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A Note on Game Theory and Verification

Patricia Bouyer?

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, France

Abstract. We present some basics of game theory, focusing on matrix
games. We then present the model of multiplayer stochastic concurrent
games (with an underlying graph), which extends standard finite-state
models used in verification in a multiplayer and concurrent setting; we
explain why the basic theory cannot apply to that general model. We
then focus on a very simple setting, and explain and give intuitions for the
computation of Nash equilibria. We then give a number of undecidability
results, giving limits to the approach. Finally we describe the suspect
game construction, which (we believe) captures and explains well Nash
equilibria and allow to compute them in many cases.

1 Introduction

Multiplayer concurrent games over graphs allow to model rich interactions be-
tween players. Those games are played as follows. In a state, each player chooses
privately and independently an action, defining globally a move (one action per
player); the next state of the game is then defined as the successor (on the
graph) of the current state using that move; players continue playing from that
new state, and form a(n infinite) play. Each player then gets a reward given by
a payoff function (one function per player). In particular, objectives of the play-
ers may not be contradictory: those games are non-zero-sum games, contrary to
two-player games used for controller or reactive synthesis [31, 24].

Using solution concepts borrowed from game theory, one can describe the
interactions between the players, and in particular describe their rational be-
haviours. One of the most basic solution concepts is that of Nash equilibria [27].
A Nash equilibrium is a strategy profile where no player can improve her payoff
by unilaterally changing her strategy. The outcome of a Nash equilibrium can
therefore be seen as a rational behaviour of the system. While very much stud-
ied by game theoretists (e.g. over matrix games), such a concept (and variants
thereof) has been only rather recently studied over games on graphs. Probably
the first works in that direction are [17, 15, 32, 33].

Computing Nash equilibria requires to (i) find a good behaviour of the sys-
tem; (ii) detect deviations from that behaviour, and identify deviating players
(called deviators); (iii) punish them. Variants of Nash equilibria (like subgame-
perfect equilibria, robust equilibria, etc) require slightly different ingredients,
but they are mostly of a similar vein.
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In this note, we first recall some basics of game theory over matrix games.
Those games are not sufficient in a verification context: indeed, explicit states
are very useful when modelling systems or programs, but are missing in matrix
games. However stability notions like Nash equilibria or other solution concepts
borrowed from game theory, are very relevant. We thus present the model of
concurrent multiplayer games (played on graphs), which extends in a natural way
standard models used in verification with multiplayer interactions. We explain
how Nash equilibria can be characterized and computed in such general games.
The ambition of this note is not to be a full survey of existing results, but rather
to give simple explanations and intuitions; it gives formal tools to characterize
and compute them and should help understanding simple interactions like Nash
equilibria in rich games played on graphs.

Related notes are [31], which discussed the use of two-player zero-sum games
in verification, and [22], which discussed solution concepts in multiplayer turn-
based games on graphs.

Notations. If Σ is a finite alphabet, then Σ+ (resp. Σω) denotes the non-empty
finite words (resp. infinite words) over Σ. If Γ is a finite set, then we note D(Γ )
the set of probability distributions over Γ . We write R for the set of real numbers.

2 Basics of game theory

In this section we present basic notions from game theory, which will be useful
for our purpose. We refer the interested reader to the textbook [26].

A matrix game (aka game in strategic form) is a tuple G = (P , Σ, (payoffA)A∈P )
where P = {A1, . . . , Ak} is a finite set of players, Σ is a finite set of actions, and
for every A ∈ P , payoffA : ΣP → R is a payoff (or utility) function for player A.
In a deterministic setting, such a game is played as followed: independently and
simultaneously, each player selects an action, resulting in a move (an element of
ΣP ), and each player gets the payoff specified in the game for that move. In a
stochastic setting, each player selects a distribution over the actions, resulting
in a distribution over the set of moves and an expected value for the payoff.

A pure strategy for player A ∈ P is the choice of an action σA ∈ Σ, while a
mixed strategy for player A is a distribution σA ∈ D(Σ) over the set of possible
actions. Obviously, a pure strategy is a specific case of a mixed strategy where
only Dirac probability distributions can be used. We let σ = (σA)A∈P be a (pure
or mixed) strategy profile (that is, for every A ∈ P , σA is (pure or mixed) strategy
for player A). The probability of a move m = (aA)A∈P ∈ ΣP is written σ(m)
and defined by:

σ(m) =
∏
A∈P

σA(aA)

Then, given a player B ∈ P , the payoff of player B is given by the expected
value of payoffB under σ, that is:

Eσ(payoffB) =
∑
m∈ΣP

σ(m) · payoffB(m)



Example 1 (The prisoner’s dilemna). Two individuals have committed a crime
and are apprehended. The prosecution lacks sufficient evidence to convict the
two individuals on the principal charge, but they have enough to convict both
on a lesser charge. The prosecutors offer each prisoner a bargain: without any
communication between them, the two individuals are offered the opportunity
to Betray the other by testifying that the other committed the crime and get
(partly) immunity, or to stay Silent. The payoff of both players is summarized
in the table below, where the higher is the payoff the shorter is the jail penalty:

A2

S B

A
1 S 2, 2 0, 3

B 3, 0 1, 1

In each cell of the table, the pair ‘α1, α2’ represents payoff α1 (resp. α2) for player
A1 (resp. A2). The table can then be read as follows: if bother players stay Silent
(resp. Betray), then they both get payoff 2 (resp. 1). If only one prisoner Betrays,
then he gets payoff 3 while the other prisoner gets payoff 0.

Example 2. We consider the following game (taken from [26, Example 4.34])
with two players, where payoffs are given in the next table:

A2

L R

A
1 T 0, 0 2, 1

B 3, 2 1, 2

Note that in this game (and in several examples in the note), for more readability,
we take w.l.o.g. different alphabets for the players.

Example 3 (Matching penny game). The game is a two-player game, where each
player has two actions, a and b. This is a zero-sum game (that is, the sum of the
two payoffs in each situation is 0): the first player wins (payoff +1) if the two
chosen actions are matching, whereas the second player wins if the two actions
are different. The payoffs are summarized below:

A2

a b

A
1 a +1,−1 −1,+1

b −1,+1 +1,−1

The study of multiplayer games is to understand the rational behaviours of
the players, assumed to be selfish. For instance, if for a player A, one of her
strategy σA dominates another strategy σ′A (in the sense that for all strategies
of the other players, the payoff is larger using σA than using σ′A), then there is
no situation where player A should play σ′A.

This is for instance the case in the prisoner’s dilemna (Example 1), where
action B dominates action S. Hence, the only rational issue in this example is



that both players play action B, yielding a payoff of 1 for each. One realizes
however that it would be much better for them to both play S, but the threat
that the other betrays (plays action B) makes that solution unsafe.

In the game of Example 2, action R (weakly) dominates action L for player
A2 (in the sense, it is better than or equally good), hence playing R for player
A2 is safe; knowing that, player A1 will play action T; hence, a priori, the only
rational issue of this game should be the profile (T, R) with payoff (2, 1). However,
one also realizes that the profile (B, L) would be much better for both players,
so only looking at dominating strategies might be too restrictive.

Finally, there might be no dominating strategies in a game, like in the match-
ing penny game (Example 3), so other solution concepts have to be considered.

One of the most famous solution concepts for rationality is that of Nash
equilibrium [27]. Let σ be a strategy profile. If A ∈ P is a player, and σ′A is a
strategy for A (called a deviation), then σ[A/σ′A] is the strategy profile such that
A plays according to σ′A and each other player B ∈ P \ {A} plays according to
σB . Later, we write L−AM for the coalition of all the players except player A,
that is, L−AM = P \ {A}.

A mixed (resp. pure) Nash equilibrium in game G is a mixed (resp. pure)
strategy profile σ? = (σ?A)A∈P such that for every A ∈ P , for every player-A
mixed (resp. pure) strategy σA,

Eσ
?[A/σA](payoffA) ≤ Eσ

?

(payoffA)

Note that even for mixed profiles, it is sufficient to look for pure deviations
(if a mixed deviation improves the payoff, then so will do a pure deviation).
Let σ? be a strategy profile and σA be a deviation for player A such that
Eσ?[A/σA](payoffA) > Eσ?

(payoffA), then it is a profitable deviation for player
A w.r.t. σ?. If such a profitable deviation exists, then the profile is not a Nash
equilibrium.

Coming back to the prisoner’s dilemna (Example 1), the pair of pure domi-
nating strategies (B, B) is a pure Nash equilibria, whereas the pair (S, S), which
would yield a better payoff for both players, is not a Nash equilibrium.

In the matching penny game (Example 3), it is not difficult to check that
none of the pure strategy profiles can be a Nash equilibrium since in each case,
one of the players would benefit from switching to the other action. Also, one
can argue that there is a unique Nash equilibrium, where each player plays each
action uniformly at random, yielding an expected payoff of 0 for both.

Finally in Example 2, the two profiles (T, R) and (B, L) are the two Nash
equilibria of the game. So there might be several Nash equilibria in a game,
yielding possibly different payoffs.

A Nash equilibrium expresses a notion of stability. Indeed, it can be seen
that a Nash equilibrium σ = (σA)A∈P is such that each strategy σA is the best-
response to the strategies (σB)B∈L−AM of her adversaries. Formally, let S (resp.
SA, SL−AM) be the set of mixed strategy profiles (resp. strategies for player A,
strategies for coalition L−AM). For every σ ∈ S, let

BR(σ) =
{
σ′ ∈ S | ∀A ∈ P , σ′A ∈ argmaxσ′′A∈SAE

σ[A/σ′′A](payoffA)
}



be the set of best-response strategy profiles for σ. Then, σ is a Nash equilibrium
if and only if σ ∈ BR(σ).

We state now the famous Nash theorem [27], which is one of the important
milestones in the game theory domain.

Theorem 1 (Nash theorem). Every matrix game has a (Nash) equilibrium
in mixed strategies.

The original proof of Nash uses Brouwer’s fixed point theorem (see below).
However it can also be seen that it is a consequence of Kakutani’s fixed point
theorem (see below), by taking BR as function f (since the set mixed strategy
profiles can be seen as a convex subset of [0, 1]|P |·|Σ|).

Theorem 2 (Brouwer’s fixed point theorem). Let X ⊆ Rn be a convex,
compact and nonempty set. Then every continuous function f : X → X has a
fixed point.

Theorem 3 (Kakutani’s fixed point theorem). Let X be a non-empty,
compact and convex subset of Rn. Let f : X → 2X be a set-valued function
on X with a closed graph and the property that f(x) is non-empty and convex
for all x ∈ X. Then f has a fixed point.

As a final remark, let us define the minmax value of player A ∈ P as

vA = min
(σB)B∈L−AM∈SL−AM

max
σA∈SA

Eσ(payoffA)

where σ = (σB)B∈P . This is the best player A can achieve, when she does not
know how the other players will play. We will not discuss the minmax value,
the maxmin value and the value of a game, but we notice that for every Nash
equilibrium σ ∈ MP , Eσ(payoffA) ≥ vA (since otherwise the strategy giving the
minmax value will be a profitable deviation).

Conclusion. Game theory is a very rich field of research, of which we have
only given few hints on the basic concepts, which will be relevant for the use
in verification. We refer again to the textbook [26] for an entry point to this
research domain.

Matrix games represent a “one-shot” interaction between the players. In sys-
tem or program verification, players may represent components or controllers; it
is usually useful to allow models with states for such systems, and to consider
temporal behaviour of such systems. Hence the interaction is the result of a dy-
namic process, and not of a one-shot interaction like in matrix games. This is not
specific to verification, and towards that goal, more complex interactions have
been studied under the names of extensive-form games (games are then played
on a tree), or repeated games (a given matrix games is a large number of times).
There are many elegant results on these systems, but this note is not sufficient
for this purpose.



3 Multiplayer games on graphs in verification

Matrix games and extensions like repeated games are not adapted to study in-
teraction between players in a verification context. Indeed, to represent systems
or programs, it is very useful to have models with explicit states. We will there-
fore first present the model of games on graphs that we will consider, and then
argue why those games cannot be solved using the standard well-understood
theory that we have recalled. We will then give some results and ideas for the
computation of Nash equilibria in such games.

3.1 Definition of the general model and of the problems of interest

We consider the model of concurrent multi-player games, based on the two-player
model of [1], and extended with probabilities. The deterministic version of this
model was used for instance in [4].

Definition 1. A multiplayer stochastic concurrent game is a tuple

G = (V, vinit, P , Σ, δ, (payoffA)A∈P )

where V is a finite set of vertices, vinit ∈ V is the initial vertex, P is a finite
set of players, Σ is a finite set of actions, δ : V × ΣP → Dist(V ) associates,
with a given vertex and a given action tuple (called move) a distribution over
the possible target vertices, and for every A ∈ P , payoffA : V ω → R is a payoff
function.

We later write v
m−→ v′ whenever δ(v,m)(v′) > 0.

As before, we assume an explicit order on P = {A1, . . . , Ak}. Also, given
a player A ∈ P , we write L−AM for the coalition P \ {A}. An element m =
(mA)A∈P ∈ ΣP is called a move, and we may write it as (mA1

, . . . ,mAk
). If

m ∈ ΣP and A ∈ P , we write m(A) for the A-component of m and mL−AM
for all but the A components of m. In particular, we write m(−A) = m′(−A)
whenever m(B) = m′(B) for every B ∈ L−AM. Also, if m ∈ ΣP , B ∈ P and
a ∈ Σ, then m[B/a] denotes the move m′ such that m′(−B) = m(−B) and
m(B) = a.

A history π in G is a finite non-empty sequence v0v1 . . . vh ∈ V + such that
for every 1 ≤ i ≤ h, there is mi ∈ ΣP with vi−1

mi−−→ vi. We write last(π) for the
last vertex of π (i.e., vh). If i ≤ h, we also write π≤i for the prefix v0v1 . . . vi. We
write Hist(v0) for the set of histories in G that start at v0. Notice that histories
do not record moves used along a history.

We extend above notions to infinite sequences in a straightforward way and
to the notion of play. We write Plays(v0) for the set of full plays that start at v0.

Let A ∈ P be a player. A randomized (or mixed) strategy1 for player A from
v0 is a mapping σA : Hist(v0)→ Dist(Σ). An outcome of σA is a(n infinite) play

1 This is the terminology used in the verification community, which might nevertheless
be confusing with that used in the game theory community.



ρ = v0v1 . . . such that for every i ≥ 0, writing mi(A) = σA(ρ≤i), vi
mi−−→ vi+1. We

write out(σA, v0) for the set of outcomes of σA from v0. A pure (or deterministic)
strategy for player A is a mixed strategy σA such that for every history h, σA(h) is
a Dirac probability measure (that is, it associates to some vertex v a probability
1, and to other vertices a probability 0).

A mixed (resp. pure) strategy profile is a tuple σ = (σA)A∈P , where, for
every player A ∈ P , σA is a mixed (resp. pure) strategy for player A. We write
out(σ, v0) for the set of plays from v0, which are outcomes of all strategies part
of σ. Note that if σ is pure, then out(σ, v0) has a single element, hence we may
abusively speak of the outcome out(σ, v0).

Note that strategies, as defined above, can only observe the sequence of vis-
ited states along the history, but they may not depend on the exact distributions
chosen by the players along the history, nor on the actual sequence of actions
played by the players. Notice that this model is more general than the model
where actions are visible, which are sometimes considered in the literature—see
for instance [33] and [3, Section 6] or [14] for discussions—and the results pre-
sented here are valid (though actually simpler) when considering visible actions.

When σ is a strategy profile and σ′A a player-A strategy, we write σ[A/σ′A]
for the strategy profile where A plays according to σ′A, and each other player
B plays according to σB . The strategy σ′A is a deviation of player A, or an
A-deviation.

Once a strategy profile σ = (σA)A∈P is fixed, for every v0 ∈ V it standardly
induces a probability measure Pσv0 over the set of plays from v0 in the game G,
by defining probability of cylinders as described below, and by extending it in
a unique way to the generated σ-algebra. For every history π = v0v1 . . . vh ∈
Hist(v0), we let Cyl(π) = {ρ ∈ Plays(v0) | π is a prefix of ρ} and we define

Pσv0
(

Cyl(v0)
)

= 1, and then inductively

Pσv0
(

Cyl(πvh+1)
)

= Pσv0
(

Cyl(π)
)
·


∑
m∈ΣP

vh
m−→vh+1

σ(π)(m) · δ(vh,m)(vh+1)


where σ(π)(m) =

∏
A∈P σA(π)(mA) is the probability that move m is selected

by strategy profile σ.
Let f be a measurable function in the σ-algebra generated by the cylinders

above. Then we define its expected value w.r.t. Pσv0 in a standard way, and denote
it Eσv0(f). We will therefore assume that payoff functions payoffA (A ∈ P ) are all
measurable!

The notion of Nash equilibrium that we have defined on matrix games extends
naturally to games over graphs.

Definition 2. A Nash equilibrium from vinit is a strategy profile σ? such that
for every A ∈ P , for every player-A deviation σA,

Eσ
?[A/σA]
vinit (payoffA) ≤ Eσ

?

vinit(payoffA)



Note that if σ is a pure profile, then Eσvinit(payoffA) = payoffA(out(σ, vinit)). Also
in this case, out(σ, vinit) is called the main outcome of equilibrium defined by σ.

As in matrix games, given a profile σ?, a deviation σA for player A such that

Eσ
?[A/σA]
vinit (payoffA) > Eσ?

vinit(payoffA) is called a profitable deviation for player A.

Payoff functions. A property φ over V ω is said prefix-independent whenever for
every ρ, ρ |= φ if and only if for every suffix ρ′ of ρ, ρ′ |= φ.

We say that a payoff function payoff : V ω → R is given by a Boolean property
φ over V ω whenever payoff(ρ) = 1 if ρ |= φ, and payoff(ρ) = 0 if ρ 6|= φ. Usually,
φ will be some specific types of properties, like reachability, safety. We then
abusively say payoff is a reachability (resp. safety, . . . ) objective. In a stochastic
game, the expected value of such a payoff function is the probability to satisfy
the property φ.

A payoff function payoff over V ω is said terminal-reward if there is some
designed subset Ṽ ⊆ V such that all vertices of Ṽ are sinks in the graph of the
game, and a function w : Ṽ → R such that for every ρ ∈ V ω, payoff(ρ) = w(ṽ)

if ρ visits vertex ṽ ∈ Ṽ (which is unique if it exists since it is a sink), and
payoff(ρ) = 0 otherwise. A particular case is when the image of w is included in
{0, 1}, in which case we speak of terminal-reachability.

Subclasses of games. We use the following subclasses of games. Game G is said:

– turn-based whenever there is a function J : V → P such that for every v ∈ V ,
for every m,m′ ∈ ΣP , m(J(v)) = m′(J(v)) implies δ(v,m) = δ(v,m′);

– deterministic whenever for every v ∈ V and m ∈ ΣP , δ(v,m) is a Dirac
probability measure on some vertex.

The existence and the constrained existence problems. For verification purposes,
even if the existence of a Nash equilibrium might be interesting (due to the link
with a stability property), we will also be interested in the constrained existence
problem, and in the computability of Nash equilibria when they exist.

The constrained existence problem asks, given a stochastic multiplayer con-
current game G = (V, vinit, P , Σ, δ, (payoffA)A∈P ) and a predicate P over R|P |,
whether there exists a Nash equilibrium σ such that

(
Eσv0(payoffA)

)
A∈P

∈ P .

Of course, for computability matters, predicates should not be too complicated,
but one might think of lower bounds on the expected payoffs, or constraints on
the social welfare (that is, the sum of the payoffs of all the players), etc. The
existence problem is just the same problem when the predicate is RP .

We add “pure” to the name of the problem if we restrict to pure strategy
profiles.

Example 4 (Hide-or-run game). We consider the hide-or-run game represented
on Figure 1 (left). There are three vertices and two players A1 and A2. The
actions for player A1 are shoot (the snowball) and wait while the actions for
player A2 are hide and run. Strings sh, wr, wh and sr represent all possible
moves in the game. In vertex v0, if player A1 plays action s and player A2



v0 1, 1

v10, 2 v2 2, 0
sh
, w
r sr

wh

v0

0, 2 2, 0

sh
, w
r sr

wh

Fig. 1. Hide-or-run game, on the left; and one of its variants, on the right (black
squared states indicate payoffs of the two players if the game ends there).

plays action h, then the game proceeds to vertex v1. Actions from v1 and v2
are irrelevant hence omitted in the figure. Pairs of numbers close to each vertex
represents a weight for each player. The payoff function for each player will be
the mean-payoff along the play of all encountered weights.

In this game, player A1 wants to hit player A2 with a (single) snowball.
Player A1 can therefore either shoot the ball or wait, while Player A2 can hide
(in which case she is not hit by the snowball) or run (in which case she is hit
by the snowball if it is shot at the same time. Payoffs are assigned according
to the satisfaction of the two players (payoff 2 when the player is satisfied and
0 otherwise). Note that the pair wh forever is only half-satisfactory for both
players, hence a payoff of (1, 1).

One realizes that there is no Nash equilibrium in the hide-or-run game: in-
deed, if the probability of playing wh forever from v0 (resp. of playing sr from
v0) is positive, then player A2 can deviate and get a better payoff; conversely, if
the probability of playing wr (resp. sh) from v0 is positive, then player A1 can
deviate and get a better payoff.

The game of Figure 1 (on the right) is a slight modification of the previous
game, with a terminal-reachability payoff: if the game ends up in the bottom-left
vertex (formerly v1), then the payoff is (0, 2), while it is (2, 0) if the game ends
up in the bottom-right vertex of the game (formerly v2). It is very similar to
the first game, the only difference is that playing wh forever yields a payoff of
(0, 0) instead of (1, 1) previously. This slight modification yields a pure Nash
equilibrium in the game, which is to play sh from v0.

3.2 Why does the standard theory not apply?

While matrix games are obviously special cases of our general model, one may
nevertheless wonder why the standard theorems would not apply in this general
model. We first realize that Nash theorem (stated as Theorem 1) does not apply:
there are indeed potentially infinitely many pure strategies.

As we mentioned earlier, the proof of Nash theorem can be seen as a direct
application of Kakutani’s fixed point theorem (recalled as Theorem 3), which



is in a much more general setting than its application to Nash theorem. We
explain how this theorem can apply in some cases, but why it does not apply
in our precise setting. A stationary strategy σ is a mixed strategy such that for
every h, h′ ∈ Hist(v0), last(h) = last(h′) implies σ(h) = σ(h′). Such a strategy
can therefore be viewed as an element RN for some integer N (one value for each
triple (v, a,Ai) ∈ V × Σ × P ). The subspace X of RN of stationary strategies
satisfies the hypotheses of the theorem. As we have already discussed in matrix
games, a Nash equilibrium σ is such that each of its components is a best response
to the other strategies. When restricted to stationary strategies, the best-response
function can be defined as (we keep the same notations S and SA):

BR(σ) =
{
σ′ ∈ S | ∀A ∈ P , σ′A ∈ argmaxσ′′A∈SAE

σ[A/σ′′A]
v0 (payoffA)

}
Nevertheless, over game graphs, continuity of this best-response function is not
ensured (hence the graph of BR is not closed). Let us consider for example
game of Figure 2 (borrowed from [6]). It is assumed to be turn-based (vertex vi
belongs to player Ai): from vi, player Ai can easer continue or leave the game.
A stationary strategy profile σ can be stored as a pair (σA1

(v1)(l), σA2
(v2)(l)) ∈

[0, 1]2, where the first (resp. second) element is the probability that player A1

(resp. A2) leaves the game from v1 (resp. v2). If one player decides to leave the
game with some positive probability, the other player has all incentive to purely
continue the game, until eventually reaching the terminal state (with probability
1). Hence BR((x, y)) = {(0, 0)} for every x, y > 0. However, if one player purely
continues the game, the only way to win some positive payoff 1

3 is to leave
the game with positive probability. Hence BR((0, 0)) = {(x, y) | x, y > 0}. We
conclude that the graph is not closed, so Theorem 3 cannot be applied to the
classical BR function. We finally notice that any profile (x, 0) with x > 0, or
(0, y) with y > 0, is a Nash equilibrium.

v1

A1

v2

A2

1
3
, 1 1, 1

3

l l

c

c

Fig. 2. Turn-based game with terminal rewards (black squared states indicate payoffs
of the two players if the game ends there) showing the non-applicability of Kakutani’s
theorem; the first player who leaves the loop with some positive probability loses.

Though this theorem does not apply in our general context, it can be used
in others, for instance for stay-in-a-set games [29], for Nash equilibria with dis-
counted payoffs or ε-Nash equilibria [16].



3.3 Discussion on a simple scenario

Let us focus on a simple scenario first. We fix for the rest of this subsection a
game G = (V, vinit, P , Σ, δ, (payoffA)A∈P ) which satisfies the following (restricting)
assumptions:

– the game is turn-based and deterministic;
– for every A ∈ P , the payoff function payoffA is given by a Boolean prefix-

independent objective φA;

We note (†) the hypotheses of this simple scenario.
For every A ∈ P , we let G[A] be the two-player zero-sum game built on

the same arena as G, where A plays against coalition L−AM (more precisely, all
vertices which previously belang to some B ∈ P \{A} now belongs to L−AM, and
all vertices which previously belang to A still belongs to A); the payoff function
for A is payoffA, while the payoff function for L−AM is −payoffA (here, in our
simple setting, the objective of player A is φA while the objective of L−AM is
¬φA). Let WL−AM (resp. WA) be the set of winning states for coalition L−AM
(resp. player A) in this game. Since this game is turn-based and the objectives
are prefix-independent, the game will be determined, that is, either A has a
winning strategy, or the coalition L−AM has a winning strategy (that is, for every
vertex v ∈ V , either v ∈ WA or v ∈ WL−AM). Furthermore, for large classes of
objectives, the set WL−AM (or WA) can be computed. We report here to the whole
literature on the subject, see [21] for an entry point.

One can then characterize pure Nash equilibria by the formula:

ΦNE =
∧
A∈P

(
¬φA ⇒ GWL−AM

)
borrowing notations from the syntax of LTL [28]: that is, ΦNE holds along a play
ρ whenever for every A ∈ P , either φA holds along the outcome or A cannot
enforce winning anywhere along the play (or equivalently, L−AM can enforce ¬φA
in G[A]). Note that the same formula can be used for reachability objectives but
that a slightly different one has to be used for safety objectives.

One can show:

Proposition 1. Assume setting (†). Let ρ ∈ Plays(vinit). Then, ρ |= ΦNE if and
only if there is a Nash equilibrium σ from vinit such that out(σ, vinit) = ρ.

Proof (Sketch). Indeed, pick a play ρ ∈ Plays(vinit), and assume that ρ |= ΦNE.
Consider a player A ∈ P . Such a player may have some interest in deviating only
if her objective φA is not already satisfied by ρ. In that case, she has a profitable
deviation after some prefix π of ρ if she is able to ensure winning after π. In
particular, if no winning state of A is visited along ρ, then ρ can be completed
into a Nash equilibrium as follows:

– all players play along ρ;



– as soon as a player deviates from ρ, then the coalition L−AM = P \{A} starts
playing a counter-strategy to A. Such a strategy is sometimes called a threat
or a trigger strategy.

Conversely assume there is a Nash equilibrium σ from vinit such that out(σ, vinit) =
ρ. Pick a player A ∈ P such that ρ 6|= φA. Then, since σ is a Nash equilibrium,
from every visited vertex v along ρ, A cannot enforce her objective φA, which
means that v /∈WA, hence v ∈WL−AM. Hence ρ |= ΦNE. ut

The situation is illustrated on Figure 3. Note that by determinacy, “Player A1

should lose” can be replaced by “Coalition {A2, A3} prevents A1 from winning”.

φA: objective of player A

. . .
Player A1 loses along that play

Player A1

should lose
i.e.

Coalition {A2, A3}
prevents A1 from winning

Fig. 3. General shape of a Nash equilibrium in the simple setting (example with three
players).

In this simple setting we can also prove the following existence result:

Proposition 2. Assume setting (†). There always exists a pure Nash equilib-
rium from vinit.

Proof (Sketch). In this simple setting, in two-player zero-sum games, there
always exists strongly optimal strategies [20], that is, one strategy for each of
the two players, say σ and τ , such that each of the two strategies is optimal
(for the corresponding player) after any compatible prefix. For every A ∈ P ,
we apply this result to each of the games G[A] from vinit, and write σA for the
corresponding strongly optimal strategy for player A in G[A].

We argue why the main outcome ρ of σ = (σA)A∈P satisfies formula ΦNE.
Assume that ρ 6|= φA. Towards a contradiction assume that one of the visited
vertices, say v after prefix π, along ρ, does not belong to WL−AM. By the strong
determinacy result mentioned at the beginning of the proof, it implies that vertex
v belongs to WA. Since σA is strongly optimal, it is also optimal after prefix π:
hence it is winning after prefix π. In particular, since φA is prefix-independent,
ρ should be winning as well. Contradiction: ρ |= ΦNE. ut

Algorithmics issues. By combining the proof of Propositions 1 and 2, one can
compute a pure Nash equilibrium from strongly optimal and trigger strategies.



Another solution consists in computing for every A ∈ P the set WL−AM (or
equivalently WA), and to compute an infinite path in the game which satisfies
formula ΦNE (which can be done for instance by enumerating the possible set of
losing players, and then finding an adequate ultimately periodic play). Obviously,
for specific winning conditions, more efficient algorithms can be designed, but
this is not the aim of this note. We report e.g. to [34, 4] for more algorithms.

3.4 Back to stochastic concurrent games

By a non-trivial extension of the discussion of Subsection 3.3 (see [36, Section
3] for details), one can show the following existence result:

Theorem 4. There exists a pure Nash equilibrium in any multiplayer stochas-
tic turn-based game with prefix-independent winning objectives (which we can
compute). This also holds in the same setting for any ω-regular objectives. [36,
Section 3]

This result in particular applies to mean-payoff objectives, which are prefix-
independent.

Why are we not fully happy with such a result?

– one would like to go from turn-based to concurrent games;
– one would like more general payoff functions;
– one would like to solve the constrained existence problem.

It turns out that those extensions are very intricate, and that we can give a
list of (related but incomparable) undecidability results.

Theorem 5. The following problems are all undecidable:

1. the constrained2 existence problem for stochastic multiplayer turn-based
games with terminal-reachability objectives. This is true even if we restrict
to pure strategy profiles. [36, Section 4]

2. the constrained existence problem for deterministic multiplayer turn-
based games with terminal-reward payoffs. [35, Section 7]

3. the constrained existence problem for deterministic three-player con-
current games with terminal-reachability payoffs.3 [5]

4. the existence problem for deterministic three-player concurrent games
with terminal-reward payoffs. [5]

5. the constrained existence problem for deterministic three-player con-
current games with safety objectives.4 [5]

2 In the proof, we only impose that a player wins almost-surely.
3 This holds even with a constraint on the social welfare. This result has therefore

to be compared with the result of [19], which states that the existence problem is
NP-complete in two-player games.

4 This result has to be compared with the result of [29], which states that there always
exists a Nash equilibrium in a safety game.



3.5 The suspect-game construction [4]

The setting we have chosen here assumes actions are invisible (since only visited
vertices are visible along histories). Hence, a deviation from the main outcome
can only be detected when the play goes out of the main outcome of the Nash
equilibrium. However, even if a deviation occurs, there can be uncertainties for
some of the players concerning the identity of the deviator.

Consider for instance the game in Figure 4, with three players. Assume that
the main outcome goes through v0

aaa−−→ v1.

– If the game proceeds to vertex v2 instead of v1, it means that either player
A1 deviated alone (playing b instead of a), or both players A1 and A2 played
b instead of a; the second case cannot occur since Nash equilibria only care
of single-player deviations; hence only player A1 can be the deviator, and all
players will therefore know the identity of the deviator.

– If the game proceeds to vertex v3, then there are two possible suspects
amongst the players: either A2 or A3 can be the deviator. In both cases,
the two players A2 and A3 will know the identity of the deviator, while
player A1 will not know it.

This knowledge about the possible deviators is represented via a suspect function
defined as follows:

– susp
(
(v0, v2), aaa

)
= {A1}

– susp
(
(v0, v3), aaa

)
= {A2, A3}

with the meaning that, starting from v0, if the game proceeds to v2 (resp. v3),
then only A1 (resp. A2 and A3) are suspect for the deviation.

v0

v1

v2

v3

aaa

baa

bba

aba

aab

· · ·

· · ·

· · ·

Fig. 4. Several suspect players.

More generally, we consider a game G = (V, vinit, P , Σ, δ, (payoffA)A∈P ), and
we define the function susp : V 2 ×ΣP → 2P as follows:

susp
(
(v0, v),m

)
= {A ∈ P | ∃b ∈ Σ s.t. v0

m[A/b]−−−−→ v}

Note that in the case no deviation occurred, that is if v0
m−→ v, then the set of

suspects is the set of all the players; this is because the set of suspect players
becomes only relevant after a deviation has occurred.



The suspect game is now defined as the two-player5 turn-based game SG =
(SEve, SAdam, sinit, Γ, E, (payoff′A)A∈P ) where:

– SEve = V × 2P is the set of states belonging to Eve;
– SAdam = SEve ×ΣP is the set of states belonging to Adam;
– sinit = (vinit, P ) is the initial state;
– Γ = ΣP ∪ V is the new alphabet;
– the set of edges is

E = {(v, susp)
m−→ ((v, susp),m) | v ∈ V, susp ⊆ P , m ∈ ΣP}∪

{((v, susp),m)
v′−→ (v′, susp∩susp

(
(v, v′),m)

)
| ∃A ∈ P ∃b ∈ Σ s.t. v

m[A/b]−−−−→ v′};

– if ρ = (v0, susp0)(v0, susp0,m1)(v1, susp1) . . ., for every A ∈ P , payoff′A(ρ) =
payoffA(v0v1 . . .).

Given a play ρ = (v0, susp0)(v0, susp0,m1)(v1, susp1) . . ., we define the set of
suspect players for ρ as susp(ρ) =

⋂
i≥0 suspi (this limit is well-defined).

The winning condition for Eve is rather non-standard, since it is a condition
on the set of outcomes of Eve, not on each outcome of the strategy individually.
A strategy ζ for Eve in SG is winning for some α ∈ RP if the unique outcome of
ζ where Adam complies to Eve6 has payoff α, and for every other outcome ρ of
ζ, for every A ∈ susp(ρ), payoffA(ρ) ≤ αA.

Example 5. We consider again the small (part of) game depicted on Figure 4 (all
missing moves in the figure lead to v1). The corresponding part of the suspect
game is given in Figure 5.

The role of Eve is to search for an equilibrium by suggesting moves to the
players, and the role of Adam is to check whether there are possible profitable
deviations. In particular, winning strategies of Eve in the suspect game will
coincide with Nash equilibria in the original game:

Proposition 3 (Correctness). Let α ∈ RP . There is a Nash equilibrium in G
with payoff α from vinit if and only if Eve has a winning strategy for α in SG
from sinit.

Remark 1. Assume we start with a turn-based game. Then, since the arena of
the game is known by the players, as soon as some deviation occurs, then all
players will know which player is responsible for the deviation (since this is the
player who controls the vertex at which the deviation occurred). In this case,
the set of suspects will immediately be a singleton. The winning condition then
ensures that, from a vertex controlled by player Ai, if a deviation occurs, then
Eve plays an optimal strategy for the coalition L−AiM = P \ {Ai}. We somehow
recover the intuitive explanation we gave in Subsection 3.3.

Also, assume that actions are visible, then similarly, as soon as there is a
deviation, the identity of the deviator is known by all the players.

5 We call the two players Eve and Adam.
6 That is, from (v, susp,m), Adam chooses to go to (v′, susp) where v

m−→ v′.



v0
{A1, A2, A3}

v0
{A1, A2, A3}

aaa

v1
{A1, A2, A3}

v2
{A1}

v3
{A2, A3}

aaa v1

v2

v3

v0
{A1, A2, A3}

baa

v2
{A1, A2, A3}

v1
{A1, A3}

baa v2

v1

...

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 5. Illustration of the suspect game construction (states in light colors are Eve’s
states while states in dark colors are Adam’s states).

Algorithmics issues. Using the above construction, it is sufficient to solve the
suspect game to compute Nash equilibria, since the equivalence of Proposition 3
is constructive. However, the winning condition is non-standard. In [4], many
algorithms are designed for specific payoff functions. Complexities obviously de-
pend on the (discrete) payoff functions which are used.

As an illustration, let us look at Figure 6, where each player A has a Boolean
objective φA. We assume players A1 and A2 are losing along a play. Then if this
play is the main outcome of a Nash equilibrium, it should be the case that from
v, A3 is able to punish both players (with the help of A1 if A2 is the deviator, and
with the help of A2 in case A1 is the deviator); from v′, it is known by everyone
that A1 is the deviator, hence the coalition of both A2 and A3 should be able to
punish A1 from there. Algorithmically, it is therefore sufficient to compute states
(v, {Ai}) which are winning for ¬φAi for the coalition L−AiM) (or equivalently
Adam); and then (in a bottom-up manner) states (v, {Ai | i ∈ I}) which are
winning for Adam for objective

∧
i∈I
(
Ai suspect at the limit⇒ ¬φAi

)
.

In [35, Section 6], an algorithm for mean-payoff functions is designed (in
a setting where actions are visible), which consists in computing values of the
various two-player mean-payoff games (A against L−AM) in each vertex, and then
to find a lasso satisfying a given constraint on the payoff.



φA: objective of player A

v0
P
m

Players A1,A2 lose along that play

v
{A1, A2}

v
A3 does not know whether
A1 or A2 deviated; he should
try to punish both
(if A1 deviated, A2 will help A3,
and conversely if A2 deviated)

everyone knows A1 deviated;
A2 and A3 will try to punish A1

v′

{A1}

Fig. 6. Overview on the suspect-game construction.

4 Discussion

In this note, we have presented some basics of game theory over matrix games,
and discussed how concepts from game theory can be studied in the context
of models used in verification. We have discussed in particular a general con-
struction that can be made to compute Nash equilibria in games on graphs, and
which gives some general understanding of how interaction between players can
be understood. This construction has been refined in several respects (for other
solution concepts [9, 18], in some partial information contexts [2, 7]), and might
be useful in some more contexts.

Even though there are some known existence results (we have mentioned
some of them in Subsection 3.4), for simple payoff functions like terminal reach-
ability payoffs. A related discussion can be found in [23].

In this note, we have not discussed temporal logics for multi-agent systems,
even though this is a very rich domain of research (see [25] for some pointers). We
have also not discussed domination and admissibility (see [10] among others), nor
subgame-perfect equilibria, which have nevertheless been much studied (among
others, see [34, 12, 13, 11]).

Acknowledgments. I would like to thank all my co-authors since I started work-
ing on multiplayer games played on graphs, that is, Nicolas Markey, Romain
Brenguier [8], Daniel Stan [30], Michael Ummels and Nathan Thomasset.
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libria in stochastic games. In Proc. 18th International Workshop on Computer
Science Logic (CSL’04), volume 3210 of Lecture Notes in Computer Science, pages
26–40. Springer, 2004.

17. Krishnendu Chatterjee, Rupak Majumdar, and Marcin Jurdziński. On Nash equi-
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