
A Distribution of mutation effects on fitness

In the two environments, mutations occur at rate U and create independent and iden-

tically distributed (iid) random variations dx around the phenotype of the parent, for

each trait. We assumed here a standard Gaussian distribution of the mutation pheno-

typic effects (Kimura, 1965; Lande, 1980): dx ∼ N (0, λIn), where λ is the mutational

variance at each trait, and In is the identity matrix in n dimensions. These assumptions

induce a distribution of the mutation effects on fitness, given the relative fitness mp ≤ 0

of the parent. This distribution has stochastic representation (Martin, 2014)

s ∼ − mp −
λ

2
χ2
n (− 2 mp/λ) ,

where χ2
n (− 2 mp/λ) denotes the noncentral chi-square distribution with n degrees of

freedom and noncentrality −2 mp/λ. This distribution is detailed elsewhere (reviewed

in Tenaillon, 2014), its mean is E[s] = −n λ/2. Alternatively, it can be characterized

by its moment generating function:

E[es z|mp] = M∗(z) eω(z)mp , (A1)

with

M∗(z) =
1

(1 + λ z)n/2
and ω(z) =

−λ z2

1 + λ z
. (A2)
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B Fitness distribution of the migrants: derivation

of formula (3)

Consider an individual with phenotype x. Its fitness in the source is

msource = −‖x− x?‖2/2,

where x? is the optimal phenotype in the source, whereas its fitness in the sink is

mmigr = −‖x‖2/2. We observe that

mmigr = − ‖x− x? + x?‖2

2

= − ‖x− x?‖2 + ‖x?‖2 + 2(x− x?) · x?

2

= msource −
‖x?‖2

2
− ‖x− x?‖ ‖x?‖u

= msource −mD − 2
√
mD|msource|u, (A3)

with mD = ‖x?‖2/2 and a constant u ∈ [−1, 1]. As the source is assumed to be at

the mutation-selection equilibrium, the distribution of fitness in the source satisfies

msource ∼ −Γ(n/2, µ) (Martin and Roques, 2016, equation (10)) and the corresponding

moment generating function is Mmsource(z) = (1 + µz)−n/2. The results in (Martin and

Lenormand, 2015) show that u is a random variable with moment generating function:

Mu(z) := E[euz] = 0F1(n/2, z
2/4),

with 0F1 the hypergeometric function, defined by 0F1(θ, z) =
∑∞

k=0
1

θ(θ+1)···(θ+k−1)
zk

k!
.

Let us first compute the moment generating function Mmigr(z) := E[emmigrz]. We have

Mmigr(z) = E[E[emmigrz|msource]],

and using (A3),

Mmigr(z) = E
[
emsourcezMu

(
−2
√
mD|msource|z

)]
e−mDz

= E
[
emsourcez 0F1

(
n/2, −mDmsourcez

2
)]
e−mDz.

Thanks to the definition of the hypergeometric function 0F1(n/2, z), we get:

Mmigr(z) =
∞∑
k=0

(−mD)k

n/2(n/2 + 1) · · · (n/2 + k − 1)

z2k

k!
E[emsourcezmk

source]e
−mDz

=
∞∑
k=0

(−mD)k

n/2(n/2 + 1) · · · (n/2 + k − 1)

z2k

k!
M (k)

msource(z)e−mDz,
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with M
(k)
msource(z) the kth derivative of Mmsource(z) with respect to z. Thus,

Mmigr(z) =
∞∑
k=0

1

k!

(
mDµz

2

1 + µz

)k
(1 + µz)−n/2e−mDz

=
1

(1 + µz)n/2
· exp

[
−mDz +

mDµz
2

1 + µz

]
.

Setting φ(z) = ln (Mmigr(z)) , we obtain formula (3).

Let us now show give the distribution of the migrants in the sink. Let pmigr be

defined by:

pmigr(m) =

 1
µ

(
|m|
mD

) 1
2(n2−1)

e
m−mD

µ In
2
−1

[
2
√
mD|m|
µ

]
, if m < 0

0, if m ≥ 0

, (A4)

where Iν is the modified Bessel function of the first kind. We just have to check that

the moment generating function of pmigr is Mmigr:∫ 0

−∞
ezxpmigr(x)dx =

∫ 0

−∞
ezx

1

µ

(
|x|
mD

)n/2−1
2

e
x−mD
µ In

2
−1

[
2
√
mD|x|
µ

]
dx

= e−mD/µ
∫ 0

−∞

∞∑
p=0

e(z+1/µ)x mp
D

µ2p+n/2
· 1

p!
· |x|

p+n/2−1

Γ(p+ n/2)
dx

= e−mD/µ
∞∑
p=0

mp
D

µ2p+n/2
· 1

p!
· 1

Γ(p+ n/2)

∫ 0

−∞
e(z+1/µ)x|x|p+n/2−1dx,

where Iν is the modified Bessel function of the first kind and Γ the gamma function.

Now, for all positive numbers a and b, we have:∫ 0

−∞
eax|x|b−1dx =

1

ab

∫ ∞
0

e−x|x|b−1dx =
Γ(b)

ab
.

Therefore, we get, for z > −1/µ:∫ 0

−∞
ezxpmigr(x)dx = e−mD/µ

∞∑
p=0

mp
D

µ2p+n/2
· 1

p!
· 1

Γ(p+ n/2)

Γ(p+ n/2)

(z + 1/µ)p+n/2

=
e−mD/µ

(1 + µz)n/2

∞∑
p=0

(
mD/µ

1 + µz

)p
· 1

p!

=
e−mD/µ

(1 + µz)n/2
exp

(
mD/µ

1 + µz

)
=

1

(1 + µz)n/2
exp

(
− mDz

1 + µz

)
.

This is consistent with formula (3), which proves that the for pmigr is correct.
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C PDE satisfied by the CGF of the fitness distri-

bution

In the WSSM regime, and in the absence of immigration, Martin and Roques (2016)

(see Appendix E, equation (E5)) have shown that the CGF of the fitness distribution

satisfies the following equation:

∂tCt(z) = ∂zCt(z)− ∂zCt(0)− µ2
(
z2 ∂zCt(z) +

n

2
z
)
, z ≥ 0.

We derive here the additional term in (6), which describes the effect of immigration on

the CGF.

In that respect, we consider a discrete population of size N(t) ∈ N at time t, and

the corresponding fitnesses (m1(t), . . . ,mN(t)(t)). We define the “empirical” moment

generating function

Mt(z) :=
1

N(t)

N(t)∑
i=1

emi(t) z.

Assuming a Poisson number of immigration events, with rate d per unit time (see

Section 2.5), for ∆t small enough, the probability that a single immigration events

occurs during (t, t+∆t) is approximately d∆t. The probability that several immigration

events occur during this time interval is close to 0. Therefore, the expected change in

the moment generating function during ∆t, conditionally on the fitness mmigr of the

unique migrant, is:

∆Mt(z|mmigr) = d ∆t

 1

N(t) + 1

N(t)∑
i=1

emi(t) z + emmigr z

− 1

N(t)

N(t)∑
i=1

emi(t) z


= d ∆t

[
emmigr z

N(t) + 1
− Mt(z)

N(t) + 1

]
.

Taking expectation over the distribution of mmigr (see Appendix B for more details on

the distribution of mmigr), we get

∆Mt(z) =
d ∆t

N(t) + 1

(
eφ(z) −Mt(z)

)
,

with φ(z) = ln (E [emmigr z]) . The corresponding change in the CGF Ct(z) = lnMt(z)

is ∆Ct(z) ≈ ∆Mt(z)/Mt(z). Thus,

∆Ct(z) ≈ d ∆t

N(t)

(
eφ(z)−Ct(z) − 1

)
.
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Finally, dividing the above expression by ∆t and passing to the limit ∆t→ 0, we obtain

the last term in (6), which describes the effect of immigration on the CGF:

d

N(t)

(
eφ(z)−Ct(z) − 1

)
. (A5)
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D Solution of the system (1) & (6)

This section is devoted to the mathematical study of the system (1) & (6). We rewrite

it in the following form:
∂tCt(z) = α(z)∂zCt(z)−m(t) + β(z) + d

N(t)

(
eφ(z)−Ct(z) − 1

)
,

N ′(t) = N(t) (rmax +m(t)) + d,

Ct(0) = 0,

N(0) = 0,

(A6)

with t > 0 and z ≥ 0, and where m(t) = ∂zCt(0), d ≥ 0, α(z) := 1 − µ2 z2, β(z) :=

−µn z/2.

We can easily check that the sink is not empty at each time t > 0:

Lemma 1. Assume that m is continuous over [0,∞). Then, at all time t > 0, we have

N(t) > 0.

Proof. For ε > 0 small enough, as N ′(0) = d > 0, we have N(t) > 0 for all t ∈ (0, ε].

Additionally, for all t ≥ ε,

N(t) = e
∫ t
ε (rmax+m(s)) ds

(
N(ε) + d

∫ t

ε

e−
∫ v
ε (rmax+m(s)) ds dv

)
> 0. (A7)

Let N(t), Ct(z) be a solution of (A6), such that m is continuous over [0,∞). Set

Dt(z) = Ct(y(z)), with y(z) = tanh(µz)/µ which satisfies:{
y′(z) = α(y(z)),

y(0) = 0,

so that

∂tDt(z) = ∂tCt(y(z)) and ∂zDt(z) = α(y(z))∂zCt(y(z)).

Thus, Dt(z) satisfies the simpler equation

∂tDt(z) = ∂zDt(z)−m(t) + β(y(z)) +
d

N(t)

(
eφ(y(z))−Dt(z) − 1

)
,

with m(t) = ∂zDt(0).

Using the method of characteristics, we derive an analytic expression for Dt(z). Fix

z ≥ 0 and denote for all z ≥ t > 0:

v(t) = exp(Dt(z − t)).
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The function v ∈ C1((0, z]) satisfies for all t ∈ (0, z):

v′(t) = (∂tDt(z − t)− ∂zDt(z − t)) v(t),

=

[
β(y(z − t))−m(t)− d

N(t)

]
v(t) +

d

N(t)
eφ(y(z−t)),

=

[
β(y(z − t))− N ′(t)

N(t)
+ rmax

]
v(t) +

d

N(t)
eφ(y(z−t)),

thanks to N ′(t) = (rmax +m(t))N(t) + d. Let us fix times 0 < ε < t. By Lemma 1, we

know that N(s) > 0, for all s ∈ [ε, t] and so v(t) is given by:

v(t) = exp

[∫ t

ε

(
β(y(z − τ))− N ′(τ)

N(τ)
+ rmax

)
dτ

]
[
eC(ε,y(z)) +

∫ t

ε

d eφ(y(z−τ))

N(τ)
exp

(
−
∫ τ

ε

(
β(y(z − s))− N ′(s)

N(s)
+ rmax

)
ds

)
dτ

]
.

As
∫ t
ε
N ′(s)
N(s)

ds = lnN(t)− lnN(ε), we can simplify the last expression to:

v(t) = exp

[
− lnN(t) +

∫ t

ε

(β(y(z − τ)) + rmax) dτ

]
[
N(ε) ln eC(ε,y(z)) +

∫ t

ε

d eφ(y(z−τ)) exp

(
−
∫ τ

ε

(β(y(z − s)) + rmax) ds

)
dτ

]
.

Taking the limit as ε tends to 0 and using the fact that the initial population in the

sink is N(0) = 0, the above expression can be simplified to:

v(t) = d

∫ t

0

eφ(y(z−τ))−
∫ τ
0 (β(y(z−s))+rmax)dsdτ · exp

[
− lnN(t) +

∫ t

0

(β(y(z − τ)) + rmax) dτ

]
.

Hence, by reversing the characteristics, we get:

Dt(z) =

∫ t

0

β(y(z + τ))dτ − ln (N(t)) + rmaxt

+ ln

[
d

∫ t

0

eφ(y(z+τ))−rmax(t−τ)−
∫ t
τ β(y(z+s))dsdτ

]
.

This leads to an explicit but complex formula for Ct(z) thanks to the relation

Ct(z) = Dt

(
1

µ
atanh(µz)

)
. (A8)

Additionally, we have:

∂zDt(z) = β(y(z + t))− β(y(z)) +

∫ t
0
∂z g(t, z, τ) dτ∫ t
0
g(t, z, τ) dτ

,
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with g(t, z, τ) = exp
[
φ(y(z + τ)) + rmax(τ − t)−

∫ t
τ
β(y(z + s))ds

]
. Using the fact that

m(t) = ∂zDt(0), y(0) = 0 and β(0) = 0, we get:

m(t) =β(y(t)) +

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ))− β(y(t))] dτ∫ t

0
g(t, 0, τ) dτ

,

=

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ))] dτ∫ t

0
g(t, 0, τ) dτ

,

=

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ)) + rmax] dτ∫ t

0
g(t, 0, τ) dτ

− rmax,

=

∫ t
0
g(t, 0, τ) ∂τg(t, 0, τ) dτ∫ t

0
g(t, 0, τ) dτ

− rmax,

=
g(t, 0, t)− g(t, 0, 0)∫ t

0
g(t, 0, τ) dτ

− rmax.

Using the expression g(t, 0, τ) = exp
[
φ(y(τ)) + rmax(τ − t)−

∫ t
τ
β(y(s))ds

]
, the for-

mula (3) for φ and y(z) = tanh(µz)/µ, we finally get:

m(t) =
exp

[
(rmax − µ n

2
)t+ mD

2µ
(e−2µt − 1)

]
− 1∫ t

0
exp

[
(rmax − n

2
µ)τ + mD

2µ
(e−2µτ − 1)

]
dτ
− rmax. (A9)

As we have an explicit formula for m(t), we can also solve the ODE N ′(t) = N(t) (rmax+

m(t)) + d (formula (A7), with ε = 0 and N(ε) = 0). Finally, we can check that N(t),

Ct(z) (defined by (A8)) is a solution of (A6) such that m (given by (A9)) is continuous

over [0,∞). Using the expression (A9) with r(t) = rmax+m(t), we obtain the formula (7)

in the main text.
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E Trajectories of mean fitness: U < Uc

(a) U = 10−2 = Uc/3 (b) U = 10−2 = Uc/3

(c) U = 10−3 = Uc/30 (d) U = 10−3 = Uc/30

(e) U = 10−4 = Uc/300 (f) U = 10−4 = Uc/300

Figure A1: Trajectories of mean fitnesses and population sizes, low mutation rates.

Same legend as in Fig. 2. Other parameter values are mD = 0.2, rmax = 0.1, λ = 1/300, n = 6

and d = 104, leading to Uc = 0.03.
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F Range of validity of the model

We explored the range of validity of the analytical model by comparing theory and sim-

ulations over a wide range of parameter values. The raw results are given in Appendix J.

Overall, the model tends to be more accurate as U and d increase and mD (equivalently,

rD = mD − rmax), n and λ decrease. More precisely, theoretical and numerical analysis

yield two necessary conditions for the accuracy of the model: (i) U ≥ Uc = n2λ/4, for

the WSSM to apply; (ii) dU/rD � 1, for the large d approximation to apply.

Below we detail each criterion, their robustness and possible empirical insight on their

realism.

Criterion (i): it is formally derived in Appendix F of (Martin and Roques, 2016)

and guarantees that the mutation term associated with the FGM linearizes to produce

an analytically tractable PDE. While the model is indeed fairly accurate whenever

U > Uc, it remains reasonably so even at fairly lower mutation rates. Even for mutation

rates U = Uc/30 (but keeping a large d), r(t) and N(t) from eq. (7) still approximately

captures the average trajectories (Fig. A1, Appendix E), although the length of Phase

2 in the numerical simulations becomes more variable, around this average, as U is

decreased. Consistently, Fig. 6b shows that the invasion time in eq. (9) still approx-

imately captures the average of simulations far below U = Uc, with larger variability

around this mean as U decreases.

As an example, empirical estimates in E. coli, based on a recent mutation accumu-

lation experiment (Trindade et al., 2010) suggest U ∈ [0.004, 0.006] and E[s] = nλ/2 ∈
[0.02, 0.04] (mean effect of mutations on fitness), which yields U/Uc ∈ [0.2, 0.6] for n = 1

and U/Uc ∈ [0.033, 0.1] for n = 6. This suggests that E. coli may lie somewhere below

the critical mutation rate, at a similar order. Note however that estimates of these

quantities are fairly scarce (even in this well studied biological model) and seem to

vary substantially across experiments (medium, strain, growth conditions). We suspect

that viruses (especially RNA viruses) may lie well within U ≥ Uc, while bacteria may

vary widely around U = Uc. Obviously any proper statement on this issue would re-

quire a full review of empirical estimates (appropriately scaled in consistent time units),

wherever available.

Criterion (ii): this criterion, which is confirmed by the simulations in Appendix J

and Fig. 6 panels (a) and (c), stems from the following argument: the early population

size in the sink is of order N(t) ≈ d/|r(0)| (no evolution), with |r(0)| = |rD+µn/2| ≈ rD

(when µ � rD). Thus whenever d � rD/U , the mutant input N(t)U in the sink

population quickly reaches a large value N(t) U ≈ d U/rD � 1 and only increases later
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on. Adaptive evolution can then take place within the sink, in a way that is captured

by a deterministic approximation. Conversely, when d is smaller and/or rD is larger,

the early population size in the sink is small, so that the deterministic approximation

does not apply anymore. In this case, we see that the time t0 is much more variable,

and increases on average with smaller d and larger rD (or equivalently mD), see Fig. 6.

Empirically evaluating the criterion (ii) requires estimates of d, U, rD on the same

timescale (hours, days, generations) in a well defined sink. Such estimates should be

possible from dedicated experiments controlling the immigration rate, in strains with

known mutational parameters, and environmental stresses with well characterized de-

mographic effect. They would greatly help our understanding of source-sink dynamics.

However, to the best of our knowledge, they are not available to date.
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G Phenotype distribution in the sink: dynamics of

r(t) and N(t)

The dynamics of mean fitness and population size corresponding to Fig. 3 are plotted

in Fig. A2, to illustrate the occurrence of the four phases in this particular simulation.

(a) (b)

Figure A2: Trajectory of mean fitness and population size in the sink correspond-

ing to the phenotype distribution in Fig. 3. Same legend as in Fig. 2.
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H Independence of the evolutionary dynamics with

respect to the immigration rate

The value of r(t) in formula (7) does not depend on d. Thus, only the population size

dynamics are influenced by the immigration rate, but not the dynamics of adaptation.

Actually, this phenomenon appears for a more general deterministic black-hole sink

model, with a stable source and a constant immigration rate d ≥ 0. In the sink, we

have just to assume that the environment is initially empty (N(0) = 0), that both

demography and evolution are density-independent (so that density dependence only

arises in the migration effect). Apart from that, the proposed generalization may ac-

commodate arbitrary forms of mutation and selection effects (possibly with changes in

mD over time). The model then takes the following general form:
∂tCt(z) = Selection(t, z, Ct(z)) + Mutation(t, z, Ct(z)) + d

N(t)

(
eφ(z)−Ct(z) − 1

)
,

N ′(t) = N(t) r(t) + d,

Ct(0) = 0,

N(0) = 0,

with r(t) = ∂zCt(0) the coefficient of the exponential growth. Setting P (t) = N(t)/d,

we observe that the above system can be written in the form:
∂tCt(z) = Adaptation(t, z, Ct(z)) + Mutation(t, z, Ct(z)) + 1

P (t)

(
eφ(z)−Ct(z) − 1

)
,

P ′(t) = P (t) r(t) + 1,

Ct(0) = 0,

P (0) = 0,

with r(t) = ∂zCt(0). As this system does not depend on d, this implies that the

dynamics of P (t), of mean fitness r(t), and even of the full fitness distribution (Ct(z))

are all independent of d.
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I Large time behavior of r(t)

We recall that, according to formula (7),

r(t) =
f(t)− 1∫ t
0
f(τ) dτ

,

with f(t) = exp

[(
rmax − µ

n

2

)
t+

mD

2µ
(e−2µ t − 1)

]
.

We first show that r(t) is an increasing function of t. First, we can check that

f ′(t) = f(t)
(
rmax −

µn

2
−mDe

−2µt
)
.

Second, we have

r′(t) =
f ′(t)∫ t

0
f(τ)dτ

− f(t)− 1(∫ t
0
f(τ)dτ

)2 f(t)

=
f(t)(∫ t

0
f(τ)dτ

)2 [(rmax −
µn

2
−mDe

−2µt
)∫ t

0

f(τ)dτ − (f(t)− 1)

]
.

Let h(t) =
(
rmax − µn

2
−mDe

−2µt) ∫ t
0
f(τ)dτ − (f(t)− 1). Thus we see that

h′(t) = 2µmD e
−2µt

∫ t

0

f(τ)dτ ≥ 0.

Therefore for all t > 0, h(t) > h(0) = 0, which shows that r is increasing.

Since r(0) = rmax − µn/2−mD, this implies that r(t) > rmax − µn/2−mD for all

t > 0. In particular, r(∞) ≥ rmax−µn/2−mD which implies that δ(mD) < mD in (8).

Next, we compute the limit of r(t) as t→∞.

Case (i): we assume that rmax − µn/2 > 0. Then, f(t) ∼ e−
mD
2µ e(rmax−µn/2)t and∫ t

0

f(τ) dτ ∼ e−
mD
2µ

e(rmax−µn/2)t

rmax − µn/2
, as t→∞.

Thus,

r(t)→ rmax − µn/2 as t→∞.
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Case (ii): we assume that rmax − µn/2 = 0. Then f(t) = exp
[
mD
2µ

(e−2µt − 1)
]

and∫ t
0
f(τ) dτ ∼ t e−mD/(2µ) as t→∞. Thus,

r(t) ∼ e−mD/(2µ) − 1

e−mD/(2µ)t
→ 0 as t→∞.

Case (iii): we assume that rmax − µn/2 < 0. Consider an arbitrary constant α ∈ (0, 2).

We can check that, for all t < Tα := 1
2µ

ln 2
α

, we have:

e−2µt < 1− αµt.

In the sequel, we denote X := rmax − µn/2. We get:∫ ∞
0

f(t)dt =

∫ Tα

0

f(t)dt+

∫ ∞
Tα

f(t)dt

≤
∫ Tα

0

exp ((X −mDα/2)t) dt

+

∫ ∞
Tα

exp

[
Xt+

mD

2µ

(
e−2µTα − 1

)]
dt.

Using the assumption X = rmax − µn/2 < 0, we obtain:∫ ∞
0

f(t)dt ≤ e(X−mDα/2)Tα − 1

X −mD α/2
− exp

[
mD

2µ

(
e−2µTα − 1

)] eXTα

X
,

and using the definition of Tα = 1
2µ

ln 2
α

, we obtain∫ ∞
0

f(t)dt ≤ −
(α

2

)−X
2µ

[
γ

X − αmD/2
+

ρ

X

]
,

with γ :=
(
α
2

) X
2µ −

(
α
2

)αmD/(4µ) and ρ = exp
[
mD
2µ

(
α
2
− 1
)]

. This leads to the following

inequality:

r(∞) = − 1∫∞
0
f(t)dt

≤
(α

2

) X
2µ X − αmD/2

γ + ρ
(
1− αmD

2X

) ,
which can be rewritten:

r(∞) ≤ X − αmD/2

1 + ε
,

with

ε :=
(

1− αmD

2X

)
ρ
(α

2

)− X
2µ −

(α
2

)αmD
4µ
− X

2µ
.
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Next, to show that r(∞) < X−αmD/2, we only need to check that ε < 0. This is true

for certain values of α. As ρ = exp
[
mD
2µ

(
α
2
− 1
)]

, we observe that ε has the same sign

as:

ε′ =
(

1− αmD

2X

)
exp

[
mD

4µ
(α− 2)

]
− exp

[
mD

4µ
α ln(α/2)

]
.

Since X = rmax − µn/2, we get:

ε′ =
mD

4µ
[−α ln(α/2) + α (1 + 4/n)− 2] + o

(
1

µ

)
,

as µ→∞. Thus, ε < 0 for µ large enough, if and only if:

n >
4

ln(α/2)− 1 + 2/α
. (A10)

For α small enough, this inequality is true for any n ≥ 1. However, higher values of α

lead to sharper estimates of δ(mD) in (8). With α = 1/4 for instance, the inequality

(A10) is always satisfied (as n ≥ 1). We obtain that r(∞) ≤ X − mD
8

and δ(mD) ≥ mD
8

for µ large enough. If α is increased, e.g., α = 1/2, the inequality (A10) is true for all

n ≥ 3, and consequently, r(∞) ≤ X− mD
4

for µ large enough (δ(mD) ≥ mD
4

, for µ large

enough). In our numerical computations (n = 6), we can use α = 3/4, which leads to

r(∞) ≤ X − 3mD
8

and δ(mD) ≥ 3mD
8

for large µ.
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J Establishment time t0: formula (9)

We recall that t0 is defined as the first zero of r(t). We note that, since r(t) is increasing,

it admits at most one zero.

First, if rmax−µn/2 ≤ 0, as r(t) is increasing and r(∞) < rmax−µn/2 (see (8) and

Appendix I), we have r(t) < 0 for all t ≥ 0. This implies that t0 =∞.

Second we assume that rmax − µn/2 > 0. In this case, r(∞) = rmax − µn/2 > 0

and the time t0 is finite (and positive). Therefore, we can solve the equation r(t) = 0,

which is equivalent to:

(rmax − µn/2)t+
mD

2µ

(
e−2µt − 1

)
= 0. (A11)

Let us set c := mD/(rmax − µn/2). Since r(0) = rmax − µn/2 −mD < 0, we observe

that c > 1. The equation (A11) is equivalent to:

2µ t− c = −c e−2µ t.

Multiplying this expression by e2µ t−c, we get:

(2µ t− c)e2µ t−c = −c e−c.

Setting X := 2µ t− c, we obtain:

X eX = −c e−c. (A12)

As c > 1, −ce−c ∈ (−e−1, 0), thus the equation (A12) admits two solutions, X0 =

W0(−c e−c) and X−1 = W−1(−c e−c) < X0, with W0 and W−1 respectively the principal

branch and the lower branch of the Lambert-W function. Thus, the equation (A11)

admits two solutions, (c + X0)/(2µ) and (c + X−1)/(2µ) = 0, but only the first one is

positive. Finally, we obtain that

t0 =
1

2µ

(
c+W0(−ce−c)

)
. (A13)

As t0 is an increasing function of c, we obtain that t0 decreases as rmax is increased,

and t0 increases as mD and n are increased. The dependence with respect to µ is more

subtle. Differentiating the expression (A13) with respect to µ, we observe that t′0(µ)

has the same sign as:(
µn

2 rmax − µn
− 1−W0(−ce−c)

)(
c+W0(−ce−c)

)
.
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As the second factor in the above expression is always positive (since c > 1), we get

that t′0(µ) has the same sign as the function:

g(µ) :=
µn

2 rmax − µn
− 1−W0(−ce−c).

Differentiating g with respect to µ, we observe that g′(µ) has the same sign as rmax +

(µn/2 + mD)W0(−ce−c) = rmax − µn/2 + µn (1 − W0(−ce−c))/2 + mDW0(−ce−c).
Thus g′(µ) has the same sign as mD (1/c + W0(−ce−c)) + µn(1 −W0(−ce−c))/2 > 0,

as 1/c+W0(−ce−c) > 0 (since c > 1) and 1−W0(−ce−c) > 0. Finally, g is increasing,

with:

g(0) = −1−W0

(
−mD

rmax

e−
mD
rmax

)
≤ 0,

(and the sign is strict unless mD = rmax). Additionally, we have g(2rmax/n) = +∞
(corresponding to µlethal). This means that, unless mD = rmax, t0(µ) first decreases

until µ reaches an optimal value, and then increases as µ is increased.
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K Establishment time t0: dependence with the habi-

tat difference mD and the immigration rate d

Using the stochastic individual-based model of Section 2.5, we analyzed the dependence

of the establishment time t0 with respect to mD and d for a wide range of parameter

values. Namely, taking U = 0.1, rmax = 0.1, λ = 1/300 and n = 6 as in Fig. 6, mD

was varied between 0.1 and 0.5. The results are presented in Fig. A3a. It shows that,

for each value of mD, there is a threshold value of the immigration rate above which

the establishment time t0 becomes almost independent of d. This threshold tends to

increase as the habitat difference mD takes higher values. Additionally, we measured

the relative error between the theoretical value of t0 given by formula (9) and the value

given by individual-based simulations; see Fig. A3b. As soon as the parameters are

far from the black region in Fig. A3, (a,b), the approximation is good (relative error

< 0.1). This black region corresponds to values of t0 > 5000, for which individual-based

simulations were stopped before establishment, and where we can expect that the final

outcome is establishment failure. This means that there is only a narrow region where

formula (9) is not accurate; it is located close to the region where establishment fails,

and describes a rapid increase in t0 which is not captured by our analytical approach.

Fig. A3 (c,d) depicts comparable simulations, with U = Uc/3 = 0.01, i.e., outside of

the WSSM regime. The conclusions are similar to the case U = 0.1, but with a larger

region corresponding to establishment failure, and a lower accuracy (panel d).
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(c) U = 0.01, establishment time
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(d) U = 0.01, relative error

Figure A3: Establishment time t0, dependence with the habitat difference mD and

the immigration rate d. (a,c): Average value of t0 over 100 individual-based simulations.

The color legend corresponds to log10(1+t0). (b,d): relative error between the theoretical value

of t0 given by formula (9) and the average value obtained by individual-based simulations.

The black regions correspond to parameter values for which at least one simulation led to

t0 > 5000; in that case, the average value of t0 was not computed numerically. In all cases,

the parameter values are rmax = 0.1, λ = 1/300, n = 6.
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L Dynamics in the absence of mutation in the sink

We have seen in Fig 6b that mutation has a non-monotonic impact on establishment

time. However, a higher mutation rate affects both the source equilibrium state and

the sink dynamics. A natural question to ask is thus whether local mutation in the

sink helps or hinders invasion. Indeed, mutation in the FGM (and other models with

both deleterious and beneficial mutations) can have antagonistic effects: it generates

fitness variance to fuel adaptation but lowers the mean fitness by creating a mutation

load. This is of course also true for mutation in the source, but the interaction with

migration in the sink makes the outcome less straightforward to grasp.

To tell apart the influences of local mutation on invasion speed, we analyze a scenario

where mutation is absent in the sink, but still active in the source, so that the latter is

unchanged. Using the same arguments as in Appendix D, we can derive a formula for

r(t) in that case. The formula can be expressed in the same form as (7), with:

f(t) = exp [φ(t) + rmax t] ,

with φ given by (3). We compared the corresponding time to establishment, noted t00,

with the establishment time t0 to check whether local mutation (in the sink) speeds or

slows invasion.

The results in Fig. A4 show that local mutation can either slow down or accelerate

invasion, depending on the mutational variance (µ) and habitat difference (mD). For a

given level of mD, local mutation tends to speed invasion as long as mutational variance

(µ) is limited (left part of the graph) but hinders it when it becomes larger (right part

of the graph). The transition from helping to hindering invasion happens at larger µ

values when mD is larger. It thus appears that the beneficial effect of local mutation

in producing variance dominates when mutation is limited while its negative effect in

load buildup takes over as µ is increased. The transition occurs at higher µ under

higher mD because the former effect is more critical then, while the latter is roughly

independent of mD. This pattern illustrates quite strikingly the complex implications,

for adaptation dynamics, of the ambivalent nature of mutation in the FGM.

An example of trajectory of fitness is given in Fig. A5, where we observe that the

four phases are still present. The corresponding phenotype distribution is presented in

Fig. A6. A video file of the phenotype distribution is also available as Supplementary

File 3.
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Figure A4: Comparison between the establishment times t0 (with mutation in the

sink) and t00 (without mutation in the sink). The heat map corresponds to sign(t0 −
t00) log10(1+|t0−t00|): negative values indicate that t00 > t0 (faster establishment with mutation

in the sink) and positive values indicate that t0 > t00 (faster establishment without mutation

in the sink).

Figure A5: Dynamics of r(t) in the absence of mutation in the sink. The blue curve

corresponds to the trajectory of r(t) given by a single individual-based simulation, in the

absence of mutation in the sink. The parameter values are mD = 0.4, U = 0.1, rmax = 0.1,

λ = 1/300, n = 6 and d = 104.
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(a) Phase 1: t = 10 (b) Phase 2: t = 50

(c) Phase 3: t = 115 (d) Phase 4: t = 190

Figure A6: Phenotype distribution in the sink, along the direction x1, in the

absence of mutation. The vertical dotted lines correspond to the sink (x1 = 0) and source

(x1 =
√
2mD) optima. The black dotted curve corresponds to the theoretical distribution of

migrant’s phenotypes in the sink (Gaussian distribution, centered at x1 =
√
2mD, and with

variance µ =
√
U λ). The parameter values are mD = 0.4, U = 0.1, rmax = 0.1, λ = 1/300,

n = 6 and d = 104.
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