an ever-increasing detail, e.g. by 153 

accounting for foliar-specific filtering of different wavelengths [52]. 154 
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Box 3: Temperature buffering and offset 155 

Solar radiation reaching the land-atmosphere interface is mostly reflected, or absorbed and re-emitted 156 

as thermal radiation, or drives evapotranspiration. Vegetation canopies lift energy-exchange surfaces 157 

off the ground, and in doing so modulate radiant fluxes, air temperature and humidity at ground level. 158 

The capacity of plant canopies to sustain a different temperature below canopy compared to free-air 159 

conditions (i.e. a temperature offset) is thus closely related to canopy structure and composition. 160 

Under canopy, diurnal changes in temperatures are less extreme than above canopy, and this 161 

temperature buffering is modulated by canopy height and cover, both of which can now be precisely 162 

mapped [13,32,53]. 163 

 Sensor networks sampling environmental gradients (cf. Figure 1) are increasingly combined 164 

with remote sensing data to map microclimate. The current scientific literature often makes crude 165 

assumptions about the shading and temperature buffering effect of vegetation when modelling 166 

microclimate, and usually neglects systematic changes in the temperature offset over time, i.e. the 167 

offset trend (Figure I) [24,28]. The degree to which temperatures below the canopy are offset 168 

compared to free-air conditions will not be constant over time and depend on successional processes 169 

driving dynamics in canopy structure and composition. Long time series of below-canopy temperature 170 

records thus need to be related to forest dynamics to better understand the drivers of long-term 171 

microclimatic dynamics [24]. Such data are scarcely available [54] and global long-term networks 172 

such as FLUXNET may prove very valuable in this respect. 173 

Forest microclimates are also affected by landscape features such as distances to forest edges, 174 

urban areas and large water bodies. Many of these landscape features can be retrieved from remote 175 

sensing data [4,29,32,35,55] and integrated into predictive models used to map microclimate. Another 176 

key influence on spatiotemporal dynamics in microclimate is topographic position, because it 177 

determines the influences of cold air drainage and pooling on a site [56,57]. Topographic position 178 

and cold air drainage can be estimated from high-resolution digital terrain models (DTMs), further 179 

increasing our ability to map and model microclimate across broad spatial and temporal scales. 180 

 181 

 182 
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 183 

Box 4: Water and wind 184 

Plant canopies not only buffer temperature, but also precipitation, relative humidity and vapour 185 

pressure deficit (VPD), which is exponentially related to air temperature. VPD drives transpiration in 186 

plants and growth and survival can be impeded when VPD is high (responses vary greatly among 187 

species and depend on water supply and leaf temperature). In a degraded tropical forest landscape, 188 

models of understorey VPD generated by interpolating sensor-network data with LiDAR imagery (see 189 

Figure 1) suggest that tropical tree regeneration will be severely affected by global warming, because 190 

of the close link between temperature and VPD [13]. The effect of remotely sensed canopy structure 191 

and composition on below-canopy VPD and moisture availability warrants further research, e.g. to 192 

better understand how moisture influences air and topsoil temperatures, and vice-versa [31,58]. 193 

Topographic features, such as slope angle, affect the lateral surface and subsurface water flow. 194 

Airborne LiDAR-derived maps of topographic wetness and ruggedness are thus suitable to analyse the 195 

fine-scale variation of soil moisture and air humidity [59,60]. Detailed ecosystem structure data also 196 

delivers input parameters to better account for the effects of wind on microclimate. Canopy surface 197 

roughness and vertical canopy structure, for instance, improve wind modelling in heterogeneous 198 

forests and offer promising opportunities to make predictions of the near-surface wind fields more 199 

accurate [61,62]. 200 

 201 

Thermal imaging using thermal infrared (TIR) cameras can be applied to map surface 202 

temperatures. As opposed to LiDAR technologies TIR cameras directly record longwave 203 

infrared radiation (i.e. 7.5-14 µm) emitted by an object or organism, which is linked to surface 204 

temperature according to Boltzmann’s law when surfaces have high emissivity [3,63]. The 205 

surface and body temperature of an organism is related to its energy budget and thus to the 206 

functioning and performance of plants and animals [7,64]. Yet, the surface temperature is not 207 

necessarily related to the air temperature an organism experiences. For instance, plants 208 

respond to water shortage by closing stomata and reducing transpiration, which causes leaf 209 
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surface temperatures to rise – irrigated and non-irrigated plants can differ in leaf temperature 210 

by several degrees but have similar air temperature in their surrounds, as measured with 211 

shielded temperature sensors (Figure 2). TIR images recorded by UAVs have centimetre 212 

resolution [63], providing valuable means for the fine-scale monitoring and management of 213 

water use and water stress by plants, e.g. in crop production [66,66], or to assess the 214 

temperature experienced by insects living on a leaf’s surface. However, TIR images might not 215 

necessarily reflect atmospheric or soil microclimatic temperatures experienced by plants, i.e. 216 

their thermal niche. 217 

Surface temperatures from high-resolution TIR images have been applied for fire and 218 

disease detection, phenotyping in plant breeding, wildlife monitoring and microclimate 219 

ecology (reviewed in [42,66]). Senior et al. [67], for example, used TIR images to show that 220 

selective logging of tropical forests had a very little impact on thermal buffering compared to 221 

primary forests, suggesting that selectively-logged tropical forests may play an important role 222 

in retaining species with temperature niches that are disappearing under climate change. In 223 

aquatic systems, TIR images provide the means for landscape-level mapping of cold water 224 

patches (thermal refuges) along rivers – an important habitat element for riverine salmonids in 225 

times of climate warming [68]. Such maps provide valuable information to guide conservation 226 

efforts. We currently know little about the extent to which canopy surface temperatures 227 

measured by TIR images are coupled to the temperatures prevailing in the layers beneath the 228 

canopy surface, e.g. in forest understoreys or at the soil surface, although this knowledge 229 

would be helpful for using TIR images to model and map microclimatic air temperature. The 230 

difference between canopy leaf temperatures and ambient air temperatures can be highly 231 

variable and depends on canopy structure and species-specific leaf traits, such as aerodynamic 232 

leaf boundary-layer resistance and associated levels of atmospheric coupling [69]. Such 233 

analysis will also be subject to effects deriving from the ability of plants to regulate leaf 234 

temperature [64]. Research into the relationship between below-canopy temperatures 235 



 

 11 

measured by sensor networks (Box 3) and canopy temperature measured by TIR images is 236 

needed to further understanding of these linkages. 237 

TIR radiation flux is affected by a number of factors besides leaf temperature, including 238 

the relative humidity, ambient temperature, wavelength dependency of the emissivity and 239 

range of the camera, wind speed and shadows [70]. Accurate surface temperature assessments 240 

using TIR imagery can thus be challenging. A key point is the emissivity, which is the ability 241 

of the surface of an object to emit thermal radiation [63,71]. The mean emissivity of surfaces 242 

from plants, soil and rocks range from 0.903-0.997 and deriving surface temperature data 243 

from TIR images is thus complicated by the fact that not all surfaces in the image have similar 244 

thermal emissivity [71]. Furthermore, the spatiotemporal resolution of TIR imagery needs to 245 

be considered. Representing the climate conditions at a site requires TIR images taken across 246 

the full range of weather conditions, at day and night, and across seasons [2]. While this may 247 

be feasible for terrestrial and potentially airborne TIR imagery, the high spatiotemporal 248 

resolution of such datasets comes at the cost of limited spatial coverage. Satellite TIR imagery 249 

provides surface temperature data with global coverage, although at too coarse a resolution to 250 

directly quantify microclimate (Figure 2). Yet, satellite TIR images can improve the 251 

interpolations of temperature data from weather stations in areas with a low station density 252 

[72]. Despite these challenges and limitations, the potential of TIR imagery in fundamental 253 

and applied microclimate ecology is substantial and should be explored in more detail. 254 

Another approach to microclimate mapping is to downscale macroclimate data obtained 255 

from macroclimatic grids [2,24], such as WorldClim 2 [72] and CHELSA [73], which are 256 

published at relatively coarse scales (typically 30’’ resolution, equivalent to 1 km2 at the 257 

equator). High-resolution remote sensing products, such as digital terrain models (DTMs), 258 

canopy height models (CHMs) or detailed ground and canopy albedo measurements, are 259 

used to generate indices of microclimatic processes related to solar radiation, cold-air 260 

drainage or topographic wetness from the grid data, and these indices are then related 261 
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statistically to macroclimatic variables using regression [74–76]. Software such as R-packages 262 

implementing these approaches using freely available input data are now becoming available 263 

[14]. Because these models are based on macroclimate data that are available at a high 264 

temporal resolution, such models allow for predictions of how microclimate conditions vary 265 

in time, thus tackling a key limitation of temporally limited approaches based on microclimate 266 

measurements from sensor networks (cf. Box 3). 267 

Mechanistic models may also use predictor variables derived from remote sensing data 268 

but are fundamentally different in that they model heat and mass exchange between organisms 269 

and their environments, relying on functional relationships derived from the physical 270 

processes involved in creating microclimate [77,78]. Perhaps the most advanced mechanistic 271 

model is Niche MapperTM [77], which downscales air temperatures based on a set of abiotic 272 

variables such as soil characteristics, macroclimatic meteorological variables including cloud 273 

cover, air temperatures and wind speeds and shading. The model has been parameterized to 274 

predict lizard distributions in open habitats in Australia and the US but does not currently 275 

include detailed modulating influences of plant canopies among its input variables [28,77]. 276 

Implications and avenues for microclimate ecology 277 

Ecologists are starting to appreciate the ways in which microclimate mapping technologies 278 

could improve their science. Correlative species distribution modelling (SDM) is often 279 

criticised for its reliance on coarse climate information [24] and its failure to incorporate 280 

physiological knowledge [8]. Using detailed spatiotemporal microclimate data in such models 281 

will allow for more organism-centred approaches to determine species range boundaries and 282 

their climate change-related dynamics. This especially applies at the temperature-driven 283 

leading and trailing edges, where the response of organisms may be particularly susceptible to 284 

the availability of suitable microclimate and associated microrefugia [8,24,26,79,80]. 285 

Incorporating microclimate layers into SDMs thus holds a large potential, but is still in its 286 
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infancy. Using simulations and focusing on maximum temperature of the warmest month, 287 

Lenoir et al. [24] found that using airborne LiDAR-derived variables to model microclimate 288 

decreases the extirpation risk of a virtual plant species under climate change compared to 289 

predictions based on downscaled climate data at coarser resolutions (Box 1). Such modelling 290 

results are physiologically more meaningful because they derive from the comparison of the 291 

species’ temperature niche to realistic temperature dynamics driven by vegetation shading and 292 

cold air drainage. 293 

Microclimate data will also help to shed new light into microclimatic effects on 294 

phenology – potentially quantified by remotely sensed vegetation indices such as the 295 

Normalized Difference Vegetation Index (NDVI) – and how these effects affect species 296 

distributions and species interactions. For instance, plant species range limits may be driven 297 

by temperature extremes during key stages of phenology, such as extreme cold during bud-298 

break of broad-leaved tree species [81]. Such extreme events are not represented in currently 299 

available climate data with coarse spatiotemporal resolutions. Using remote sensing data to 300 

derive climate data at resolutions similar to those at which organisms perceive and respond to 301 

climate conditions is thus a timely task and will pave the way for more reliable predictions of 302 

species range dynamics in response to climate change [27]. 303 

Microclimate mapping could also refine our understanding of species diversity patterns. 304 

Following the environmental heterogeneity hypothesis, microclimate heterogeneity is 305 

expected to be positively related to species richness (alpha diversity) [82], but this remains 306 

understudied. Similarly, investigating how spatial and/or temporal changes in microclimate 307 

contributes to beta diversity through environmental filtering deserves more attention [82,83]. 308 

For example, a recent study found that microclimate on cooler, north-facing slopes affected 309 

plant community responses to climate change by delaying extinctions of species with low-310 

temperature requirements [84]. Increased short distance microclimatic variation is expected to 311 

affect the climatic debt in bird assemblages, e.g. by lowering the risk of population decline 312 
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due to the ability to avoid harmful climatic variation or by increasing landscape permeability 313 

which facilitates the spatial tracking of climate change [85]. Spatiotemporal mapping of 314 

microclimate will thus be crucial to understanding how local phenomena give rise to large-315 

scale processes. Estimating connectivity among fragmented habitats to evaluate the 316 

functionality of ecological networks, for instance, depends on reliable landscape-level 317 

representations of microrefugia, stepping stones, 3D-habitat structure and associated 318 

microclimate (e.g. ecological corridors such as hedgerows), as these attributes are critical for 319 

species migration and gene flow [79,80,86]. 320 

The potential of remote sensing technologies to better understand and model 321 

microclimate is already recognised implicitly in the ecological literature. The widespread use 322 

of LiDAR to model species occurrence from habitat structure, for instance, relies implicitly on 323 

the assumption that LiDAR data can be used to assess microclimate conditions that are, at 324 

least partially, responsible for the fitness and distribution of an organism [87–89]. What is 325 

missing in such indirect approaches is how the measured environmental features actually 326 

drive and interact with the microclimate variables that are physiologically relevant to the 327 

species or the biological phenomena of interest, e.g. the minimum and maximum air 328 

temperatures relevant to an organism’s temperature tolerance [7]. In forests, our mechanistic 329 

understanding of how canopy structure and composition drive and interact with vertical 330 

radiation and temperature regimes to determine species habitat preferences and vertical niche 331 

partitioning is still incomplete. Indeed, the steep vertical microclimatic gradients within 332 

forests are increasingly appreciated for structuring arboreal biodiversity, particularly in the 333 

tropics [90–92] and the remote sensing approaches described here play a key role in filling 334 

this knowledge gap. 335 

Microclimatic changes arising from forest management have been shown to exert strong 336 

controls on local plant communities and their response to macroclimate warming [21]. Thus, 337 

mapping of microclimate has far-reaching implications for conservation and other fields, such 338 
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as forestry and agriculture [35]. Successful tree regeneration – planted or natural – strongly 339 

depends on microclimate conditions [12,74]. Maps of thermal and light regimes below 340 

different canopy conditions or in clear-cuts can help managers optimise planting in 341 

accordance to tree species-specific temperature and light adaptations [12]. Similarly, 342 

microclimate maps would be helpful for managing agroforestry systems, such as those 343 

associated with coffee and cacao, where microclimates affect yield and the susceptibility to 344 

climate extremes [93]. In agriculture, precision farming of speciality crops increasingly relies 345 

on remote sensing technologies capturing the spatiotemporal variability of the micro-346 

environmental conditions [94,95]. Mapping the thermal heterogeneity across landscapes 347 

improve the analysis and management of crop water status [66,94] and how microclimate 348 

affects the occurrence and dynamics of pests [63,96]. 349 

Current limitations and future directions 350 

Field measurements of microclimate recorded with sensor networks are crucial for the 351 

development of landscape-scale maps, but sensor and sampling designs vary greatly between 352 

studies, making it difficult to synthesise results [2]. The need for standardised sampling 353 

approaches, centred around the following principles, is increasingly recognised: (1) field 354 

surveys are designed to represent the entire spatial and temporal gradients of the microclimate 355 

conditions in the study system; (2) time span between the collection of field and remote 356 

sensing datasets is short enough to prevent significant discrepancies; and (3) measurement 357 

sites are georeferenced precisely using a differential Global Positioning System, so that the 358 

data can be spatially co-registered with the imagery. Simulations show that registration errors 359 

as small as 1 m when working with 10-m radius plots can create major uncertainty in forest 360 

properties estimated from airborne LiDAR [97]. Thus, also precisely locating species records, 361 

particularly of less mobile species, is a prerequisite for sound inference about species-362 

microclimate relationships.  363 
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The presented airborne remote sensing tools and data (i.e. involving airborne LiDAR 364 

and/or SfM) to map the effects of vegetation structure on microclimate near the ground work 365 

best in tall habitats, such as forests, wood- and shrublands. In short stature vegetation, such as 366 

grassland, heath or crops, the level of structural detail picked up by airborne LiDAR and SfM 367 

is unlikely to capture microclimate variation resulting from fine-scale differences in 368 

vegetation structure. High-resolution TIR, however, provides the means to measure surface 369 

temperatures in both tall and short stature vegetation, but does not provide structural 370 

information required to interpolate microclimate measurements from sensor networks. 371 

There is pressing need to gather georeferenced microclimate data from different types of 372 

habitat across the globe and a global archive and data portal facilitating data access would 373 

significantly promote progress in microclimate ecology. To complement temporal dynamics 374 

of microclimate data gained from downscaled macroclimate we need long-term microclimate 375 

data series [24]. This will enable an improved understanding of the drivers of microclimate 376 

dynamics and how they deviate from the macroclimate, which will have important 377 

implications for estimating the velocity, and thus impact, of climate change. 378 

Many of the remote sensing approaches described here rely on data whose spatial 379 

coverage is growing but does not yet expand over continental and global scales. In the future, 380 

remedial satellite LiDAR data experiments, e.g. the Global Ecosystem Dynamics 381 

Investigation LiDAR (GEDI) or the ICESat-2 satellite project, may provide new avenues to 382 

arrive at analysing and monitoring microclimate variation at larger temporal and spatial 383 

scales. Satellite missions employing synthetic aperture radar (SAR) systems, such as the 384 

launched TanDEM-X and planned Tandem-L missions, provide worldwide, repeated and 385 

spatially detailed data for digital terrain elevation and forest height modelling. Incorporating 386 

these data into microclimate models may play a key role for increasing their spatial and 387 

temporal cover, and is expected to facilitate tracking microclimatic changes in habitats with 388 

dynamic structural attributes, such as forest vegetation structure. 389 
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Concluding Remarks 390 

We have shown that advances in remote sensing technologies are making it possible to map 391 

microclimate at fine spatiotemporal resolutions and over large areas for the first time. This 392 

offers new opportunities to scale up ecological knowledge about the organism-environment 393 

interactions at fine scales, to understand species and ecosystem responses to environmental 394 

changes over broad scales. 395 

Topographically controlled microclimate gradients have historically been studied in 396 

more detail than those controlled by 3D-vegetation structure. LiDAR and photogrammetry 397 

provide key structural data to fill this gap, which is critical, given the contribution that 398 

vegetation structure makes to biodiversity. However, methodological efforts taking an 399 

ecological perspective in approximating microclimate via remote sensing tools are required to 400 

make most out of the available data and resources. The technological advances in remote 401 

sensing and the methodological advances in microclimate modelling call for coordinated 402 

efforts between remote sensing experts, climatologists and ecologists to improve our 403 

predictive abilities on the role of microclimate in biodiversity and global change ecology. 404 
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 405 

Outstanding questions 406 

Improved, open-access and easy-to-use methods based on remotely sensed canopy structure and 407 
composition for modelling and predicting microclimate in forests are needed. Such methods are 408 
required to further our understanding of light, temperature and relative humidity regimes, and how 409 
they affect species behaviour, performance and distribution. Emphasis should also be given to 410 
quantifying the effect of local wind dynamics on microclimate. 411 
 412 
How will microclimatic conditions change in response to climate warming? This will depend on the 413 
extent to which vegetation structure and topography modulate air temperature and how changes in 414 
vegetation structure change solar radiation and wind regimes. 415 
 416 
How does horizontal and vertical microclimate variation affect alpha- and beta-diversity? 417 
 418 
What is the influence of microclimate buffering on species range dynamics, biodiversity and the 419 
climatic debt of species and communities? 420 
 421 
How are microclimate gradients related to plant functional traits derived from hyperspectral imaging? 422 
 423 
How could landscape-level mapping of microclimate contribute to our understanding of habitat 424 
connectivity and the functionality of ecological networks? 425 
 426 
How are below canopy and soil microclimate linked to vegetation surface temperatures measured by 427 
thermal infrared (TIR) imagery? 428 
 429 
How important is microclimate for driving phenological responses to climate change, and what are the 430 
implications thereof for species interactions and distributions? 431 

 432 
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 433 

Glossary 434 

Airborne LiDAR: a remote sensing technology used for 3D analysis of earth surface environments. 435 

LiDAR is short for Light Detection and Ranging (aka laser scanning). A LiDAR sensor emits about 436 

200,000 laser pulses per second towards the ground and measures the energy waveform returning from 437 

backscattering objects. When used to measure vegetation structure, the light pulse is wider than a 438 

typical leaf by the time it reaches the upper canopy, meaning that some of its energy passes through 439 

the upper canopy to lower layers and even the ground. The sensor converts the continuous waveform 440 

of returning energy into ‘discreet returns’ and, by precisely recording return times and its location in 441 

the air, creates a 3D point cloud of the position of objects. The point cloud is used to derive high-442 

resolution of topography and canopy height (see DTM and CHM) and detailed information on vertical 443 

vegetation structure, spatially continuous across large areas. Some LiDAR sensors record the full-444 

waveform, providing detailed information about the entire vertical forest profile. The added value of 445 

full-waveform over discrete LiDAR for microclimate mapping remains to be tested. 446 

Alpha diversity: species diversity in sites or habitats at the local scale (e.g. point-based surveys), 447 

often expressed as the total number of species (species richness) or abundances weighted indices, such 448 

as the Shannon index or the Simpson index. 449 

Beta diversity: diversity measure expressing variation (turnover and nestedness) in community 450 

composition among habitats gradients, can be calculated based on taxonomic (e.g., species identities), 451 

functional (e.g., functional traits) and phylogenetic (e.g., branches) units. 452 

Canopy Height Model (CHM): continuous digital surface – usually in the form of a raster dataset – 453 

representing the height of the canopy above the underlying terrain. 454 

Climate: synthesis of atmospheric conditions characteristic of a particular place in the long-term 455 

(usually 30-year averages) expressed by averages of various elements of weather and probabilities 456 

distributions of extreme events. 457 

Climate debt: biotic responses observed in nature are often slower than expected under the 458 

assumption of complete synchrony with climate change; climate debt describes the spatiotemporal lag 459 
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accumulated by a species or a community compared to the actual shift in climate. 460 

Cold air drainage: gravity-induced, downslope flow of relatively cold air near the ground, pooling in 461 

local depressions and valley constrictions. A prominent phenomenon in mountain valleys at night and 462 

during winter. 463 

Digital Terrain Model (DTM): continuous digital surface representing the elevation height of the 464 

bare earth. Sometimes also referred to as digital elevation model (DEM). 465 

Hyperspectral remote sensing: image analysis based on the spectral reflectance across a wide range 466 

of the electromagnetic spectrum; also known as hyperspectral imaging or imaging spectroscopy. 467 

Macroclimate: the climate conditions above ground or above the canopy (e.g. > 2 m) at a relatively 468 

large scale, e.g. across spatial dimensions of 1 km or more, and temporal dimensions of days to weeks 469 

or longer. 470 

Microclimate: the climate conditions close to the ground (e.g. < 2 m) or along vertical forest profiles 471 

at relatively fine spatiotemporal resolutions, e.g., across spatial dimensions of centimetres to meters, 472 

and temporal dimensions of minutes or shorter. Microclimate conditions include temperature, 473 

precipitation, humidity, wind and radiation regimes. 474 

Microrefugia: spatially-restricted local habitats that sustain a climate that has become, or is 475 

becoming, lost due to climate change and that enables species to persist in an otherwise inhospitable 476 

region. 477 

Remote sensing: acquiring information about an object of phenomena from a distance. 478 

Temperature buffering: below plant, especially forest canopies, daily air temperatures may be 479 

substantially buffered, increasing less during the day and decreasing less during the night than outside 480 

the forest canopies. 481 

Terrestrial Laser Scanning (TLS): the process of gathering 3D data using a LiDAR instrument on 482 

the ground. 3D point clouds produced by TLS are typically much denser than those obtained by 483 

airborne LiDAR. 484 

Thermal imaging: technique to produce an image based on the heat emitted by an object or an 485 

organism. 486 
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Understorey: a layer of vegetation close to the floor beneath the main canopy of a forest. 487 

Vapour pressure deficit (VPD): the difference between saturation vapour pressure and the actual 488 

vapour pressure, at a given temperature.  489 
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 728 

Figure legends 729 

Figure 1. Conceptual overview of the approach used to generate microclimate maps from a sensor network. A: 730 

Microclimate data are recorded using a network of sensors measuring air/soil temperature and humidity 731 

conditions, e.g., placed in the open (S1) and below tree canopies (S2) as shown by 3D airborne Light Detection 732 

and Ranging (LiDAR) data in the top panel. The microclimate data from each sensor (S1, S2, and black dots) are 733 

then summarised in ecologically meaningful ways, e.g. to daily minimum (Tmin) and maximum (Tmax) 734 

temperatures as shown in the middle left panel, and related to vegetation structure and the topography mapped 735 

using remote sensing technologies, e.g., LiDAR, as shown for canopy height and elevation across a landscape in 736 
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the tropical lowlands [13]. B: Statistical models are then used to predict microclimate across the entire mapped 737 

landscape and over time. In this example, maximum canopy height and topographic position were strong 738 

predictors of maximum daily air temperatures in the understorey (left), which explained small-scale variation 739 

of maximum vapour pressure deficit (VPD) (right), as indicated by the black arrows (taken from Jucker et al. 740 

[13]). 741 

 742 

Figure 2. Thermal infrared (TIR) imaging reveals spatially detailed information about surface temperatures. 743 

Images A and B show land surface temperatures (LSTs) for Europe (EuroLST) derived from freely available 744 

MODIS satellite images with a pixel size of 250 m [98]. On the other hand, data for images C to E were recorded 745 

at sub-metre resolution by an UAV flown at 70 m height above ground during an exceptional drought in June 746 

2017 in a tree diversity experiment in Belgium (www.treedivbelgium.ugent.be). Panel C is conventional red-747 

green-blue (RGB) photography, panel D shows the vegetation height (m) determined by structure-from-motion 748 

analysis of overlapping photos and panel E shows the surface temperature derived from the TIR image. We see 749 

that surface temperatures of plants on the ground are considerably higher than those of tree surfaces, due to 750 

different transpiration rates as a response to water shortage. The data was processed following Maes et al. [42].  751 

 752 

Box 1 Figure I. Probability of occurrence maps based on a virtual species approach, for which the realized niche 753 

is known, predicted with current-day macroclimate (A) and microclimate data (B), and projected into the future 754 

under a 2 oC warming scenario (C and D respectively). The temperature data for images A and C refer to long-755 

term (30-yr averages during the period 1970-2000) maximum temperature of the warmest month and were 756 

obtained by downscaling macroclimate at 25-m resolution to incorporate topoclimatic processes. Spatial 757 

variation in microclimate (temperature in this case) generated by trees (i.e. canopy cover) and topography (i.e. 758 

topographic concavity) were modelled using 50-cm resolution maps (images B and D) derived from 3D airborne 759 

Light Detection and Ranging (LiDAR). Note that microclimatic models indicate much larger areas of suitable 760 

habitat than macroclimatic models. In particular, many potential microrefugia are identified in image D which 761 

could continue to provide suitable habitat under climate warming (adapted from Lenoir et al. [24]).  762 

 763 

Box 2 Figure I. Using airborne Light Detection and Ranging (LiDAR) to map solar radiation fluxes in a 764 

mountainous region. A: Potential clear sky solar radiation predicted to reach the ground on a summer day if 765 

vegetation is absent (i.e. based on a digital terrain model generated by LiDAR); B: Forest canopy height 766 

measured over the same region; C: Potential clear sky solar radiation calculated to reach the ground having 767 

http://www.treedivbelgium.ugent.be/
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penetrated through the forest canopy, assuming an increase of shading with increasing vegetation cover and 768 

height. It can be seen that much of the landscape is deeply shaded by trees and shrubs, making it suitable for 769 

shade-tolerant plant species. D: 3D airborne LiDAR-derived elevation data of a forest (black rectangle in B) is 770 

used to construct synthetic hemispherical images at 1 m and 25 m height above the forest floor [99]. E: 771 

Reconstructed hemispherical images, taken at the red point position in B, show portions of the sky obscured by 772 

trees (black) and the terrain (blue), from which diffuse and direct light transmission can be calculated. These 773 

images can be calculated for any point in the landscape and at any height in forest canopies providing 774 

unprecedented opportunities to estimate the microclimate in the neighbourhood of individual organisms. Note 775 

that ground topography (elevation, aspect and slope) have strong influences on solar radiation [100], and high-776 

resolution DTMs from LiDAR surveys provide critical input data for quantifying these effects [13,14]. 777 

 778 

Box 3 Figure I. A: Weather stations as illustrated on the left provide long-term climate data for synoptic 779 

conditions (right panel). B: Microclimate data from sensor networks (cf. Figure 1) are currently available mostly 780 

for short time periods only, e.g. months to a few years (right panel). The left image shows a shielded sensor 781 

placed on the north side of a tree trunk. C: Maximum air temperatures below canopies (i.e. microclimate) are 782 

frequently offset by several degrees compared to free-air conditions (i.e. macroclimate) and the offset trend over 783 

time may vary. Long-term data series are required to assess the differences in spatiotemporal dynamics between 784 

macro- and microclimate (see text). 785 
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Figure 4. The heat wave hitting Europe in July 2003, in different seamless and gap-free 
temperature datasets. At the continental scale, the spatial pattern of (a) Climatic Research 
Unit (CRU), (b) European Climate Assessment and Dataset (ECA&D) and 
(c) reconstructed MODIS LST is comparable, even though the extreme heat in southern 
France is apparent only with MODIS LST (c). At the local scale, some hot areas cannot be 
detected with (d) CRU and (e) ECA&D, which are clearly visible with the higher spatial 
resolution of (f) reconstructed MODIS LST. The two white points in (e) are the 
meteorological stations used by ECA&D in the area. All data are in the Lambert azimuthal 
equal area projection (EPSG code: 3035). The extents in geographical degrees of (d), (e) 
and (f) are approximately 47°04′18′′N, 10°56′22′′E, 46°26′37′′N, 12°05′52′′E. 

 

Figure 5. Validation of the LST reconstruction method. The histogram shows the 
difference between the reconstructed and the original MODIS LST values for 1 January 
2010, at 10:30 am local time (cf. Figure 15 in Crosson et al. [17]). 

 

Second, we evaluated the performance of the actual gap filling procedure. For this test, we masked 
out original values, performed the reconstruction procedure and then compared the original with the 
reconstructed values. Here, we expected larger differences between the original and LST values than in 
the first evaluation test. The absolute of the mean difference was usually below 0.1 K, with a 
maximum of 1.41 K. The standard deviation of the differences was larger than in the first validation 
test, ranging from 1.5 to 4.5 K. 
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