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Eole Centrale de Lyon & UMR CNRS 5509
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Abstrat

Expliit numerial methods for spatial derivation, �lter-

ing and time integration are proposed. They are de-

veloped with the aim of omputing diretly the aerody-

nami noise, but they are not limited to this appliation.

All the methods are onstruted in the same way by min-

imizing the dispersion and the dissipation errors in the

wave number spae up to k�x=�=2. They are shown

to be more aurate, and also more eÆient numerially,

than most of the standard expliit high-order methods.

Two problems involving long-range sound propagation

are resolved to illustrate their respetive preisions.

1. Introdution

The need of highly aurate numerial methods
was reognized from the earliest stages in the devel-
opment of omputational aeroaoustis.1 The prop-
agation of sound waves in far-�eld requires long-time
integration with minimal dissipation and dispersion.
This an not be done using the low-order shemes
generally used in omputational uid dynamis, and
therefore new shemes were proposed. All methods
for solving the ompressible ow equations with a-
uray and eÆieny were onsidered. The �rst ones
were relative to the spatial derivation with �nite-
di�erene shemes showing dispersive properties op-
timized in the wavenumber spae: among them, the
expliit Dispersion-Relation-Preserving (DRP),2 im-
pliit ompat,3{6 and ENO shemes.7 The �ltering
whih must be used to ensure numerial stability
was then improved to derease the dissipative e�ets
on the resolved wave numbers, and both expliit8,9

and impliit �lters3,10 were provided. Finally, time
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integration was also optimized for noise omputa-
tion, and low-dissipation and low-dispersion Adams-
Bashforth2 and Runge-Kutta algorithms4,11{13 were
formulated. The list just drawn above is not exhaus-
tive, and other numerial methods were improved,
suh as, for instane, the MaCormak shemes.14

The present work is in keeping up with the more
general pattern of omputing noise diretly from the
unsteady ompressible Navier-Stokes equations. Th-
is approah is very attrative, sine both the ow
and the sound �eld are intended to be alulated
with a high preision by the same omputation. In
this way, not only the sound propagation, but also
the noise generation must be taken into aount nu-
merially, and the turbulent ow must espeially be
orretly desribed to provide the physial aousti
soures. This issue is of great importane using the
Large Eddy Simulation (LES) approah, where the
turbulent sales are alulated up to the grid ut-
o� wavenumber, whereas e�ets of the unresolved
sales are modelized.15 Appliation of LES for noise
omputation is promising,16,17 but it is still to be in-
vestigated very arefully for high Reynolds number
ows. It is atually neessary that the numerial al-
gorithm aounts for the spetral ut-o� properly,18

by introduing negligible dissipation and dispersion
on the resolved sales. This requirement is even
more aute with the modellings based on dynami
proedures,19 evaluating the subgrid terms from the
smaller resolved sales. It has been demonstrated
reently that numerial errors an exeed the mag-
nitude of the subgrid terms,20 and that a poor alu-
lation of the smaller sales an modify signi�antly
the ontribution of these terms.21 Thus, the use of
aurate shemes is ruial as muh for the ow sim-
ulation as for the sound propagation itself.

The motivation of the present work is to pro-
vide the numerial methods neessary for an ex-
pliit algorithm, following the requirements listed
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above. Shemes are developed in the same way as
those spei� to omputational aeroaoustis. How-
ever, instead of demanding an auray limit for
about seven points per wavelength suh as the DRP
sheme,2 the spatial-disretizationmethods must al-
ulate the waves up to four points per wavelength
with the aim of dynami LES. The time-integration
methods must also have better stability properties
than those found in the literature.4,11,12 Thus, en-
tral �nite-di�erene shemes for spatial-derivation,
seletive �lters for removing grid-to-grid osillations,
and low-storage Runge-Kutta algorithms for time
advanement are optimized by minimizing their dis-
persion and dissipation errors for the same range of
wave numbers. Test �lters with harateristis im-
proved in the wavenumber spae are also proposed
for LES. Great attention is drawn to develop meth-
ods with a high auray, but also with a high nu-
merial eÆieny to derease their omputational
osts. Systemati omparisons to standard expliit
methods are used, and two basi problems are pro-
posed. The �rst one is a long-range propagation
problem, and the seond one is devoted to LES sine
waves with four points per wavelength are involved.

Optimized �nite-di�erene shemes, seletive �l-
ters, low-storage Runge-Kutta algorithms and test
�lters are presented in setions 2, 3, 4 and 5 re-
spetively. Dispersive and dissipative properties are
shown, and both numerial auray and eÆieny
are disussed. In setion 6, the test problems are
solved using the optimized and standard methods.
Conluding remarks are given in setion 7. Finally,
oeÆients of the optimized shemes are provided in
the appendies A, B, C and D.

2. Finite-di�erene shemes for spatial

derivation

The spatial derivative �u=�x at x0 an be ap-
proximated by a entral, 2N+1 point stenil, �nite-
di�erene sheme as

�u

�x
(x0) =

1

�x

NX
j=�N

aju (x0 + j�x) (1)

where �x is the spaing of a uniform mesh, and
the oeÆients aj are suh as aj=�a�j , providing a
sheme with no dissipation.

For standard shemes, oeÆients aj are deter-
mined to anel the terms of the Taylor series of (1)
so that the maximum order is reahed. Thus, stan-
dard shemes using 9, 11 and 13 points, hereafter
referred to as FDs9p, FDs11p and FDs13p, are of
order 8, 10 and 12 respetively.

In this work, following Tam & Webb,2 shemes
are onstruted from their dispersion properties. By
applying spatial Fourier transform to (1), the e�e-
tive wave number k? of the sheme is given by

k?�x = 2

NX
j=1

aj sin (jk�x)

The dispersion error is the di�erene between the
e�etive and the exat wave numbers, k? and k.

Finite-di�erene shemes using 9, 11 and 13 poi-
nts, referred to as FDo9p, FDo11p and FDo13p, are
developed so that the dispersion error is small for a
large range of wave numbers up to k�x=�=2. They
are fourth-order, and their oeÆients aj are de�ned
to minimize the error de�ned by

Z ln(k�x)h

ln(k�x)l

jk?�x � k�xj d(ln(k�x))

where the limits are (k�x)l=�=16, and (k�x)h=�=2
for FDo9p and FDo11p, but 3�=5 for FDo13p. Co-
eÆients are provided in Appendix A.

The relation between the e�etive and the ex-
at wave numbers for the three optimized shemes is
shown in Figure 1, for 0<k�x<�. Shemes are low
dispersive as long as there is a good superposition
with the line k?�x=k�x. Inreasing the number
of points, from N=3 to N=6, allows apparently to
derease the dispersion error for short waves. One
must also note that grid-to-grid waves with k�x=�
are not resolved by any shemes.
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Figure 1: k?�x versus k�x for the optimized �nite-
di�erene shemes: FDo9p (N=4),
FDo11p (N=5), FDo13p (N=6); and
for the DRP sheme of Tam & Webb2 (N=3).

The error between the e�etive and the exat
wave numbers, Ek (k�x)=jk

?�x� k�xj =�, is rep-
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resented in Figure 2 for �=8�k�x��, in logarith-
mi sales. Optimized shemes are less dispersive
than standard ones, for instane the FDs10p, for
short waves with about k�x>�=4. The redution of
the error is partiularly important for wave numbers
near k�x=�=2, with at least one order of magni-
tude between optimized and standard shemes. Op-
timized shemes are also more dispersive for long
waves but the dispersion error is then very small.
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Figure 2: Dispersion error in logarithmi sales, of:
FDo9p, FDo11p, FDo13p,

the standard sheme FDs11p.

To ompare quantitatively the �nite-di�erene
shemes, two auray limits are estimated from the
arbitrary riteria Ek � 5� 10�4 and Ek � 5� 10�5.
The �rst limit indiates the maximum wave num-
ber properly alulated, and is expressed in term
of number of points per wavelength, by �p=�x. The
seond one indiates the maximum wave number a-
uratly alulated, and is given by �a=�x. They
are reported in Table 1 for the standard and opti-
mized shemes. For the same 2N+1 stenil, opti-
mized shemes have generally better auray limits
than standard ones. Furthermore, waves with about
4 points per wavelength are taken into aount only
by FDo11p and FDo13p. For these two optimized
shemes, even short waves are very auratly alu-
lated sine �a=�x'4.6.

The numerial eÆieny is now investigated thro-
ugh the produt of the auray limits by the num-
ber of points 2N+1. This quantity, orresponding
to a ratio between omputational ost and auray,
must be small. Values for the standard and opti-
mized shemes are given in Table 1. For the stan-
dard shemes, they are very similar showing that
ost and auray vary in the same proportion. The
optimized shemes, espeially FDo11p and FDo13p,

appear to be more eÆient. For the same omputa-
tional ost, they are more preise than any standard
shemes.

�p=�x �a=�x p�p=�x p�a=�x
FDs9p 6.09 7.97 54.8 71.4
FDs11p 5.25 6.58 57.7 72.4
FDs13p 4.72 5.75 61.4 74.7
FDo9p 4.22 11.84 38 106.6
FDo11p 3.93 4.65 43.2 51.2
FDo13p 3.36 4.66 43.7 60.6

Table 1: Auray limits of the standard and optimized
FD shemes for N=4, 5, 6; and produt by the number
of points p=2N+1 of the stenil. For omparison, with
the DRP sheme9: �p=�x=5.8 and �a=�x=13.1.

3. Seletive �lters

Grid-to-grid osillations are not solved by entral
�nite-di�erene shemes, as illustrated in Figure 1,
and it is neessary to remove them beause they an
lead to numerial instabilities. Pratially, it is done
by introduing arti�ial dissipation through addi-
tional damping terms in the equations,22 or more
eÆiently, through �ltering.10,23 In the latter ase,
seletive �lters must be used to eliminate spurious
short waves without a�eting the physial long waves.

Applying a entral, 2N+1 point stenil �lter to
variable u on a uniform mesh provides

uf (x0) = u (x0)� �dDu (x0)

with Du (x0) =
NX

j=�N
dju (x0 + j�x) (2)

where oeÆients dj are suh as dj=d�j , ensuring
no dispersion, and �d is a onstant between 0 and 1.

The standard approah18 for determining dj on-
sists in anelling the terms resulting from the Tay-
lor series of (2) for k�x!0. In this way, standard
seletive �lters using 9, 11 and 13 points, referred
to as SFs9p, SFs11p and SFs13p, are of order 8, 10
and 12 respetively.

To develop seletive �lters in the present work
following the idea of Tam et al.,8,9 the spatial Fou-
rier transform of (2) is onsidered,

Dk (k�x) = d0 +

NX
j=1

2dj os (jk�x) (3)

where Dk(k�x=0)=0, and Dk(k�x=�)=1 for nor-
malization. This damping funtion Dk(k�x) shows
the amount of dissipation for any wave number.
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Filters SFo9p, SFo11p and SFo13p, on 9, 11 and
13 points respetively, are built up by imposing small
values to Dk(k�x) in the range �=16�k�x��=2.
Filters SFo9p and SF13p are fourth-order and �lter
SFo11p seond-order, and their oeÆients dj are
optimized to minimize the integrated dissipation

Z ln(�=2)

ln(�=16)

Dk (k�x) d(ln(k�x))

Two onditions must also be met for 0<k�x<�: �l-
ters must be only dissipative with Dk>0, and to
limit variations of the damping funtion, we impose
� ln(Dk)=� ln(k�x)�-5 for SFo9p and SFo11p, and
� ln(Dk)=� ln(k�x)�-10 for SFo13p. CoeÆients dj
are given in Appendix B.

The damping funtions of the optimized �lters
are displayed in Figure 3. As expeted, the dissipa-
tion is small for long waves and is signi�ant for the
wave numbers near k�x=�. Inreasing the number
of points, from N=3 to 6, allows to onstrut more
seletive, spetral-like �lters.
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Figure 3: Damping funtions of the optimized seletive
�lters: SFo9p (N=4), SFo11p (N=5),

SFo13p (N=6); and of the optimized �l-
ter proposed by Tam et al.

8 (N=3).

The damping funtions of the optimized �lters
are also represented in logarithmi sales in Figure 4,
for �=8�k�x��, with the one of the standard �l-
ter SFs11p. Optimized �lters are less dissipative for
short waves with about k�x>�=4, the di�erene be-
ing onsiderable for k�x lose to �=2. Beause of
their seond or fourth order, they are more dissipa-
tive for long waves but the amount of dissipation
remains very small.

The two riteria �dDk � 5 � 10�4 and �dDk �
5� 10�5 are now used to determine the wave num-
bers dissipated by the seletive �lter in a small or in a
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Figure 4: Damping funtions in logarithmi sales, of:
SFo9p, SFo11p, SFo13p,

the standard �lter SFs11p.

negligible way respetively. Sine �ltering is applied
at every iteration, it is not neessary to set �d=1,
and values of �d between 0.1 and 0.2 are usually on-
venient for numerial stability. A value of �d=0.2 is
hosen in the present analysis, whih provides the
two riteria Dk � 2:5� 10�3 and Dk � 2:5� 10�4.
The two orresponding auray limits are expressed
in terms of number of points per wavelength, by
�p=�x and �a=�x.

These limits are given in Table 2 for standard
and optimized �lters. Optimized �lters take into
aount short waves in a better way than standard
ones. The produts of the auray limits by the
number of points 2N+1, are also provided in Ta-
ble 2, and present better values for optimized �lters.
This demonstrates that the SFo11p and SFo13p �l-
ters are more eÆient numerially.

�p=�x �a=�x p�p=�x p�a=�x
SFs9p 6.38 8.67 57.4 78
SFs11p 5.4 6.96 59.4 76.6
SFs13p 4.82 5.99 62.7 77.9
SFo9p 4.7 15.81 42.3 142.3
SFo11p 4.17 6 45.9 66
SFo13p 3.74 4.08 48.6 53

Table 2: Auray limits of the standard and optimized
seletive �lters forN=4, 5, 6; and produt by the number
of points p=2N+1 of the stenil. For omparison, with
the �lter of Tam et al.

8: �p=�x=6 and �a=�x=48.6.
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4. Runge-Kutta algorithms for time

integration

We now onsider the time integration using Runge-
Kutta algorithms of a di�erential equation

�u=�t = F(u) (4)

where the operator F is funtion of u. Formulations
of Runge-Kutta shemes have been proposed13,25 to
improve auray while reduing storage requireme-
nts. It is the ase for the low-storage, expliit Runge-
Kutta algorithms22,24 using only two storage loa-
tions per variable. An expliit p-stage algorithm ad-
vanes the solution of equation (4) from the nth to
the (n+1)th iterations as

u0 = un

ul = un + �l�tF
�
ul�1

�
for l = 1; ::; p

un+1 = up

where �l are the oeÆients of the algorithm, and
�t is the time step.

For F(u) linear, the algorithm is developed as

un+1 = un +

pX
j=1

pY
l=p�j+1

�l

| {z }
j

�tj
�jun

�tj
(5)

A p-stage algorithm of order p an be obtained by
setting j=1=j! for l=1; ::; p to math the Taylor se-
ries of u(tn +�t). The standard expliit 4-stage
Runge-Kutta algorithmRKs4s is de�ned by this way.
It is fourth-order in linear, but only seond order in
non-linear as any sheme of this kind.

In the present work, expliit algorithms are on-
struted by optimizing their dispersion and dissipa-
tion properties following the idea of Hu et al..12 As-
suming F(u) is linear and applying temporal Fourier
transform to (5), the ampli�ation fator of the al-
gorithm is given by

GRK (!�t) =
ûn+1 (!)

ûn (!)
= 1 +

pX
j=1

j (i!�t)
j

For omparison with the exat ampli�ation fator
ei!�t, it is written as jGRK (!�t) j ei!

?�t, where
jGRK j is the ampli�ation rate and !? is the e�etive
angular frequeny. For the angular frequeny !, the
amount of dissipation is then 1-jGRK (!�t) j and the
di�erene in phase is !?�t� !�t.

Two expliit 5-stage and 6-stage Runge-Kutta
algorithms, respetively referred to as RKo5s and
RKo6s, are built up by optimizing the dissipation

and the dispersion errors up to the angular frequeny
!�t=�=2. Both are seond-order, and are de�ned
by oeÆients l minimizing the following error

Z ln(�=2)

ln(�=16)

(1� jGRK (!�t) j) d(ln(!�t))

+

Z ln(�=2)

ln(�=16)

(j!?�t� !�tj =�) d(ln(!�t))

with these two onditions for the dissipation rate

�
1� jGRK j > 0
�[ln(1� jGRK j)℄ = �[ln(!�t)℄ � �5

for 0�!�t��, as for the seletive �lters. CoeÆ-
ients l are provided in Appendix C.

The ampli�ation rates of the standard RKs4s
and the optimized algorithms are plotted in Figure 5.
Optimized algorithms are less dissipative than the
standard RKs4s beause their rates are lose to 1 in
a larger range of angular frequenies. The stability,
deteted for jGRK j<1, appears also higher with the
optimized algorithms.
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Figure 5: Ampli�ation rates of the Runge-Kutta
shemes: RKs4s (p=4), optimized:
� RKo5s (p=5), + RKo6s (p=6).

This is demonstrated by the auray limits re-
ported in Table 3, and expressed in term of number
of iterations by Ts=�t, where Ts is the period as-
soiated to the highest frequeny ensuring stability
for the time step �t. The produts of these limits
by the number of stages are also shown in this ta-
ble, and they are similar for the three algorithms.
Therefore, in the ase of time steps determined only
from stability, the omputational osts are the same.
The stability of the optimized algorithms must also
be ompared to the poor stability of the 5-stage and
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Ts=�t pTs=�t
RKs4s 2.22 8.9
RKo5s 1.76 8.8
RKo6s 1.59 9.5

Table 3: Stability limits of the Runge-Kutta algorithms,
and produts by the number of stages.

6-stage algorithms proposed by Hu et al.
12 showing

limits Ts=�t of 4.16 and 3.8 respetively.

The dissipation 1 � jGRK j and the phase error
E! (!�t)=j!

?�t� !�tj =� of the Runge-Kutta al-
gorithms are now represented in logarithmi sales
in Figure 6. Both optimized algorithms are less dis-
sipative and dispersive than standard RKs4s in the
range �=8�!�t��, with RKo6s being also signif-
iantly more aurate than RKo5s. The improve-
ment is spetaular for the dissipation with about
one order of magnitude of di�erene between RKs4s
and RKo5s, and between RKo5s and RKo6s.
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Figure 6: Dissipation and phase errors in logarithmi
sales. See aption of Fig. 5 for details.

Two auray limits are provided in Table 4.
For dissipation, the riteria 1 � jGRK j � 5 � 10�4

and 1 � jGRK j � 5 � 10�5 are used to determine
T d
p =�t and T d

a =�t. For phase error, the riteria
E! � 5 � 10�4 and E! � 5 � 10�5 are applied to
evaluate T!

p =�t and T!
a =�t. The RKo5s algorithm

improve the auray with respet to RKs4s both
in dissipation and in phase, and in the same propor-
tions. The RKo6s algorithm still dereases the phase
error, but its spei� feature is given by its very low
dissipation ompared to the other algorithms.

T d
p =�t T d

a =�t T!
p =�t T!

a =�t

RKs4s 9.65 14.24 8.41 13.69
RKo5s 4.27 11.63 4.45 13.22
RKo6s 3.29 3.76 4.11 9.69

Table 4: Auray limits in amplitude and phase of the
Runge-Kutta algorithms.

Finally, numerial eÆienies are estimated by
multiplying the auray limits, proportional to the
number of iterations, by the number of stages, and
they are displayed in Table 5. The optimized al-
gorithms are learly more eÆient than the RKs4s.
For the same omputational ost, they provide more
aurate results than standard RKs4s algorithm.

pT d
p =�t pT d

a =�t pT!
p =�t pT!

a =�t

RKs4s 38.6 57 33.6 54.8
RKo5s 21.4 58.2 22.2 66.1
RKo6s 19.8 22.6 24.6 58.1

Table 5: Auray limits multiplied by the number of
stages for the Runge-Kutta algorithms.

5. Test �lters

In turbulene modellings used in Large Eddy Sim-
ulation, �lterings of the resolved variables are in-
volved to determine the magnitude of the subgrid
terms. Appliation to variable u is written, as for
the grid-to-grid osillation �lters, as

uf (x0) = u (x0)�Du (x0)

with Du (x0) given by expression (2). Usually, the
grid �lter width is estimated as �x, and test �l-
ters having an e�etive width of 2�x or 3�x are
used. These �lters are onstrained so that their
damping funtions (3) are suh as Dk (k�x)=1/2
for k�x=�=2 and k�x=�=3 respetively.

To onstrut ut-o� test �lters, oeÆients dj
an be evaluated by vanishing the low-order terms18
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in the Taylor series of Dk (k�x) for k�x!0, and
of 1-Dk (k�x) for k�x!�. However, to obtain �l-
ters with better harateristis in the whole range of
wave numbers, it is more interesting to use a mini-
mization proedure in Fourier spae. In this work,
test �lters with k�x=�=2 and k�x=�=3 are built
up in this way. We impose Dk (0)=0, Dk (�)=1, and
Dk (k�x)=1/2. For a sharp gradient near the ut-
o� wave number, we also set d2j=0 and d3j=0 (j 6=0)
respetively for the two �lters. The other oeÆients
are optimized to minimize the error

Z ln(k�x=
p
2)

ln(�=16)

jDk (k�x)j d(ln(k�x))

+

Z ln(�)

ln(
p
2k�x)

j1�Dk (k�x)j d(ln(k�x))

The proposed test �lters, TFo11p�=2, TFo15p�=2,
TFo11p�=3 and TFo15p�=3, require 11 or 15 points,
and their damping funtions are shown in Figures 7
and 8. They appear to be seletive enough to elim-
inate the wave numbers suh as k>k without af-
feting signi�antly the waves numbers with k<k.
CoeÆients dj are provided in Appendix D.
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Figure 7: Damping funtions of the test �lters:
TFo11p�=2 (N=5), TFo15p�=2 (N=7).

6. Test problems

6.1 De�nition

Two basi problems are onsidered to illustrate
the relative auray of the standard and the op-
timized shemes used for spatial derivation, grid-to-
grid seletive �ltering and time integration. Both in-
volve the long-range propagation of one-dimensional
disturbanes, allowing the observation of dispersion
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0

0.2

0.4

0.6

0.8

1

k∆x

D
k
(k

∆x
)

Figure 8: Damping funtions of the test �lters:
TFo11p�=3 (N=5), TFo15p�=3 (N=7).

or dissipation errors. The onvetive wave equation

�u

�t
+ 

�u

�x
= 0 with  = 1

is solved, with a time step derived from the mesh
spaing as �t=��x=, � being the CFL number.

Initial disturbanes at t = 0 are de�ned as

u(x) = sin

�
2�x

a�x

�
exp

�
� ln (2)

� x

b�x

�2�

where a�x is the dominant wavelength, and b�x
the half-width of the Gaussian funtion. Parame-
ters a and b are diretly onneted to the spetral
ontents of the disturbanes, and we set a=8 and
b=3 for problem I, a=4 and b=9 for problem II. The
normalized spatial power spetral densities of the
initial disturbanes are displayed in Figure 9.
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Figure 9: Spetral ontents of the initial disturbanes
for: problem I, problem II.
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Problem I is a typial test ase to study the
propagation over a large distane. The initial per-
turbation is haraterized by wave numbers in the
range 0<k�x<�=2 with a peak for k�x=�=4, i.e.
eight points per wavelength. It is propagated over
800�x orresponding to 100 times the dominant wa-
velength, to emphasize possible numerial errors.

The motivation for problem II is to investigate
the way the wave numbers suh as k�x'�=2, with
about four points per wavelength, are alulated.
These waves are often involved in the LES dynami
proedure to evaluate the modelling onstants. The
initial perturbation is propagated over a distane of
200�x, orresponding to 50 times the wavelength.

For the two problems, to quantify the agreement
between the exat and the alulated solutions, the
error rate enum is evaluated as

enum =
�X

(ual � uexat)
2=
X

u2exat

�1=2
6.2 Problem I

First, problem I is solved using the di�erent stan-
dard and optimized �nite-di�erene shemes, no �l-
tering, and the RKo6s algorithm with a time step
small enough to introdue negligible errors sine the
CFL number is �=0.2. The results obtained with
the optimized shemes are shown in Figure 10. The
solution using FDo9p is slightly distorted, whereas
the solutions using FDo11p and FDo13p superpose
fairly on the exat solution.

784 792 800 808 816
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−0.5

0

0.5

1

x/∆x

u

Figure 10: Problem I. Æ exat solution; solutions using
no SF, RKo6s and: FDo9p, FDo11p,

FDo13p, (�=0.2).

The agreement with the exat solution is demon-
strated by the values of the numerial errors given in
Table 6. Errors with the optimized shemes are at
least two times lower than errors with the standard

shemes using the same number of points. It should
also be noted that the FDo11p sheme is very well
suited to this problem.

FDs9p 0.630
FDs11p 0.307
FDs13p 0.141

FDo9p 0.329
FDo11p 0.052
FDo13p 0.065

Table 6: Problem I. Errors enum using standard and
optimized FD shemes, no SF and RKo6s (�=0.2).

Seond, problem I is solved using the di�erent
standard and optimized seletive �lters, the FDo13p
sheme, and the RKs6s algorithm with the same
small time step as previously. Filtering is applied at
every iteration with �d=0.2. The results alulated
with the optimized �lters are displayed in Figure 11
and ompared to the exat solution. The solution
with SFo9p is signi�antly dissipated, but the ones
with SFo11p and SFo13p are not.
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Figure 11: Problem I. Æ exat solution; solutions using
FDo13p, RKo6s and: SFo9p, SFo11p,

SFo13p, (�d=0.2, �=0.2).

This is supported by the values of enum in Ta-
ble 7. Exept for SFo9p, using optimized seletive
�lters instead of standard ones dereases remarkably
the dissipation of the disturbanes involved in this
problem. Numerial errors with SFo13p an parti-
ularly be attributed mainly to the spatial derivation.

SFs9p 0.533
SFs11p 0.303
SFs13p 0.168

SFo9p 0.580
SFo11p 0.114
SFo13p 0.077

Table 7: Problem I. Errors enum using standard and
optimized SF, FDo13p and RKo6s (�d=0.2, �=0.2).

Third, problem I is solved using the FDo13p she-
me, the SFo13p �lter, and the standard or opti-
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mized expliit Runge-Kutta algorithms, with CFL
numbers of �=0.2, �=0.5 and �=1. Solutions for
�=1 are presented in Figure 12. They are distorted
and dissipated, highly with the RKs4s algorithm,
but slightly with RKo5s, whereas the solution found
with RKo6s is in agreement with the exat solution.
The errors enum are reported in Table 8. For �=0.2,
the three algorithms provide very good results, but
for �=0.5 and �=1, the RKo6s algorithm is quite
more aurate than the two others.

784 792 800 808 816
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−0.5
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0.5

1
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Figure 12: Problem I. Æ exat solution; solutions using
FDo13p, SFo13p and: RKs4s, RKo5s,

RKo6s, (�d=0.2, �=1).

�=0.2 �=0.5 �=1
RKs4s 0.070 0.269 0.884
RKo5s 0.086 0.229 0.528
RKo6s 0.077 0.122 0.200

Table 8: Problem I. Errors enum using RK shemes for
di�erent CFL numbers, FDo13p and SFo13p (�d=0.2).

6.3 Problem II

Problem II is solved using the RKo6s algorithm
with �=0.8, and three �nite-di�erene sheme/sele-
tive �lter ombinations: FDo9p and SFo9p, FDo11p
and SFo11p, FDo13p and SFo13p. The solutions ob-
tained with the two last ombinations are shown in
Figure 13. The wave paket is dispersed and dis-
sipated using the 11-point methods, but it is well
alulated using the 13-point methods. In the lat-
ter ase, the omputed solution is in phase with the
exat one, and is only very slightly dissipated. The
errors enum given in Table 9 support these observa-
tions, and also show that the 9-point methods are
not aurate enough to resolve this problem involv-
ing wave numbers with k�x'�=2.
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Figure 13: Problem II. Æ exat solution; solutions us-
ing RKo6s with: FDo11p and SFo11p,
FDo13p and SFo13p, (�d=0.2, �=0.8).

FDo9p + SFo9p 0.905
FDo11p + SFo11p 0.488
FDo13p + SFo13p 0.077

Table 9: Problem II. Errors enum using optimized FD
shemes and SF with RKo6s (�d=0.2, �=0.8).

7. Conlusion

A family of expliit methods inluding �nite-di�e-
rene shemes for spatial derivation, low-storage Run-
ge-Kutta algorithms for time integration, seletive
�lters for eliminating grid-to-grid osillations, and
test �lters, is proposed. The harateristis of these
methods are optimized by minimizing numerial er-
rors for the same range of wave numbers, so that
they an be assoiated to form algorithms with spe-
tral-like resolution. This is of importane with the
aim of performing with on�dene 3-D omputa-
tions, where dependene of results on numeri she-
mes an hardly be investigated through parametri
studies. Analysis of dispersion and dissipation prop-
erties, evaluation of auray limits, and resolution
of test problems demonstrate the higher preision of
the optimized methods for short waves with respet
to the standard expliit ones. Numerial eÆieny
is also disussed, and it is shown that for an identi-
al omputational ost, optimized methods provide
higher aurate results. With this in view, the al-
gorithm using the 11-point stenil �nite-di�erene
sheme and seletive �lter, and the six-stage Runge-
Kutta sheme, showing stability up to a CFL num-
ber �=1.98, appears espeially appropriate for om-
puting noise.
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Appendix A : Finite-di�erene shemes

CoeÆients aj optimized for the shemes opti-
mized on 9, 11 and 13 points (a0=0, a�j=�aj):

FDo9p

a1 = 0.841570125482
a2 = -0.244678631765
a3 = 0.059463584768
a4 = -0.007650904064

FDo11p

a1 = 0.872756993962
a2 = -0.286511173973
a3 = 0.090320001280
a4 = -0.020779405824
a5 = 0.002484594688

FDo13p

a1 = 0.907646591371
a2 = -0.337048393268
a3 = 0.133442885327
a4 = -0.045246480208
a5 = 0.011169294114
a6 = -0.001456501759

Appendix B : Seletive �lters

CoeÆients dj optimized for the �lters on 9, 11
and 13 points (d�j=dj):

SFo9p

d0 = 0.243527493120
d1 = -0.204788880640
d2 = 0.120007591680
d3 = -0.045211119360
d4 = 0.008228661760

SFo11p

d0 = 0.215044884112
d1 = -0.187772883589
d2 = 0.123755948787
d3 = -0.059227575576
d4 = 0.018721609157
d5 = -0.002999540835

SFo13p

d0 = 0.190899511506
d1 = -0.171503832236
d2 = 0.123632891797
d3 = -0.069975429105
d4 = 0.029662754736
d5 = -0.008520738659
d6 = 0.001254597714

Appendix C : Runge-Kutta algorithms

CoeÆients j optimized for the 5 and 6 stage
algoritms:

RKo5s

1 = 1
2 = 0.5
3 = 0.165250353664
4 = 0.039372585984
5 = 0.007149096448

RKo6s

1 = 1
2 = 0.5
3 = 0.165919771368
4 = 0.040919732041
5 = 0.007555704391
6 = 0.000891421261

Appendix D : Test �lters

CoeÆients dj optimized for the �lters on 11 and
15 points with k�x = �=2 (d�j=dj):

TFo11p�=2

d0 = 0.5
d1 = -0.30399520
d2 = 0
d3 = 0.06880899
d4 = 0
d5 = -0.01481379

TFo15p�=2

d0 = 0.5
d1 = -0.30834723
d2 = 0
d3 = 0.07876835
d4 = 0
d5 = -0.02617123
d6 = 0
d7 = 0.00575011

CoeÆients dj optimized for the �lters on 11 and
15 points with k�x = �=3 (d�j=dj):

TFo11p�=3

d0 = 2/3
d1 = -0.26775782
d2 = -0.12016956
d3 = 0
d4 = 0.03683622
d5 = 0.01775782

TFo15p�=3

d0 = 2/3
d1 = -0.26598093
d2 = -0.12936060
d3 = 0
d4 = 0.04602726
d5 = 0.03212998
d6 = 0
d7 = -0.01614906
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