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Abstra
t

Expli
it numeri
al methods for spatial derivation, �lter-

ing and time integration are proposed. They are de-

veloped with the aim of 
omputing dire
tly the aerody-

nami
 noise, but they are not limited to this appli
ation.

All the methods are 
onstru
ted in the same way by min-

imizing the dispersion and the dissipation errors in the

wave number spa
e up to k�x=�=2. They are shown

to be more a

urate, and also more eÆ
ient numeri
ally,

than most of the standard expli
it high-order methods.

Two problems involving long-range sound propagation

are resolved to illustrate their respe
tive pre
isions.

1. Introdu
tion

The need of highly a

urate numeri
al methods
was re
ognized from the earliest stages in the devel-
opment of 
omputational aeroa
ousti
s.1 The prop-
agation of sound waves in far-�eld requires long-time
integration with minimal dissipation and dispersion.
This 
an not be done using the low-order s
hemes
generally used in 
omputational 
uid dynami
s, and
therefore new s
hemes were proposed. All methods
for solving the 
ompressible 
ow equations with a
-

ura
y and eÆ
ien
y were 
onsidered. The �rst ones
were relative to the spatial derivation with �nite-
di�eren
e s
hemes showing dispersive properties op-
timized in the wavenumber spa
e: among them, the
expli
it Dispersion-Relation-Preserving (DRP),2 im-
pli
it 
ompa
t,3{6 and ENO s
hemes.7 The �ltering
whi
h must be used to ensure numeri
al stability
was then improved to de
rease the dissipative e�e
ts
on the resolved wave numbers, and both expli
it8,9

and impli
it �lters3,10 were provided. Finally, time
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integration was also optimized for noise 
omputa-
tion, and low-dissipation and low-dispersion Adams-
Bashforth2 and Runge-Kutta algorithms4,11{13 were
formulated. The list just drawn above is not exhaus-
tive, and other numeri
al methods were improved,
su
h as, for instan
e, the Ma
Corma
k s
hemes.14

The present work is in keeping up with the more
general pattern of 
omputing noise dire
tly from the
unsteady 
ompressible Navier-Stokes equations. Th-
is approa
h is very attra
tive, sin
e both the 
ow
and the sound �eld are intended to be 
al
ulated
with a high pre
ision by the same 
omputation. In
this way, not only the sound propagation, but also
the noise generation must be taken into a

ount nu-
meri
ally, and the turbulent 
ow must espe
ially be

orre
tly des
ribed to provide the physi
al a
ousti

sour
es. This issue is of great importan
e using the
Large Eddy Simulation (LES) approa
h, where the
turbulent s
ales are 
al
ulated up to the grid 
ut-
o� wavenumber, whereas e�e
ts of the unresolved
s
ales are modelized.15 Appli
ation of LES for noise

omputation is promising,16,17 but it is still to be in-
vestigated very 
arefully for high Reynolds number

ows. It is a
tually ne
essary that the numeri
al al-
gorithm a

ounts for the spe
tral 
ut-o� properly,18

by introdu
ing negligible dissipation and dispersion
on the resolved s
ales. This requirement is even
more a
ute with the modellings based on dynami

pro
edures,19 evaluating the subgrid terms from the
smaller resolved s
ales. It has been demonstrated
re
ently that numeri
al errors 
an ex
eed the mag-
nitude of the subgrid terms,20 and that a poor 
al
u-
lation of the smaller s
ales 
an modify signi�
antly
the 
ontribution of these terms.21 Thus, the use of
a

urate s
hemes is 
ru
ial as mu
h for the 
ow sim-
ulation as for the sound propagation itself.

The motivation of the present work is to pro-
vide the numeri
al methods ne
essary for an ex-
pli
it algorithm, following the requirements listed
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above. S
hemes are developed in the same way as
those spe
i�
 to 
omputational aeroa
ousti
s. How-
ever, instead of demanding an a

ura
y limit for
about seven points per wavelength su
h as the DRP
s
heme,2 the spatial-dis
retizationmethods must 
al-

ulate the waves up to four points per wavelength
with the aim of dynami
 LES. The time-integration
methods must also have better stability properties
than those found in the literature.4,11,12 Thus, 
en-
tral �nite-di�eren
e s
hemes for spatial-derivation,
sele
tive �lters for removing grid-to-grid os
illations,
and low-storage Runge-Kutta algorithms for time
advan
ement are optimized by minimizing their dis-
persion and dissipation errors for the same range of
wave numbers. Test �lters with 
hara
teristi
s im-
proved in the wavenumber spa
e are also proposed
for LES. Great attention is drawn to develop meth-
ods with a high a

ura
y, but also with a high nu-
meri
al eÆ
ien
y to de
rease their 
omputational

osts. Systemati
 
omparisons to standard expli
it
methods are used, and two basi
 problems are pro-
posed. The �rst one is a long-range propagation
problem, and the se
ond one is devoted to LES sin
e
waves with four points per wavelength are involved.

Optimized �nite-di�eren
e s
hemes, sele
tive �l-
ters, low-storage Runge-Kutta algorithms and test
�lters are presented in se
tions 2, 3, 4 and 5 re-
spe
tively. Dispersive and dissipative properties are
shown, and both numeri
al a

ura
y and eÆ
ien
y
are dis
ussed. In se
tion 6, the test problems are
solved using the optimized and standard methods.
Con
luding remarks are given in se
tion 7. Finally,

oeÆ
ients of the optimized s
hemes are provided in
the appendi
es A, B, C and D.

2. Finite-di�eren
e s
hemes for spatial

derivation

The spatial derivative �u=�x at x0 
an be ap-
proximated by a 
entral, 2N+1 point sten
il, �nite-
di�eren
e s
heme as

�u

�x
(x0) =

1

�x

NX
j=�N

aju (x0 + j�x) (1)

where �x is the spa
ing of a uniform mesh, and
the 
oeÆ
ients aj are su
h as aj=�a�j , providing a
s
heme with no dissipation.

For standard s
hemes, 
oeÆ
ients aj are deter-
mined to 
an
el the terms of the Taylor series of (1)
so that the maximum order is rea
hed. Thus, stan-
dard s
hemes using 9, 11 and 13 points, hereafter
referred to as FDs9p, FDs11p and FDs13p, are of
order 8, 10 and 12 respe
tively.

In this work, following Tam & Webb,2 s
hemes
are 
onstru
ted from their dispersion properties. By
applying spatial Fourier transform to (1), the e�e
-
tive wave number k? of the s
heme is given by

k?�x = 2

NX
j=1

aj sin (jk�x)

The dispersion error is the di�eren
e between the
e�e
tive and the exa
t wave numbers, k? and k.

Finite-di�eren
e s
hemes using 9, 11 and 13 poi-
nts, referred to as FDo9p, FDo11p and FDo13p, are
developed so that the dispersion error is small for a
large range of wave numbers up to k�x=�=2. They
are fourth-order, and their 
oeÆ
ients aj are de�ned
to minimize the error de�ned by

Z ln(k�x)h

ln(k�x)l

jk?�x � k�xj d(ln(k�x))

where the limits are (k�x)l=�=16, and (k�x)h=�=2
for FDo9p and FDo11p, but 3�=5 for FDo13p. Co-
eÆ
ients are provided in Appendix A.

The relation between the e�e
tive and the ex-
a
t wave numbers for the three optimized s
hemes is
shown in Figure 1, for 0<k�x<�. S
hemes are low
dispersive as long as there is a good superposition
with the line k?�x=k�x. In
reasing the number
of points, from N=3 to N=6, allows apparently to
de
rease the dispersion error for short waves. One
must also note that grid-to-grid waves with k�x=�
are not resolved by any s
hemes.

  0  π/4  π/2 3π/4   π 
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 π/4
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Figure 1: k?�x versus k�x for the optimized �nite-
di�eren
e s
hemes: FDo9p (N=4),
FDo11p (N=5), FDo13p (N=6); and
for the DRP s
heme of Tam & Webb2 (N=3).

The error between the e�e
tive and the exa
t
wave numbers, Ek (k�x)=jk

?�x� k�xj =�, is rep-
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resented in Figure 2 for �=8�k�x��, in logarith-
mi
 s
ales. Optimized s
hemes are less dispersive
than standard ones, for instan
e the FDs10p, for
short waves with about k�x>�=4. The redu
tion of
the error is parti
ularly important for wave numbers
near k�x=�=2, with at least one order of magni-
tude between optimized and standard s
hemes. Op-
timized s
hemes are also more dispersive for long
waves but the dispersion error is then very small.
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Figure 2: Dispersion error in logarithmi
 s
ales, of:
FDo9p, FDo11p, FDo13p,

the standard s
heme FDs11p.

To 
ompare quantitatively the �nite-di�eren
e
s
hemes, two a

ura
y limits are estimated from the
arbitrary 
riteria Ek � 5� 10�4 and Ek � 5� 10�5.
The �rst limit indi
ates the maximum wave num-
ber properly 
al
ulated, and is expressed in term
of number of points per wavelength, by �p=�x. The
se
ond one indi
ates the maximum wave number a
-

uratly 
al
ulated, and is given by �a=�x. They
are reported in Table 1 for the standard and opti-
mized s
hemes. For the same 2N+1 sten
il, opti-
mized s
hemes have generally better a

ura
y limits
than standard ones. Furthermore, waves with about
4 points per wavelength are taken into a

ount only
by FDo11p and FDo13p. For these two optimized
s
hemes, even short waves are very a

uratly 
al
u-
lated sin
e �a=�x'4.6.

The numeri
al eÆ
ien
y is now investigated thro-
ugh the produ
t of the a

ura
y limits by the num-
ber of points 2N+1. This quantity, 
orresponding
to a ratio between 
omputational 
ost and a

ura
y,
must be small. Values for the standard and opti-
mized s
hemes are given in Table 1. For the stan-
dard s
hemes, they are very similar showing that

ost and a

ura
y vary in the same proportion. The
optimized s
hemes, espe
ially FDo11p and FDo13p,

appear to be more eÆ
ient. For the same 
omputa-
tional 
ost, they are more pre
ise than any standard
s
hemes.

�p=�x �a=�x p�p=�x p�a=�x
FDs9p 6.09 7.97 54.8 71.4
FDs11p 5.25 6.58 57.7 72.4
FDs13p 4.72 5.75 61.4 74.7
FDo9p 4.22 11.84 38 106.6
FDo11p 3.93 4.65 43.2 51.2
FDo13p 3.36 4.66 43.7 60.6

Table 1: A

ura
y limits of the standard and optimized
FD s
hemes for N=4, 5, 6; and produ
t by the number
of points p=2N+1 of the sten
il. For 
omparison, with
the DRP s
heme9: �p=�x=5.8 and �a=�x=13.1.

3. Sele
tive �lters

Grid-to-grid os
illations are not solved by 
entral
�nite-di�eren
e s
hemes, as illustrated in Figure 1,
and it is ne
essary to remove them be
ause they 
an
lead to numeri
al instabilities. Pra
ti
ally, it is done
by introdu
ing arti�
ial dissipation through addi-
tional damping terms in the equations,22 or more
eÆ
iently, through �ltering.10,23 In the latter 
ase,
sele
tive �lters must be used to eliminate spurious
short waves without a�e
ting the physi
al long waves.

Applying a 
entral, 2N+1 point sten
il �lter to
variable u on a uniform mesh provides

uf (x0) = u (x0)� �dDu (x0)

with Du (x0) =
NX

j=�N
dju (x0 + j�x) (2)

where 
oeÆ
ients dj are su
h as dj=d�j , ensuring
no dispersion, and �d is a 
onstant between 0 and 1.

The standard approa
h18 for determining dj 
on-
sists in 
an
elling the terms resulting from the Tay-
lor series of (2) for k�x!0. In this way, standard
sele
tive �lters using 9, 11 and 13 points, referred
to as SFs9p, SFs11p and SFs13p, are of order 8, 10
and 12 respe
tively.

To develop sele
tive �lters in the present work
following the idea of Tam et al.,8,9 the spatial Fou-
rier transform of (2) is 
onsidered,

Dk (k�x) = d0 +

NX
j=1

2dj 
os (jk�x) (3)

where Dk(k�x=0)=0, and Dk(k�x=�)=1 for nor-
malization. This damping fun
tion Dk(k�x) shows
the amount of dissipation for any wave number.

3



Filters SFo9p, SFo11p and SFo13p, on 9, 11 and
13 points respe
tively, are built up by imposing small
values to Dk(k�x) in the range �=16�k�x��=2.
Filters SFo9p and SF13p are fourth-order and �lter
SFo11p se
ond-order, and their 
oeÆ
ients dj are
optimized to minimize the integrated dissipation

Z ln(�=2)

ln(�=16)

Dk (k�x) d(ln(k�x))

Two 
onditions must also be met for 0<k�x<�: �l-
ters must be only dissipative with Dk>0, and to
limit variations of the damping fun
tion, we impose
� ln(Dk)=� ln(k�x)�-5 for SFo9p and SFo11p, and
� ln(Dk)=� ln(k�x)�-10 for SFo13p. CoeÆ
ients dj
are given in Appendix B.

The damping fun
tions of the optimized �lters
are displayed in Figure 3. As expe
ted, the dissipa-
tion is small for long waves and is signi�
ant for the
wave numbers near k�x=�. In
reasing the number
of points, from N=3 to 6, allows to 
onstru
t more
sele
tive, spe
tral-like �lters.

  0  π/4  π/2 3π/4   π 
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Figure 3: Damping fun
tions of the optimized sele
tive
�lters: SFo9p (N=4), SFo11p (N=5),

SFo13p (N=6); and of the optimized �l-
ter proposed by Tam et al.

8 (N=3).

The damping fun
tions of the optimized �lters
are also represented in logarithmi
 s
ales in Figure 4,
for �=8�k�x��, with the one of the standard �l-
ter SFs11p. Optimized �lters are less dissipative for
short waves with about k�x>�=4, the di�eren
e be-
ing 
onsiderable for k�x 
lose to �=2. Be
ause of
their se
ond or fourth order, they are more dissipa-
tive for long waves but the amount of dissipation
remains very small.

The two 
riteria �dDk � 5 � 10�4 and �dDk �
5� 10�5 are now used to determine the wave num-
bers dissipated by the sele
tive �lter in a small or in a

 π/8  π/4  π/2   π 
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

k∆x

D
k
(k

∆x
)

Figure 4: Damping fun
tions in logarithmi
 s
ales, of:
SFo9p, SFo11p, SFo13p,

the standard �lter SFs11p.

negligible way respe
tively. Sin
e �ltering is applied
at every iteration, it is not ne
essary to set �d=1,
and values of �d between 0.1 and 0.2 are usually 
on-
venient for numeri
al stability. A value of �d=0.2 is

hosen in the present analysis, whi
h provides the
two 
riteria Dk � 2:5� 10�3 and Dk � 2:5� 10�4.
The two 
orresponding a

ura
y limits are expressed
in terms of number of points per wavelength, by
�p=�x and �a=�x.

These limits are given in Table 2 for standard
and optimized �lters. Optimized �lters take into
a

ount short waves in a better way than standard
ones. The produ
ts of the a

ura
y limits by the
number of points 2N+1, are also provided in Ta-
ble 2, and present better values for optimized �lters.
This demonstrates that the SFo11p and SFo13p �l-
ters are more eÆ
ient numeri
ally.

�p=�x �a=�x p�p=�x p�a=�x
SFs9p 6.38 8.67 57.4 78
SFs11p 5.4 6.96 59.4 76.6
SFs13p 4.82 5.99 62.7 77.9
SFo9p 4.7 15.81 42.3 142.3
SFo11p 4.17 6 45.9 66
SFo13p 3.74 4.08 48.6 53

Table 2: A

ura
y limits of the standard and optimized
sele
tive �lters forN=4, 5, 6; and produ
t by the number
of points p=2N+1 of the sten
il. For 
omparison, with
the �lter of Tam et al.

8: �p=�x=6 and �a=�x=48.6.
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4. Runge-Kutta algorithms for time

integration

We now 
onsider the time integration using Runge-
Kutta algorithms of a di�erential equation

�u=�t = F(u) (4)

where the operator F is fun
tion of u. Formulations
of Runge-Kutta s
hemes have been proposed13,25 to
improve a

ura
y while redu
ing storage requireme-
nts. It is the 
ase for the low-storage, expli
it Runge-
Kutta algorithms22,24 using only two storage lo
a-
tions per variable. An expli
it p-stage algorithm ad-
van
es the solution of equation (4) from the nth to
the (n+1)th iterations as

u0 = un

ul = un + �l�tF
�
ul�1

�
for l = 1; ::; p

un+1 = up

where �l are the 
oeÆ
ients of the algorithm, and
�t is the time step.

For F(u) linear, the algorithm is developed as

un+1 = un +

pX
j=1

pY
l=p�j+1

�l

| {z }

j

�tj
�jun

�tj
(5)

A p-stage algorithm of order p 
an be obtained by
setting 
j=1=j! for l=1; ::; p to mat
h the Taylor se-
ries of u(tn +�t). The standard expli
it 4-stage
Runge-Kutta algorithmRKs4s is de�ned by this way.
It is fourth-order in linear, but only se
ond order in
non-linear as any s
heme of this kind.

In the present work, expli
it algorithms are 
on-
stru
ted by optimizing their dispersion and dissipa-
tion properties following the idea of Hu et al..12 As-
suming F(u) is linear and applying temporal Fourier
transform to (5), the ampli�
ation fa
tor of the al-
gorithm is given by

GRK (!�t) =
ûn+1 (!)

ûn (!)
= 1 +

pX
j=1


j (i!�t)
j

For 
omparison with the exa
t ampli�
ation fa
tor
ei!�t, it is written as jGRK (!�t) j ei!

?�t, where
jGRK j is the ampli�
ation rate and !? is the e�e
tive
angular frequen
y. For the angular frequen
y !, the
amount of dissipation is then 1-jGRK (!�t) j and the
di�eren
e in phase is !?�t� !�t.

Two expli
it 5-stage and 6-stage Runge-Kutta
algorithms, respe
tively referred to as RKo5s and
RKo6s, are built up by optimizing the dissipation

and the dispersion errors up to the angular frequen
y
!�t=�=2. Both are se
ond-order, and are de�ned
by 
oeÆ
ients 
l minimizing the following error

Z ln(�=2)

ln(�=16)

(1� jGRK (!�t) j) d(ln(!�t))

+

Z ln(�=2)

ln(�=16)

(j!?�t� !�tj =�) d(ln(!�t))

with these two 
onditions for the dissipation rate

�
1� jGRK j > 0
�[ln(1� jGRK j)℄ = �[ln(!�t)℄ � �5

for 0�!�t��, as for the sele
tive �lters. CoeÆ-

ients 
l are provided in Appendix C.

The ampli�
ation rates of the standard RKs4s
and the optimized algorithms are plotted in Figure 5.
Optimized algorithms are less dissipative than the
standard RKs4s be
ause their rates are 
lose to 1 in
a larger range of angular frequen
ies. The stability,
dete
ted for jGRK j<1, appears also higher with the
optimized algorithms.

  0  π/3 2π/3   π 4π/3
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Figure 5: Ampli�
ation rates of the Runge-Kutta
s
hemes: RKs4s (p=4), optimized:
� RKo5s (p=5), + RKo6s (p=6).

This is demonstrated by the a

ura
y limits re-
ported in Table 3, and expressed in term of number
of iterations by Ts=�t, where Ts is the period as-
so
iated to the highest frequen
y ensuring stability
for the time step �t. The produ
ts of these limits
by the number of stages are also shown in this ta-
ble, and they are similar for the three algorithms.
Therefore, in the 
ase of time steps determined only
from stability, the 
omputational 
osts are the same.
The stability of the optimized algorithms must also
be 
ompared to the poor stability of the 5-stage and
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Ts=�t pTs=�t
RKs4s 2.22 8.9
RKo5s 1.76 8.8
RKo6s 1.59 9.5

Table 3: Stability limits of the Runge-Kutta algorithms,
and produ
ts by the number of stages.

6-stage algorithms proposed by Hu et al.
12 showing

limits Ts=�t of 4.16 and 3.8 respe
tively.

The dissipation 1 � jGRK j and the phase error
E! (!�t)=j!

?�t� !�tj =� of the Runge-Kutta al-
gorithms are now represented in logarithmi
 s
ales
in Figure 6. Both optimized algorithms are less dis-
sipative and dispersive than standard RKs4s in the
range �=8�!�t��, with RKo6s being also signif-
i
antly more a

urate than RKo5s. The improve-
ment is spe
ta
ular for the dissipation with about
one order of magnitude of di�eren
e between RKs4s
and RKo5s, and between RKo5s and RKo6s.

 π/8  π/4  π/2   π 
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

ω∆t

1
−

|G
R

K
(ω

∆t
)|

 π/8  π/4  π/2   π 
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

ω∆t

|ω
*∆

t−
ω

∆t
|/
π

Figure 6: Dissipation and phase errors in logarithmi

s
ales. See 
aption of Fig. 5 for details.

Two a

ura
y limits are provided in Table 4.
For dissipation, the 
riteria 1 � jGRK j � 5 � 10�4

and 1 � jGRK j � 5 � 10�5 are used to determine
T d
p =�t and T d

a =�t. For phase error, the 
riteria
E! � 5 � 10�4 and E! � 5 � 10�5 are applied to
evaluate T!

p =�t and T!
a =�t. The RKo5s algorithm

improve the a

ura
y with respe
t to RKs4s both
in dissipation and in phase, and in the same propor-
tions. The RKo6s algorithm still de
reases the phase
error, but its spe
i�
 feature is given by its very low
dissipation 
ompared to the other algorithms.

T d
p =�t T d

a =�t T!
p =�t T!

a =�t

RKs4s 9.65 14.24 8.41 13.69
RKo5s 4.27 11.63 4.45 13.22
RKo6s 3.29 3.76 4.11 9.69

Table 4: A

ura
y limits in amplitude and phase of the
Runge-Kutta algorithms.

Finally, numeri
al eÆ
ien
ies are estimated by
multiplying the a

ura
y limits, proportional to the
number of iterations, by the number of stages, and
they are displayed in Table 5. The optimized al-
gorithms are 
learly more eÆ
ient than the RKs4s.
For the same 
omputational 
ost, they provide more
a

urate results than standard RKs4s algorithm.

pT d
p =�t pT d

a =�t pT!
p =�t pT!

a =�t

RKs4s 38.6 57 33.6 54.8
RKo5s 21.4 58.2 22.2 66.1
RKo6s 19.8 22.6 24.6 58.1

Table 5: A

ura
y limits multiplied by the number of
stages for the Runge-Kutta algorithms.

5. Test �lters

In turbulen
e modellings used in Large Eddy Sim-
ulation, �lterings of the resolved variables are in-
volved to determine the magnitude of the subgrid
terms. Appli
ation to variable u is written, as for
the grid-to-grid os
illation �lters, as

uf (x0) = u (x0)�Du (x0)

with Du (x0) given by expression (2). Usually, the
grid �lter width is estimated as �x, and test �l-
ters having an e�e
tive width of 2�x or 3�x are
used. These �lters are 
onstrained so that their
damping fun
tions (3) are su
h as Dk (k
�x)=1/2
for k
�x=�=2 and k
�x=�=3 respe
tively.

To 
onstru
t 
ut-o� test �lters, 
oeÆ
ients dj

an be evaluated by vanishing the low-order terms18
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in the Taylor series of Dk (k�x) for k�x!0, and
of 1-Dk (k�x) for k�x!�. However, to obtain �l-
ters with better 
hara
teristi
s in the whole range of
wave numbers, it is more interesting to use a mini-
mization pro
edure in Fourier spa
e. In this work,
test �lters with k
�x=�=2 and k
�x=�=3 are built
up in this way. We impose Dk (0)=0, Dk (�)=1, and
Dk (k
�x)=1/2. For a sharp gradient near the 
ut-
o� wave number, we also set d2j=0 and d3j=0 (j 6=0)
respe
tively for the two �lters. The other 
oeÆ
ients
are optimized to minimize the error

Z ln(k
�x=
p
2)

ln(�=16)

jDk (k�x)j d(ln(k�x))

+

Z ln(�)

ln(
p
2k
�x)

j1�Dk (k�x)j d(ln(k�x))

The proposed test �lters, TFo11p�=2, TFo15p�=2,
TFo11p�=3 and TFo15p�=3, require 11 or 15 points,
and their damping fun
tions are shown in Figures 7
and 8. They appear to be sele
tive enough to elim-
inate the wave numbers su
h as k>k
 without af-
fe
ting signi�
antly the waves numbers with k<k
.
CoeÆ
ients dj are provided in Appendix D.

  0  π/4  π/2 3π/4   π 
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0.6

0.8

1

k∆x

D
k
(k

∆x
)

Figure 7: Damping fun
tions of the test �lters:
TFo11p�=2 (N=5), TFo15p�=2 (N=7).

6. Test problems

6.1 De�nition

Two basi
 problems are 
onsidered to illustrate
the relative a

ura
y of the standard and the op-
timized s
hemes used for spatial derivation, grid-to-
grid sele
tive �ltering and time integration. Both in-
volve the long-range propagation of one-dimensional
disturban
es, allowing the observation of dispersion

  0 π/4  π/3  π/2 3π/4   π 

0
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0.4
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0.8

1

k∆x

D
k
(k
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)

Figure 8: Damping fun
tions of the test �lters:
TFo11p�=3 (N=5), TFo15p�=3 (N=7).

or dissipation errors. The 
onve
tive wave equation

�u

�t
+ 


�u

�x
= 0 with 
 = 1

is solved, with a time step derived from the mesh
spa
ing as �t=��x=
, � being the CFL number.

Initial disturban
es at t = 0 are de�ned as

u(x) = sin

�
2�x

a�x

�
exp

�
� ln (2)

� x

b�x

�2�

where a�x is the dominant wavelength, and b�x
the half-width of the Gaussian fun
tion. Parame-
ters a and b are dire
tly 
onne
ted to the spe
tral

ontents of the disturban
es, and we set a=8 and
b=3 for problem I, a=4 and b=9 for problem II. The
normalized spatial power spe
tral densities of the
initial disturban
es are displayed in Figure 9.

  0  π/4  π/2 3π/4   π 
0

0.25

0.5

0.75

1

k∆x

P
S

D
(u

)

Figure 9: Spe
tral 
ontents of the initial disturban
es
for: problem I, problem II.
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Problem I is a typi
al test 
ase to study the
propagation over a large distan
e. The initial per-
turbation is 
hara
terized by wave numbers in the
range 0<k�x<�=2 with a peak for k�x=�=4, i.e.
eight points per wavelength. It is propagated over
800�x 
orresponding to 100 times the dominant wa-
velength, to emphasize possible numeri
al errors.

The motivation for problem II is to investigate
the way the wave numbers su
h as k�x'�=2, with
about four points per wavelength, are 
al
ulated.
These waves are often involved in the LES dynami

pro
edure to evaluate the modelling 
onstants. The
initial perturbation is propagated over a distan
e of
200�x, 
orresponding to 50 times the wavelength.

For the two problems, to quantify the agreement
between the exa
t and the 
al
ulated solutions, the
error rate enum is evaluated as

enum =
�X

(u
al
 � uexa
t)
2=
X

u2exa
t

�1=2
6.2 Problem I

First, problem I is solved using the di�erent stan-
dard and optimized �nite-di�eren
e s
hemes, no �l-
tering, and the RKo6s algorithm with a time step
small enough to introdu
e negligible errors sin
e the
CFL number is �=0.2. The results obtained with
the optimized s
hemes are shown in Figure 10. The
solution using FDo9p is slightly distorted, whereas
the solutions using FDo11p and FDo13p superpose
fairly on the exa
t solution.

784 792 800 808 816
−1

−0.5

0

0.5

1

x/∆x

u

Figure 10: Problem I. Æ exa
t solution; solutions using
no SF, RKo6s and: FDo9p, FDo11p,

FDo13p, (�=0.2).

The agreement with the exa
t solution is demon-
strated by the values of the numeri
al errors given in
Table 6. Errors with the optimized s
hemes are at
least two times lower than errors with the standard

s
hemes using the same number of points. It should
also be noted that the FDo11p s
heme is very well
suited to this problem.

FDs9p 0.630
FDs11p 0.307
FDs13p 0.141

FDo9p 0.329
FDo11p 0.052
FDo13p 0.065

Table 6: Problem I. Errors enum using standard and
optimized FD s
hemes, no SF and RKo6s (�=0.2).

Se
ond, problem I is solved using the di�erent
standard and optimized sele
tive �lters, the FDo13p
s
heme, and the RKs6s algorithm with the same
small time step as previously. Filtering is applied at
every iteration with �d=0.2. The results 
al
ulated
with the optimized �lters are displayed in Figure 11
and 
ompared to the exa
t solution. The solution
with SFo9p is signi�
antly dissipated, but the ones
with SFo11p and SFo13p are not.

784 792 800 808 816
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−0.5
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1

x/∆x

u

Figure 11: Problem I. Æ exa
t solution; solutions using
FDo13p, RKo6s and: SFo9p, SFo11p,

SFo13p, (�d=0.2, �=0.2).

This is supported by the values of enum in Ta-
ble 7. Ex
ept for SFo9p, using optimized sele
tive
�lters instead of standard ones de
reases remarkably
the dissipation of the disturban
es involved in this
problem. Numeri
al errors with SFo13p 
an parti
-
ularly be attributed mainly to the spatial derivation.

SFs9p 0.533
SFs11p 0.303
SFs13p 0.168

SFo9p 0.580
SFo11p 0.114
SFo13p 0.077

Table 7: Problem I. Errors enum using standard and
optimized SF, FDo13p and RKo6s (�d=0.2, �=0.2).

Third, problem I is solved using the FDo13p s
he-
me, the SFo13p �lter, and the standard or opti-
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mized expli
it Runge-Kutta algorithms, with CFL
numbers of �=0.2, �=0.5 and �=1. Solutions for
�=1 are presented in Figure 12. They are distorted
and dissipated, highly with the RKs4s algorithm,
but slightly with RKo5s, whereas the solution found
with RKo6s is in agreement with the exa
t solution.
The errors enum are reported in Table 8. For �=0.2,
the three algorithms provide very good results, but
for �=0.5 and �=1, the RKo6s algorithm is quite
more a

urate than the two others.

784 792 800 808 816
−1

−0.5

0

0.5

1

x/∆x

u

Figure 12: Problem I. Æ exa
t solution; solutions using
FDo13p, SFo13p and: RKs4s, RKo5s,

RKo6s, (�d=0.2, �=1).

�=0.2 �=0.5 �=1
RKs4s 0.070 0.269 0.884
RKo5s 0.086 0.229 0.528
RKo6s 0.077 0.122 0.200

Table 8: Problem I. Errors enum using RK s
hemes for
di�erent CFL numbers, FDo13p and SFo13p (�d=0.2).

6.3 Problem II

Problem II is solved using the RKo6s algorithm
with �=0.8, and three �nite-di�eren
e s
heme/sele
-
tive �lter 
ombinations: FDo9p and SFo9p, FDo11p
and SFo11p, FDo13p and SFo13p. The solutions ob-
tained with the two last 
ombinations are shown in
Figure 13. The wave pa
ket is dispersed and dis-
sipated using the 11-point methods, but it is well

al
ulated using the 13-point methods. In the lat-
ter 
ase, the 
omputed solution is in phase with the
exa
t one, and is only very slightly dissipated. The
errors enum given in Table 9 support these observa-
tions, and also show that the 9-point methods are
not a

urate enough to resolve this problem involv-
ing wave numbers with k�x'�=2.

176 188 200 212 224
−1

−0.5

0

0.5

1

x/∆x

u

Figure 13: Problem II. Æ exa
t solution; solutions us-
ing RKo6s with: FDo11p and SFo11p,
FDo13p and SFo13p, (�d=0.2, �=0.8).

FDo9p + SFo9p 0.905
FDo11p + SFo11p 0.488
FDo13p + SFo13p 0.077

Table 9: Problem II. Errors enum using optimized FD
s
hemes and SF with RKo6s (�d=0.2, �=0.8).

7. Con
lusion

A family of expli
it methods in
luding �nite-di�e-
ren
e s
hemes for spatial derivation, low-storage Run-
ge-Kutta algorithms for time integration, sele
tive
�lters for eliminating grid-to-grid os
illations, and
test �lters, is proposed. The 
hara
teristi
s of these
methods are optimized by minimizing numeri
al er-
rors for the same range of wave numbers, so that
they 
an be asso
iated to form algorithms with spe
-
tral-like resolution. This is of importan
e with the
aim of performing with 
on�den
e 3-D 
omputa-
tions, where dependen
e of results on numeri
 s
he-
mes 
an hardly be investigated through parametri

studies. Analysis of dispersion and dissipation prop-
erties, evaluation of a

ura
y limits, and resolution
of test problems demonstrate the higher pre
ision of
the optimized methods for short waves with respe
t
to the standard expli
it ones. Numeri
al eÆ
ien
y
is also dis
ussed, and it is shown that for an identi-

al 
omputational 
ost, optimized methods provide
higher a

urate results. With this in view, the al-
gorithm using the 11-point sten
il �nite-di�eren
e
s
heme and sele
tive �lter, and the six-stage Runge-
Kutta s
heme, showing stability up to a CFL num-
ber �=1.98, appears espe
ially appropriate for 
om-
puting noise.
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Appendix A : Finite-di�eren
e s
hemes

CoeÆ
ients aj optimized for the s
hemes opti-
mized on 9, 11 and 13 points (a0=0, a�j=�aj):

FDo9p

a1 = 0.841570125482
a2 = -0.244678631765
a3 = 0.059463584768
a4 = -0.007650904064

FDo11p

a1 = 0.872756993962
a2 = -0.286511173973
a3 = 0.090320001280
a4 = -0.020779405824
a5 = 0.002484594688

FDo13p

a1 = 0.907646591371
a2 = -0.337048393268
a3 = 0.133442885327
a4 = -0.045246480208
a5 = 0.011169294114
a6 = -0.001456501759

Appendix B : Sele
tive �lters

CoeÆ
ients dj optimized for the �lters on 9, 11
and 13 points (d�j=dj):

SFo9p

d0 = 0.243527493120
d1 = -0.204788880640
d2 = 0.120007591680
d3 = -0.045211119360
d4 = 0.008228661760

SFo11p

d0 = 0.215044884112
d1 = -0.187772883589
d2 = 0.123755948787
d3 = -0.059227575576
d4 = 0.018721609157
d5 = -0.002999540835

SFo13p

d0 = 0.190899511506
d1 = -0.171503832236
d2 = 0.123632891797
d3 = -0.069975429105
d4 = 0.029662754736
d5 = -0.008520738659
d6 = 0.001254597714

Appendix C : Runge-Kutta algorithms

CoeÆ
ients 
j optimized for the 5 and 6 stage
algoritms:

RKo5s


1 = 1

2 = 0.5

3 = 0.165250353664

4 = 0.039372585984

5 = 0.007149096448

RKo6s


1 = 1

2 = 0.5

3 = 0.165919771368

4 = 0.040919732041

5 = 0.007555704391

6 = 0.000891421261

Appendix D : Test �lters

CoeÆ
ients dj optimized for the �lters on 11 and
15 points with k
�x = �=2 (d�j=dj):

TFo11p�=2

d0 = 0.5
d1 = -0.30399520
d2 = 0
d3 = 0.06880899
d4 = 0
d5 = -0.01481379

TFo15p�=2

d0 = 0.5
d1 = -0.30834723
d2 = 0
d3 = 0.07876835
d4 = 0
d5 = -0.02617123
d6 = 0
d7 = 0.00575011

CoeÆ
ients dj optimized for the �lters on 11 and
15 points with k
�x = �=3 (d�j=dj):

TFo11p�=3

d0 = 2/3
d1 = -0.26775782
d2 = -0.12016956
d3 = 0
d4 = 0.03683622
d5 = 0.01775782

TFo15p�=3

d0 = 2/3
d1 = -0.26598093
d2 = -0.12936060
d3 = 0
d4 = 0.04602726
d5 = 0.03212998
d6 = 0
d7 = -0.01614906
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