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DNS of a High-Aspect-Ratio Elliptic Vortex
and its Generated Noise

Sébastien Barré? Christophe Bogeyfand Christophe Bailly?*
Laboratoire de Mécanique des Fluides et d’Acoustique
Ecole Centrale de Lyon & UMR CNRS 5509
69134 Ecully, France.

The aerodynamic evolution and the acoustic radiation of elliptic vortices with various
aspect ratios are investigated by solving numerically the full compressible Navier—Stokes
equations. Three behaviours are observed according to the aspect ratio ¢ = a/b where a
and b are the major and minor semi-axes of the vortices. At the small aspect ratio o = 1.2,
the vortex rotates at a constant angular velocity and radiates like a rotating quadrupole.
The acoustic radiation is in very good agreement with a reference analytical solution. At
the moderate aspect ratio ¢ = 5, the vortex is initially unstable. However, its aspect ratio
decreases due to an axisymmetrization process, which inhibites the growth of instabilities.
The noise level then decreases and the radiation frequency increases. The far-fied is found
to be in good agreement with the reference solution, which has been modified to take into
account the evolution of the shape of the vortex. For vortices with larger aspect ratios
o > 6, axisymmetrization does not occur quickly enough to stop the growth of instabilities,
which splits the vortices. Then various mergings are found to occur. For instance in the
case o = 6, several successive switches between an elliptic state and a configuration of two
co-rotating vortices are observed. The sound field remains weakly affected by the switches.
The present results show that the initial value of the aspect ratio yields the relative weight
of the axisymmetrization which stabilizes the vortex, and of the growth of instabilities
which tends to split it.

I. Introduction

Two-dimensional flows such as simple vortices have been intensively investigated in the past. These
configurations seem elementary, but they are very useful to understand the evolution of coherent structures
in numerous flows. For instance, elliptic vortices allow to consider vortical configurations encountered in
geophysical flows (Miyazaki & H. Hanazaki! and Miyazaki et al.2) or to model anisotropic effects of vortices
(Dritschel & Legras® and Legras & Dritschel?).

The first works on elliptic vorticity distributions were analytical investigations of Kirchhoff’s vortex
(1876), see Lamb® and Love.® This top hat vortex rotates at a constant angular velocity Qy, without change
of shape. Love® demonstrated that it is linearly stable for aspect ratios ¢ = a/b < 3, a and b being the major
and minor semi-axes of the ellipse. Dritschel” also shown numerically that the vortex is nonlinearly stable
only in the range of the linear stability ¢ < 3. Note also that the stability of the vortex has recently been
linked by Vosbeek et al.® to the spatial distribution of the strain rate, which must be of lower amplitude
inside the vortex than just outside to ensure the stability. If o > 3 the vortex is unstable, and the growth
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of instabilities can dramatically alter the shape of the vortex and can split it into two or more co-rotating
vortices. The conditions for which the split generates two vortices have been investigated from energetic
considerations by Dritschel.”>? In particular, this case is preferentially observed for an aspect ratio close to
six. The time evolution of the vortex can be also affected by the process of axisymmetrization. Melander et
al.'® have indeed shown that, for a vortex with smooth boundaries, some vorticity is progressively shedded
through the formation of filaments, leading to a circular vortex. This phenomenon has been studied for
stable elliptical vortices and has also been observed for co-rotating vortices by Melander et al.!! However
the circular state appears not to be obtained for vortices with sufficiently steep edge gradients as reported
by Dritschel.!?

Thus, two phenomena, namely the growth of instabilities and the axisymmetrization, occur in the case
of an unstable Kirchhoff vortex. Instabilities may grow, and tend to split the vortex. In the same time,
the axisymmetrization process takes place and can affect the growth of these instabilities. Therefore, the
evolution of the vortex depends on the process which will dominate the other one. The dominant process
is usually determined during the first few revolutions. The vortex development during this step can indeed
change the relative weight of the two processes. In particular, as pointed out by Melander et al.!® viscosity
may play an important role during the initial evolution of vortices with sharp gradients of vorticity. A
careful calculation of the viscous effects is therefore required to study numerically the Kirchhoff vortex
properly. Unfortunately most of the computational studies in the literature are based on pseudospectral
methods (see Melander et al.!®) or on the contour dynamic method (see Dritschel”>'2? and Vosbeek et al.?).
Since viscosity is provided by an artificial fourth-order viscosity in pseudospectral algorithms, and is even
neglected in the contour dynamic methods, only inviscid or weakly dissipative flows can be studied with
such approaches. Thus, these methods fail in computing the behaviour of Kirchhoff’s vortices accurately
when the competition between the growth of instabilities and the axisymmetrization occurs. Moreover the
numerical methods mentionned above are restricted to incompressible flows, implying that the noise radiated
by elliptic vortices could not be directly calculated in these previous works.

In the present paper, the behaviours of Kirchhoff’s vortices with initial aspect ratios o = 1.2, 5, 6 and
25 are calculated, using accurate numerical techniques developed recently by Bogey & Bailly'? for the direct
computation of aerodynamic noise (see Bogey et al.,'* Bogey & Bailly'® and Gloerfelt et al.'®). The full
compressible Navier—Stokes equations are solved to obtain the flow field and the acoustic radiation in the
same calculation. The noise generated by two circular co-rotating vortices has already been investigated by
Colonius et al.'” and Bogey et al.'® thanks to this approach. In the first case 0 = 1.2, the elliptic vortex
is stable and very similar to a circular vortex. For o = 5, the axisymmetrization is expected to occur. For
o > 6 the vortex is strongly unstable and the growth of instabilities may have a notable effect on the vortex
evolution. The objectives are to study the effects of the competition between the axisymmetrization process
and the nonlinear evolution of instabilities on the time evolution of the vortex and to find the range of o
in which each phenomenon dominates the other one. Moreover, the noise generated by vortices with aspect
ratios 1.2 < o < 6 is investigated with the aim of showing the influence of the initial aspect ratio on the
acoustic radiation and the effects of the axisymmetrization on the pressure field.

In the present paper, §II describes the numerical algorithm and the initial conditions used. The case
of an aspect ratio close to unit, o = 1.2, is investigated in §III and the case of the moderate aspect ratio
o =5 is studied in §IV. The acoustic results are connected to the aerodynamic field and are also compared
to the reference solution obtained by Howe!? and presented in the appendix. Finally, §V is devoted to two
configurations with large aspect ratios o = 6 and 25. In particular, the radiated noise in the case 0 = 6 is
calculated and the switch between an elliptic vortex and a configuration of two vortices is shown.



IT. Numerical method

A. Governing equations
The two-dimensional compressible Navier—Stokes equations are solved in the conservative form

a_U n OFE, + oF, 0OFE, OF,
ot ox1 Oxs or1 Oxa

where U = (p, pu1, puz, pe;)® is the unknown vector. The variables p, ui, us and e; are respectively the
density, the two velocity components and the total specific energy. The subscripts e and v denote the Euler
and the viscous fluxes. For a perfect gas

P 1
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where <y is the specific heat ratio and p the pressure. The Euler fluxes are given by
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and viscous fluxes by E, = (0,711, Ti2,u;T1;)* and F, = (0,721, T22,u;T2;)*. The viscous stress tensor
is defined by T;; = 2uS;; where p is the dynamic molecular viscosity and S;; the deviatoric part of the
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B. Numerical algorithm

Numerical schemes with low-dispersion and low-dissipation properties developed by Bogey & Bailly'? are
used. The spatial discretization is performed by an eleven-point stencil finite-difference scheme optimized in
the wave-number space ensuring accuracy up to four points per wavelength. An optimized explicit six-stage
Runge-Kutta algorithm is applied for time integration. To ensure stability, grid-to-grid oscillations are re-
moved thanks to an eleven-point stencil selective filter without affecting the resolved scales, since only the
short waves discretized by less than four points per wavelength are damped. Note that in the present work,
Direct Numerical Simulations of the Navier—Stokes equations are performed, without turbulence modelling.
Moreover, the two-dimensional non-reflecting boundary conditions proposed by Tam & Webb?® are imple-
mented. They are derived from the asymptotic solution of Euler’s equations in the acoustic far-field, and
thus allow to minimize acoustic reflections. This point is crucial for the direct calculation of the acoustic
field.

C. Numerical specifications and initial conditions

The mesh used is a Cartesian grid with 381 x 381 points. The discretizations in the z; and z2 directions are
the same and are symmetrical with respect to the center of the grid. The mesh spacing is uniform for the
first thirty points close to the center with a mesh spacing of Ag = 2 x 10~*m. Then a streching rate of 4% is
applied to the 95 next grid points to include a large part of the radiated acoustic field in the computational
domain. This streching rate is small enough to keep the high accuracy of the numerical schemes (see Bogey
& Bailly!'?). The largest mesh spacing is thus A,,,; = 41.5 Aq. Finally, the mesh spacing remains uniform



for the final 65 points. This mesh grid is sufficiently fine to enable an accurate propagation of the waves in
the cases studied in this paper. A case has for instance been investigated with a mesh spacing twice smaller
and has demonstrated that the use of a finer grid does not modify the results. The origin of the axes is taken
at the center of the grid. The computational domain extends from —3.7 x 103Aq up to 3.7 x 1034, in both
Cartesian directions. All the simulations are made with CFL = ¢, At/Ag = 1, where ¢ is the sound speed
in the ambient medium and At is the time step.

The calculations are initialized by the Kirchhoff elliptic vortex, an elliptic patch of uniform vorticity, which
is an exact analytical solution of the two-dimensional Euler equations (see Lamb®). Pressure and density
are respectively initialized by the ambiant pressure and density, po, and po,. The variable w is the vorticity
inside the vortex and the quantity e, called ellipse parameter, is defined by the relation ¢ = (1 +¢€)/(1 —¢).
The radius r. of the circle associated with the ellipse is then connected to the semi-axes by a = r.(1 + €)
and b = r.(1 — €). The subscript 0 denotes a quantity taken at ¢ = 0. For example, ag is the initial major
semi-axis. The initial angular velocity of the vortex is g and Ty corresponds to the initial period of rotation.
In all simulations, r.o is set to 40 Ag. This ensures an appropriate discretization of the geometry and of
the dynamics of the vortex for o < 25. The initial vorticity is we = 0.027/At, providing an accurate time
discretization. The Reynolds numbers based on the major semi-axis ag and on the maximum of the velocity
on the edge of the vortex are 1.1 x 10° for o = 1.2 down to 2.8 x 10 for o = 25. The values taken by a and
b are computed at each time step. They are evaluated from the contour of the vorticity with a threshold
chosen arbitrarily as Wiz /2, where wpqy is the maximum of vorticity in the vortex. The other parameters
of the ellipse are then deduced.

ITI. Vortex with an aspect ratio close to unit (op = 1.2)

The case of an elliptic vortex with a small aspect ratio is first investigated. The initial aspect ratio is
oo = 1.2, which yields for the ellipse parameter ¢ = 0.09 < 1. First, the aerodynamic behaviour is discussed
and compared to the theoretical results developed for the Kirchhoff elliptic vortex. Then the acoustic
radiation is shown and compared to the analytical solution (3). In this case, the analytical formulation
reported in the appendix is expected to be valid.

A. Aerodynamic results

Figure 1(a) shows isolevels of vorticity at time t/T, = 16. No filamentation process is observed, even after 16
revolution periods. To understand this, the streamlines of the initial vortex in a rotating frame associated to
its theoretical angular velocity Qs = w(1 — €2)/4 (see Lamb?®) are displayed in figure 1(b). The streamline
pattern keeps the same structure during the whole evolution time. Melander et al.'® pointed out that the
axisymmetrization can occur only when the two saddle points A and B are located in the vorticity core.
In that case, the vorticity around these points is carried away from the core and follows the streamlines,
beginning the filamentation process. For a perfect top-hat vortex, the saddle points A and B are outside the
patch of vorticity, as shown in figure 1(b), and thus the shedding cannot occur. In the present computation,
the viscous diffusion at the vortex edge tends to relaxe the gradients. However, the vortex does not become
smooth enough to include the saddle points and the filamentation cannot begin. As previously observed by
Dritschel,'? vortices with sufficiently steep edge gradient do not seem to axisymmetrize. This point is also
supported by the time evolution of the aspect ratio o in figure 2(a). The aspect ratio remains practically
constant for ¢ < 15Tp, indicating that the vortex rotates without significant change of form.

In figure 2(b), the time history of the computed angular velocity 2/Qq is shown to be constant and in
good agreement with the theoretical value Q4 /Qo = w(1 —€?)/(4/Q0) given by Love® for Kirchhoff’s vortex.
This theoretical velocity is calculated at each time step from the values of € and w, where w is estimated by
the mean integral level of vorticity inside the contour level wp,q;/2. During the rotation, the vortex edge
becomes smoother due to viscous diffusion and the area of the vortex increases slightly. This implies a low
decrease of the mean integral level of vorticity and thus the small reduction of Q4 observed in figure 2(b).
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Figure 1. Case g9 = 1.2. a) Isolevels of vorticity at time t/7p = 16 . Levels: 1%, 5%, and from 10% to 90% of
the maximum of vorticity with a 10% step. b) Streamlines of the initial Kirchhoff vortex in a frame rotating

with the angular velocity Qg = w(l — €2)/4. edge of the vortex; ----- and ---- streamlines. The points A
and B are the two saddle points.
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B. Acoustic radiation

Figure 3. Case oo = 1.2. Pressure field at time ¢/Ty = 16. Contour levels: py — 10 Pa, p and p + 10 Pa.

The acoustic radiation of the vortex is now investigated. The elliptic vortex radiates like a rotating
quadrupole as shown with the pressure field in figure 3. The pressure along the line x = y, x > 0, at
time ¢t = 16 o, is displayed in figure 4(a). The magnitude of the acoustic near-field is shown to decrease
rapidly when the observation point moves away from the vortex. In this figure, the computed acoustic field is
compared to the analytical formulation (3) reported in the appendix. This formulation has been obtained by
Howe!? and provides the acoustic far-field generated by the vortex. It is appropriate for Kirchhoff’s vortices
with € <« 1, for which viscous effects are neglected. By considering only the first order in €, Howe has
thus obtained that the noise level is proportional to € and that the pulsation of the radiated noise does not
depend on the aspect ratio. Note that an extended formulation (4), taking into account the effective motion
of the vortex for the radiation frequency, is also detailed in the appendix. This extended formulation can be
applied in cases where the elliptical shape of the vortex evolves with time, using parameters updated at the
corresponding retarded times. Moreover, the analytical solutions (3) and (4) do not provide the near-field
contribution. In the present case, for d/ag > 80, the far acoustic field dominates the pressure field and the
computational result tends to the analytical formulation, with a good agreement in frequency and level. In
the graph 4(b), the comparison for an observation point in the far-field at d/ag ~ 80 illustrates this good
agreement.

IV. Vortex with a moderate aspect ratio (oy = 5)

In this section, an elliptic vortex with a moderate aspect ratio of oy = 5 is investigated. This aspect ratio
corresponds to the parameter ¢y = 0.67. The dynamics of the vortex should now be significantly affected by
the growth of instabilities and by the axisymmetrization process. Moreover the analytical solution (3) might
not be appropriate for describing the acoustic far-field.

A. Stability of Kirchhoff’s vortex

The linear stability of the Kirchhoff vortex was first studied by Love.® By noting dn the normal displace-
ment of the edge of the vortex, the eigenfunction of the small perturbation in a linear analysis writes as
on ~ exp [i(m(6 — B) — vt)] where m is the azimuthal wavenumber, 8 is the polar angle, 8 is a phase coef-
ficient and v = ~, 4 i7; is the complex angular frequency. Thus ; corresponds to the growth rate of the
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Figure 4. Case o¢ = 1.2. Comparison of the acoustic radiation with the analytical solution (3):

analytical
solution; e computation. d is the distance from the vortex center. a) Pressure along the line z = y, £ > 0 at
time t = 16Tp. b) Time evolution of the pressure at the point z/ap = y/ao = 56.

Figure 5. Linear stability of the modes m = 3, 4, 5 and 6 of the Kirchhoff vortex. v = 7, + iy; is the complex
angular frequency of a mode and m is the azimuthal wavenumber.

frequency ~v,; ----- growth rate v;.



instabilities. The dispersion relation is given by 472/w? = (2mA; — 1)> — A2 where A\; = o/(1 + 0)2 and
A2 = (0 —1)™/(0 + 1)™, see Dritschel.”

The stability of the azimuthal modes m = 3, 4, 5 and 6 is illustrated in figure 5. The modes m =1
and m = 2 are not of interest since the mode m = 1 is always stable and the mode m = 2 is neutral with
Ym=2 = 0 for all o. For m > 3, v is real for small o, which imply linear stability. Above a critical value o,
v becomes imaginar and the mode m is then linearly unstable. For the mode m = 3, o3, = 3 is found and,
for m > 3, oy > 03.- For 0 < 3, the vortex is therefore linearly stable and above this value there is always
at least one mode linearly unstable.

The nonlinear stability was numerically investigated by Dritschel.” For ¢ < 3, the vortex is nonlinearly
stable since it is linearly stable. For 3 < ¢ < 4.61, i.e. when only the mode m = 3 is linearly unstable, only
the odd perturbations are nonlinearly unstable. In a case where the initial disturbances are only even, there
will be not growing instabilities. Dritschel shows indeed that even perturbations can only generate even
modes through nonlinear effects and in the considered range of o, all the even modes are stable. Finally, for
o > 4.61, at least one odd and one even mode are linearly unstable, m = 3 and m = 4 for example. Thus
the vortex is nonlinearly unstable because the nonlinear effects will generate from any disturbance at least
either the mode m = 3 or the mode m = 4, which are both unstable.

B. Aerodynamic results

The vorticity field is plotted in figure 6. For this case with oo = 5, the filamentation process begins after
about one revolution. The aspect ratio then decreases, as observed in snapshots of figures 6(c) and 6(d).
Figure 7 shows the computed streamlines leaded by the vortices in the cases o9 = 1.2 and o9 = 5. As
discussed in the previous section, the saddle points are initially far from the vortex in the case o9 = 1.2.
When oy is higher, the saddle points are initially closer to the boundary of the vortex, as in the present case
oo = 5 in figure 7(b), and some vorticity can reach them. Thus the filamentation process can take place.

The time history of the aspect ratio is shown in figure 8(a). Two steps in the evolution of the vortex are
visible. The first step occurs from ¢ = 0 to about t = 27T,. Since oy > 04, the vortex is initially nonlinearly
unstable and the initial perturbations are growing, as observed in figure 6(a) where the vortex is no more
elliptic. In the same time the shedding of vorticity begins. The vorticity field in figure 6(a) shows the first
step of this process and the filamentation clearly occurs in figure 6(b). As a result, the aspect ratio decreases
down to the threshold o4.. Below this value, only odd perturbations are unstable. In the present simulations,
the initial aerodynamic field is even and developing perturbations are consequently even, thus the vortex
becomes stable for ¢ < o4.. This first step illustrates the opposite effects of the axisymmetrization and of
the instabilities. The shedding of vorticity stabilizes the vortex whereas the growth of instabilities tends to
split it. In the present case, the growth of instabilities is slow with respect to the period of rotation, therefore
the axisymmetrization is the dominant phenomenon.

From about ¢t = 2T}, the second step is observed. The vortex remains elliptic and sheds vorticity. The
aspect ratio decreases and this affects the angular velocity, which increases as reported in figure 8(b). This
demonstrates that the time variations of the aspect ratio now strongly modify the behaviour of the vortex.
A good agreement is found between the computed velocity 2 and the theoretical velocity Qu, = w(1 —€2)/4,
given by Lamb® for the Kirchhoff vortex. Moreover, a significant discrepancy is observed between the
theoretical velocity and the approximated velocity w/4, used by Howe!? in the analytical formulation (3),
showing that e cannot be neglected if the aspect ratio is not close to unit.

The variations of the vorticity w are directly connected to the evolution of the approximated velocity w/4,
displayed in figure 8(b). The level of vorticity inside the vortex is thus shown to decrease with time. This
occurs not only because of the slight viscous dissipation but also mainly because of the shedding of vorticity.
Due to the expression of the theoretical velocity of the Kirchhoff vortex 0, = w(1 — €2)/4, the decrease of w
implies a lowering of the angular velocity of the vortex. Thus, the filamentation tends to reduce the angular
velocity throught the decrease of w. The other effect of the axisymmetrization is the decrease of the aspect
ratio and consequently of the parameter e. The expression of the theoretical velocity 4, shows that this
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process implies an acceleration of the rotation. Therefore, the shedding of vorticity has two opposed effects.
According to the increase of the effective velocity Q observed in the figure 8(b), the second effect is clearly
dominant and the variations of the angular velocity are mainly due to the decrease of the aspect ratio, and
not to the lowering of the vorticity level in the vortex core.

C. Acoustic radiation

50

25

Figure 9. Case o = 5. Pressure field at time t/Ty = 4.0 (a) and time t/Ty = 11 (b). Contour levels: p,, — 40 Pa,
Poo — 20 Pa, pooy Po + 20 Pa and pe + 40 Pa.
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Figure 10. Case g9 = 5. Pressure profiles along the line z = y, z > 0 at two different times:

t =4Tp; ~----
t = 11Ty (d is the distance from the vortex center).

Snapshots of the pressure field at times t = 47y and ¢ = 117y, and the corresponding profiles along the
line z = y, x > 0, are presented in figures 9 and 10. The axisymmetrization process is found to affect the
sound field radiated by the vortex significantly. The radiation frequency increases with time, as expected due

11



to the increase of the angular velocity. Furthermore the noise level decreases, as predicted by the analytical
expression (4).

In what follows, the computed pressure field is compared to the solution provided by expression (4) and
not to the solution given by expression (3). Expression (4) takes into account the effective motion of the
vortex and, in particular, the changes of the angular velocity in the modelling of the noise frequency, whereas
in expression (3) the angular velocity is assumed to be constant. In the present case, the evolution of the
radiation frequency is not negligible as shown in figure 10, and has indeed to be considered to provide an
accurate description of the sound field.

The computed pressure profile along the line z = y, x > 0 at ¢ = 11T} is plotted in figure 11(a) with
the profile given by expression (4). Near the vortex, the comparison is not relevant since expression (4)
does not provide the near pressure field. Farther from the vortex, a good agreement is observed between the
numerical and the analytical solutions. The time history of the pressure at the location z/ag = y/ae = 37
is also displayed in figure 11(b). The computed and analytical results are found to be very close. This
shows that the radiation frequency is accurately predicted by expression (4) taking into account the effective
rotation of the vortex. Moreover, since in expression (4) only the first order in € is kept for the amplitude, this
good agreement also indicates that the level of the radiated noise is proportionnal to e. This is remarkable
in the present case where the parameter ¢g = 0.67 is not negligible. The present results thus demonstrate
that expression (4) is appropriate over a large range of aspect ratios.
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Figure 11. Case g9 = 5. a) Pressure profiles along the line z = y, £ > 0 at time ¢ = 117p; and b) time history of
the pressure at the point z/ao = y/ap = 37: analytical solution (4); ¢ computations (d is the distance from
the vortex center).

V. Vortices with large aspect ratios oy > 6

In this section, elliptic vortices with large aspect ratios og > 6 are investigated. For such values, the
Kirchhoff elliptic vortex is linearly and nonlinearly unstable for any perturbations. In this case, the growth
of instabilities is the dominant process and will cause significant deformations of the vortex. The case oo = 6
is first considered. The splits of the vortex in the case og = 25 is then computed.

For the case o9 = 6, two stages can be distinguished in the time evolution of the vorticity field. In
the first stage, an even perturbation grows and splits the ellipse into two co-rotating vortices, as shown by
the vorticity snapshots in figure 12. The split is achieved in less than a half revolution. In this case, the
growth of instabilities is very rapid and cannot be stopped by the axisymmetrization process. The flow
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configuration created by the two vortices is itself unstable. They merge to form a new elliptic vortex with
an aspect ratio which remains higher than o4, & 4.61 as shown in figure 13. Therefore the new vortex is not
stable, and a new switch between the two configurations, elliptic vortex and two co-rotating vortices, occurs.
Several successive switches are moreover observed. The possibility of such switches has been mentionned by
Dritschel,”? who shown, from energetic considerations in the inviscid case, that they may occur more easily
for an aspect ratio close to six. Note also that one sequence ellipse/co-rotating vortices/ellipse has been
calculated by Vosbeek et al.® using the contour dynamic method. The time evolution of the aspect ratio o
at each elliptic state is shown in figure 13. The aspect ratio is found to decrease down to 4.8 but it remains
larger than o4.. The initial decrease could be attributed to the filamentation process which is observed in
figure 12(e) during the first switch. After three sequences, o remains around 4.8.

6 0
5.51
b 51 . ) .
4.51
4 :
0 2 4 6

t/TO

Figure 13. Case op = 6. Time history of ¢ calculated when the vortex has an elliptic shape during the sequences
ellipse/co-rotating vortices/ellipse .

The second stage of the vortex evolution begins at time ¢ ~ 5.5Tg. The elliptic vortex definitively splits
and a stable configuration with two co-rotating vortices is obtained, as shown by the vorticity field in figure
14. Viscous effects then slowly relaxe gradients making the vortices smoother, see for instance the vorticity
snapshots in figures 14(c) and 14(d).

The time history of the pressure at the point z/ag = y/ag = 36 is displayed in figure 15. For ¢t < 9T,
the noise has been generated during the fist aerodynamic stage. Although the vorticity patch is significantly
distorted during the switches, the noise remains weakly affected by the successive splits. At about ¢t = 9T,
the radiation level and the frequency suddenly decrease as the final stable configuration is obtained. The
sound frequency is then about half of the frequency in the first stage, and the noise level is twice smaller.

One case of very large aspect ratio o9 = 25 is finally computed. Successive vorticity fields of this
configuration are reported in figure 16. The initial vortex is very thin and unstable, thus it splits very early,
in a quarter of revolution, and generates four aligned vortices, see figure 16(c), as described also by Vosbeek
et al.® Then the two inner vortices merge and three aligned vortices are observed in figure 16(e). Finally,
one vortex remains after the merging of these three vortices. Note that in the simulations of Vosbeek et
al.® the evolution of the four aligned vortices is quite different: the two peripheral vortices merge with their
closest neighbouring vortex, forming two co-rotating vortices. The reason of this discrepancy is not clear
but we can mention that Vosbeek et al.® used the contour dynamic method and thus do not solve the full
Navier—Stokes equations.

The present results show that when the initial aspect ratio is increased, the elliptic vortex splits more
rapidly and the number of created vortices is higher. Various mergings can then be obtained before reaching
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Figure 14. Case o9 = 6. Isolevels of vorticity at successive times. a) t/Tp = 2.9; b) t/Tp = 5.8; c) t/Tp = 8.7; d)
t/To = 19. Levels: 20%, 40%, 60% and 80% of the maximum of vorticity.
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Figure 15. Case oo = 6. Time history of the pressure at the point z/ag = y/ag = 36.

a stable state with two co-rotating vortices or with an elliptical patch of vorticity. Note that the acoustic
field is not investigated in the last case because the aerodynamic evolution of the vortex is too rapid to study
properly the acoustic radiation.

VI. Conclusions

In this paper, the aerodynamic behaviours and the acoustic radiations of elliptic vortices with different
aspect ratios have been computed. The evolution of the vortex is found to be strongly dependent on the
initial aspect ratio. This ratio governs the relative weight of the axisymmetrization process and of the growth
of instabilities.

For o¢ close to unit, neither the filamentation nor the instabilities have a significant effect on the elliptic
vortex and on the radiated noise. The vortex rotates with a fixed angular velocity without notable change
of shape, and generates a constant and harmonic noise. When oq is larger but remains moderate, about
2 < 0¢ < 6, the axisymmetrization is the main mechanism and stops the growth of instabilities by stabilizing
the vortex. The filamentation occurs and leads to a decrease of the aspect ratio and to an increase of the
angular velocity. Then the radiation frequency increases and the noise level decreases. For larger aspect
ratios, the growth of instabilities dominates, and the axisymmetrization does not occur rapidly enough to
stabilize the vortex. This causes a split of the vortex in several vortices. For oo = 6, switches between the
elliptic state and a state with two co-rotating vortices first happen, before the vortex definitively splits. The
sound field remains poorly affected by these switches. Moreover the noise is mainly affected by the decrease
of the ellipse aspect ratio and not by the presence of the filaments. The ellipse parameter € is therefore
the key parameter to describe the acoustic radiation of the elliptic vortex. Finally, the computed sound
field is shown to be in good agreement with the analytical formulation of the radiated noise exposed in the
appendix.

The validity of the present computational approach is clearly shown. The computations have been per-
formed by Direct Numerical Simulation and the acoustic radiation is obtained in the same calculation. This
enables to take into account all effects, in particular compressibility and viscous diffusion. Such an approach
can be used to investigate the aerodynamic behaviours and the acoustic radiations of more sophisticated

wo-dimensional and three-dimensional flows.
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Figure 16. Case oo = 25. Isolevels of vorticity at successive times. a) t/Tp = 8.1 x 1073; b) t/Tp = 0.20; c)
t/To = 0.32; d) t/Tp = 0.46; e) t/Tp = 0.81; f) ¢t/Tp = 1.13. Levels: 20%, 40%, 60% and 80% of the maximum of

vorticity.
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ppendix: analytical formulation of the noise radiated by the Kirchhoff vortex

In this appendix, an analytical formulation of the far-field noise radiated by the Kirchhoff vortex is
reported. The way used to derive the solution has been presented by Howe'® and Crighton et al.?! The
viscous effects and the fluctuations of entropy are neglected. An incompressible flow bounded by a volume
V is considered. The velocity and the vorticity of the flow field are noted respectively u and w. According
to the Powell analogy, the fluctuations of p outside the flow can be expressed by:

, . Px O _lz—yl\ dy
g~ 250 [ wnu, (ve- 220 )

where p, and ¢, are respectively the mean density and the mean sound velocity in the ambient medium.
By considering only the far-field noise, this expression becomes:

; 0 2
'(t Q_L%__/ . Ay t— ) g 2
p( 7m) 477Céo|w| |m|2 6t2 VyJ (w/\u)z y7 c y ( )

o0

This formulation is now applied to the Kirchhoff elliptic vortex. The velocity distribution within the vortex
is given, in polar coordinates, by:

wr | sin(f) + esin (9 - 1_262 wt)
u=——

2 | —cos(f) + ecos (0 - 1’262 wt)

These expressions are valid for any values of €. In what follows, it is assumed that ¢ <« 1. Thus only
the first order in € is kept. Within this restriction, the shape of the vortex in polar coordinates is
r = re[l + €cos(20 — wt/2)] and the angular velocity becomes Q; = w/4. By using the method of the
stationnary phase and the relation p(t,r,8) — B(r,8) ~ c2,p'(t,r,8), the pressure field can be written as:

1/2
p(t,r,0) —p(r,0) ~ _< (27rre) PooU2 M3/ cos (20 _ W + f) (3)
8 r 2 4

with U = rew/2, M = U/coo and t, is the retarded time ¢ — r/c. This expression applies only to the
far-field of a Kirchhoff elliptic vortex with an aspect ratio o close to unit. The acoustic field decreases like
r~1/2 as expected for the far-field in a two-dimensional problem. Note that the amplitude is proportional
to the ellipse parameter €, whereas the frequency of the noise is constant and does not depend on €. Thus,
the effect of € on the frequency is not taken into account in this expression.

As shown in the present paper, vortices with an initial aspect ratio not close to unit do not keep a
uniform shape. The aspect ratio and the angular velocity evolve with time. In such cases, the quantities in
the expression (3) have to be considered at the retarded time t,, to take into account the propagation time
between the generation and the reception of the noise. Moreover, when the aspect ratio is not close to unit,
the approximated angular velocity ; = w/4 might significantly differ from the theoretical angular velocity
Qi = w(l — €2)/4 and, consequently, from the effective velocity. In this case, the expression (3) might fail
in providing the radiation frequency. An extended formulation, which includes the influence of € in both the
amplitude and the frequency, can then be obtained by observing that wt,/4 is the angular position of the
vortex, a,, at the retarded time t,.. In the case of an elliptical vortex with an aspect ratio and an angular
velocity evolving with time:

& (2mrer )" 91,3 ™
_ 5 ~ T {Z2er /2 _ -z
p(t,r,0) —B(r,0) ~ A ( . > PooUr M2 cos <2(0 ar) + 4) (4)

where the subscript r denotes a quantity taken at the retarded time ¢,.. This new expression is expected to
provide a better description of the radiation frequency than expression (3), because the frequency is directly
linked to the effective motion of the vortex.
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