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Abstract

The establishment of a population into a new empty habitat outside of its

initial niche is a phenomenon akin to evolutionary rescue in the presence of im-

migration. It underlies a wide range of processes, such as biological invasions

by alien organisms, host shifts in pathogens or the emergence of resistance to

pesticides or antibiotics from untreated areas.

We derive an analytically tractable framework to describe the evolutionary

and demographic dynamics of asexual populations in a source-sink system. We

analyze the influence of several factors on the establishment success in the sink,

and on the time until establishment. To this aim, we use a classic phenotype-

fitness landscape (Fisher’s geometrical model in n dimensions) where the source

and sink habitats have different phenotypic optima.

In case of successful establishment, the mean fitness in the sink follows a

typical four-phases trajectory. The waiting time to establishment is independent

of the immigration rate and has a “U-shaped” dependence on the mutation rate,

until some threshold where lethal mutagenesis impedes establishment and the

sink population remains so. We use these results to get some insight into possible

effects of several management strategies.
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1 Introduction

Most natural populations are spread over a heterogeneous set of environments, to which

local subpopulations may be more or less adapted. When these populations exchange

migrants we can define “source” and “sink” populations. Source populations, where

the local genotypes have positive growth rate, are self-sustained and can send migrants

to the rest of the system. They may be connected to sink populations, where local

genotypes are so maladapted that they have negative growth rates (Pulliam, 1988). A

recent review (Furrer and Pasinelli, 2016) showed that empirical examples of sources

and sinks exist throughout the whole animal kingdom. In the absence of any plastic

or evolutionary change, source-sink systems are stable, with the sources being close to

their carrying capacity and the sinks being only maintained by incoming maladapted

migrants. In the literature, different source-sink systems have been categorized by their

pattern of immigration and emigration (see Fig. 1 in Sokurenko et al. (2006) and Table

1 in Loreau et al. (2013)). Black-hole sinks, from which emigration is negligible, are

the canonical model for studying the invasion of a new environment, outside of the

initial species niche (Gomulkiewicz et al., 1999; Holt et al., 2003, 2004). We hereafter

simply use the term “sink”, when in fact referring to a black-hole sink population.

The demographic and evolutionary process leading to the invasion of a sink is akin

to evolutionary rescue in the presence of immigration. It underlies a wide range of

biological processes: invasion of new habitats by alien organisms (Colautti et al., 2017),

host shifts in pathogens or the emergence of resistance to pesticides or antibiotics, within

treated areas or patients (discussed e.g. in Jansen et al. (2011) and Sokurenko et al.

(2006)). The issues under study in these situations are the likelihood and timescale

of successful invasions (or establishment) of sinks from neighboring source populations.

“Establishment” in a sink is generally considered successful when the population is self-

sustaining in this new environment, even if immigration was to stop (e.g., Blackburn

et al., 2011, for a definition of this concept in the framework of biological invasions).

A rich theoretical literature has considered the effects of demography and/or evolu-

tion in populations facing a heterogeneous environment connected by migration, both

in sexuals (e.g., Kirkpatrick and Barton, 1997) and asexuals (e.g., Débarre et al., 2013).

The source-sink model is a sub-case of this general problem, that has received partic-

ular attention (for a review, see Holt et al., 2005): below, we quickly summarize the

relevance and key properties of source-sink models. The asymmetric migration (from

source to sink alone), characteristic of black-hole sinks, provides a key simplification,

while remaining fairly realistic over the early phase of invasion, where success or failure
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is decided. For the same reason, some models further ignore density-dependent effects

in the sink, although both high (logistic growth) and/or low (Allee effect) densities

could further impact the results (discussed in Holt, 2009).

Some source-sink models (e.g., Drury et al., 2007; Garnier et al., 2012), focus on

detailed demographic dynamics, in the absence of any evolutionary forces. These

forces (selection, mutation, migration, drift and possibly recombination/segregation)

can greatly alter the outcome. They may yield both local adaptation or maladapta-

tion, favoring or hindering (respectively) the ultimate invasion of the sink (“adaptive

colonization”, Gomulkiewicz et al., 2010), however harsh. In this context, mutation

and migration are double edged swords, both increasing the local variance available

for selection but generating mutation and migration loads, due to the adverse effects

of deleterious mutations and maladapted migrant inflow (resp.). For a review of the

ambivalent effects of mutation and migration see e.g., (Lenormand, 2002) and (Débarre

et al., 2013). Disentangling the complex interplay of these forces with demographic

dynamics is challenging, and modelling approaches have used various ecological simpli-

fications: e.g. no age or stage structure, constant stress, constant migration rate.

The associated evolutionary processes are also simplified. As for evolutionary rescue

models (discussed in Alexander et al., 2014), evolutionary source-sink models may be

divided into two classes, based on the presence or absence of context-dependence in the

genotype-fitness map they assume (Gomulkiewicz et al., 2010). In context-independent

models, fitness in the sink is additively determined by a single or a set of freely recombin-

ing loci, and adaptation occurs by directional selection on fitness itself (Gomulkiewicz

et al., 2010; Barton and Etheridge, 2017). In context-dependent models, which arguably

forms the vast majority of source-sink models, fitness is assumed to be a concave func-

tion (typically quadratic or Gaussian) of an underlying phenotype, with the source

and sink environments corresponding to alternative optima for this phenotype (e.g.,

Holt et al., 2003, 2004). Such nonlinear phenotype-fitness maps, with environment

dependent optima, generate context-dependent interactions for fitness (epistasis and

genotype x environment or “G x E” interactions): the effect of a given allele depends

on the genetic and environmental background in which it is found. These models repro-

duce observed empirical patterns of mutation fitness effects across backgrounds (Martin

et al., 2007; MacLean et al., 2010; Trindade et al., 2012), reviewed in (Tenaillon, 2014).

However, their analysis is more involved. Most analytical treatments have thus relied on

stationarity assumptions: e.g. describing the ultimate (mutation-selection-migration)

equilibrium in asexuals (Débarre et al., 2013), or assuming a constant genetic variance

and Gaussian distribution for the underlying trait in sexuals (e.g., Gomulkiewicz et al.,
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1999; Holt et al., 2004). While numerical explorations (by individual-based simula-

tions) often relax these stationarity assumptions, they are necessarily bound to study

a limited set of parameter value combinations.

In this paper, we explore a complementary scenario: a source-sink system, out of

equilibrium, in an asexual population. The focus on asexuals is intended to better

capture pathogenic microorganisms or microbial evolution experiments. We ignore

density-dependence by assuming that it is negligible before and during the critical early

phase of the sink invasion. Considering asexuals and density-independent populations

implies that several complex effects of migration (both genetic and demographic) can be

ignored. Because migrants do not hybridize/recombine with locally adapted genotypes

or use up limiting resources, the maladaptive effects of migration are limited. Migration

meltdown and gene swamping (see Lenormand, 2002) are thus expected to be absent.

This simplification allows to analytically track out-of-equilibrium dynamics, in this

context-dependent model (with epistasis and G x E).

More precisely, we study the transient dynamics of a sink under constant immi-

gration from a source population at mutation-selection balance and a sink initially

empty. We use the classic quadratic phenotype-fitness map with an isotropic version

of Fisher’s geometrical model (FGM) with mutation pleiotropically affecting n pheno-

typic traits. We use a deterministic approximation (as in Martin and Roques, 2016)

that neglects stochastic aspects of migration, mutation and genetic drift, but tracks

the full distribution of fitness and phenotypes. Under a weak selection strong muta-

tion (WSSM) regime, when mutation rates are large compared to mutation effects, we

further obtain an analytically tractable coupled partial-ordinary differential equation

(PDE-ODE) model describing the evolutionary and demographic dynamics in the sink.

This framework allows us to derive analytic formulae for the demographic dynamics

and the distribution of fitness, at all times, which we test by exact stochastic simu-

lations. We investigate the effect of demographic and evolutionary parameters on the

establishment success, on the establishment time, and on the equilibrium mean fitness

in the sink. In particular, we focus on the effects of the immigration rate, the habitat

difference (maladaptation of the optimal source phenotype in the sink environment),

and mutational parameters (rate, phenotypic effects and dimension n).

2 Methods

Throughout this paper, we follow the dynamics of the fitness distribution of the in-

dividuals in the sink environment. We consider a population evolving in continuous
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time. Consistently, we focus on Malthusian fitness m (hereafter “fitness”): the ex-

pected growth rate (over stochastic demographic events) of a given genotypic class, per

arbitrary time units. Absolute Malthusian fitnesses r are therefore (expected) growth

rates, and without loss of generality, m is measured relative to that of the phenotype

optimal in the sink, with growth rate rmax. We thus have m = r − rmax, and the mean

absolute fitness r(t) and mean relative fitness m(t), at time t, satisfy:

r(t) = rmax +m(t).

We use a deterministic approximation which neglects variations among replicate pop-

ulations. Under this approximation, r(t) (respectively m(t)), the mean absolute (resp.

relative) fitness within each population can be equated to their expected values (across

stochastic events). In general, the bar denotes averages taken over the sink popu-

lation. The main notations are summarized in Table 1. Note that the reader who is

not familiar with the mathematical formalism used in this paper can safely skip most

formulae in the main text, as they are also verbally explained and/or illustrated with

figures.

2.1 Demographic model and establishment time t0

In our simple scenario without density-dependence, evolutionary and demographic dy-

namics are entirely coupled by the mean growth rate r(t). We consider a sink population

receiving on average d individuals per unit time by immigration. Under the determinis-

tic approximation, the population size dynamics in the sink environment are therefore

given by:

N ′(t) = r(t)N(t) + d, (1)

with N ′(t) the derivative of N with respect to t at time t.

In the absence of adaptation, r is constant, leading to an equilibrium population

size N = d/(−r) when r < 0, as mentioned above. When genetic adaptation is taken

into account, we need further assumptions to describe the dynamics of r(t) in the sink.

We always assume that the new environment is initially empty (N(0) = 0) and that

the individuals from the source are, on average, maladapted in the sink (r(0) < 0).

Following a classic definition (Blackburn et al., 2011), we define the establishment time

t0 as the first time when the growth rate of the sink becomes positive in the absence of

immigration. This means that, from time t0, the sink population is self-sustaining in

the absence of immigration and further adaptation. By definition (assuming that r is
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Notation Description

n number of pleiotropic phenotypes

x
(breeding value for) phenotype of a given

genotype

x∗ Optimal phenotype (source)

d Immigration rate

U Genomic mutation rate

λ Mutational variance per trait

µ
√
U λ

m
Malthusian fitness in the sink, relative to a

genotype optimal in the sink

mD

Habitat difference (fitness distance

between source and sink optima)

rD

Decay rate (minus growth rate), in the

sink, of a genotype optimal in the source

rD = mD − rmax

msource Fitness of the migrants in the source

mmigr Fitness of the migrants in the sink

pmigr Probability density of mmigr

rmax Maximum absolute fitness (sink)

r
Absolute Malthusian fitness: genotypic

growth rate r = rmax +m

N(t) Population size at time t

m(t) Mean relative fitness

r(t)
Mean absolute fitness: mean growth rate

of the population r(t) = rmax +m(t)

t0 Establishment time

Ct(z)
Cumulant generating function of the

relative fitness distribution in the sink

Table 1: Main notations
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continuous), t0 satisfies r(t0) = 0. Depending on the behavior of r(t), t0 may therefore

be finite (successful establishment) or infinite (establishment failure).

2.2 Fisher’s geometric model

We use Fisher’s geometric model (FGM) to describe the relationships between geno-

types, phenotypes and fitnesses in each environment. This phenotype-fitness landscape

model generates a coupling between habitat difference, the distribution of fitnesses

among migrants from the source and that among de novo random mutants arising in

the sink (Anciaux et al., 2018).

Phenotype-fitness relationships in the two environments. The FGM assumes that

each genotype is characterized by a given breeding value for phenotype at n traits

(hereafter simply denoted ’phenotype’), namely a vector x ∈ Rn. Each environment

(the source and the sink) is characterized by a distinct phenotypic optimum. An optimal

phenotype in the sink has maximal absolute fitness rmax (relative fitness m = 0) and

sets the origin of phenotype space (x = 0). Fitness decreases away from this optimum.

Following the classic version of the FGM, Malthusian fitness is a quadratic function of

the breeding value r(x) = rmax − ‖x‖2/2 and m(x) = −‖x‖2/2.

In the source, due to a different phenotype optimum x∗ ∈ Rn, the relative fitness

is m∗(x) = −‖x − x∗‖2/2. As the population size is kept constant in the source (see

below), only relative fitness matters in this environment. The habitat difference mD > 0

is the fitness distance between source and sink optima:

mD = −m(x∗) = ‖x∗‖2/2. (2)

For consistency with previous work, we denote rD the decay rate, in the sink, of a

population composed of individuals with the optimal phenotype from the source. It is

given by rD = mD − rmax: note that rD is thus positive when this optimal phenotype

has negative growth rate (i.e. decays) in the sink.

Mutations. In the two environments, mutations occur at rate U and create inde-

pendent and identically distributed (iid) random variations dx around the phenotype

of the parent, for each trait. We assume here a standard n−dimensional isotropic

Gaussian distribution of the mutation phenotypic effects, with mutational variance λ

at each trait (Kimura, 1965; Lande, 1980). These assumptions induce a 1−dimensional

distribution of the mutation effects on fitness, given the relative fitness mp ≤ 0 of the
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parent. This distribution, whose mean is E[s] = −n λ/2, has already been described

in Martin (2014) and is detailed in Appendix A.

Migration events. Migration sends randomly sampled individuals from the source

into the sink, at rate d > 0 per unit time. Their relative fitness in the sink is mmigr(x) =

−‖x‖2/2, with x randomly sampled from the source’s standing phenotype distribution.

2.3 Fitness distribution of the migrants

We assume that the distribution of phenotypes in the source is at mutation-selection

balance. The resulting equilibrium distribution of phenotypes yields an equilibrium

fitness distribution in the source. Under a weak selection strong mutation (WSSM)

regime, this distribution is a negative gamma: (Martin and Roques, 2016, equation

(10)): msource ∼ −Γ(n/2, µ), with µ :=
√
U λ. This WSSM regime can be quantitatively

defined by the inequality U > Uc := n2 λ/4 (Martin and Roques, 2016, Appendix E).

To understand the dynamics of the fitness distribution in the sink, we need to

compute the distribution of the relative fitness of the migrants mmigr when they arrive

into the sink. To describe this distribution, we use its cumulant generating function:

φ(z) := ln (E[emmigr z]), for any z ≥ 0. Computations in Appendix B show that for any

z ≥ 0:

φ(z) = −n
2

ln(1 + µz)−mD z +
mD µ z

2

1 + µ z
. (3)

The corresponding distribution of mmigr is detailed in Appendix B and illustrated in

Fig. 1. We observe that the mean absolute fitness of the migrants, which coincides with

r(0) = lim r(t) as t→ 0, is given by

r(0) = rmax + φ′(0) = rmax −mD − µn/2 = −rD − µn/2, (4)

with φ defined by (3). This initial growth rate is negative and corresponds to the

decay rate (rD) of the mean phenotype from the source (which is optimal there) plus a

variance load (µn/2) due to the equilibrium variation around this mean.

2.4 Trajectories of fitness in the sink: a PDE approach

At time t, the population in the sink consists of the phenotypes {xi(t)}i=1,...,N(t), with

the corresponding values of relative fitnesses {mi(t)}i=1,...,N(t). In the absence of de-

mography and immigration, the dynamics of the fitness distribution is traditionally in-

vestigated by a moment closure approximation (Burger, 1991; Gerrish and Sniegowski,
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Figure 1: Distribution of absolute fitness of the migrants in the sink. The dashed

line corresponds to the theoretical expected values of this distribution pmigr(·−rmax) (formula

(A4) in Appendix B). The histogram corresponds to the distribution of migrants obtained in

exact stochastic simulations after reaching the mutation-selection balance in the source (see

Section 2.5). When the sink is empty, individuals are “counter-selected” if their fitness is below

the mean fitness r(0) given by (4), “selected” if their fitness is above r(0), and “growing” if

their fitness is positive. The parameter values are rmax = 0.1, U = 0.1, mD = 0.3, λ = 1/300,

n = 6 and N = 106.

2012): the variations of the moment of order k depend on the moments of order larger

than (k+ 1) through a linear ordinary differential equation, and the resulting system is

solved by assuming that the moments vanish for k larger than some value. A way around

this issue is the use of cumulant generating functions (CGFs), which handle all moments

in a single function. In a relatively wide class of evolutionary models of mutation and

selection, the CGF of the fitness distribution satisfies a partial differential equation

(PDE) that can be solved without requiring a moment closure approximation (Martin

and Roques, 2016, Appendix B). We follow this approach here. The empirical CGF of

the relative fitness in a population of N(t) individuals with fitnesses m1(t), . . . ,mN(t)(t)

is defined by

Ct(z) = ln

 1

N(t)

N(t)∑
i=1

emi(t) z

 , (5)

for all z ≥ 0. The mean fitness and the variance in fitness in the sink can readily be

derived from derivatives, with respect to z, of the CGF, taken at z = 0: m(t) = ∂zCt(0)

(and r(t) = rmax + ∂zCt(0)), and V (t) = ∂zzCt(0) (the variance in fitness). In the

absence of demography and immigration, and under a weak selection strong muta-
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tion (WSSM) regime, (Martin and Roques, 2016, Appendix A) derived a deterministic

nonlocal PDE for the dynamics of Ct. We extend this approach to take into account

immigration effects and varying population sizes. This leads to the following PDE

(derived in Appendix C):

∂tCt(z) = ∂zCt(z)− ∂zCt(0)︸ ︷︷ ︸
selection

−µ2
(
z2 ∂zCt(z) +

n

2
z
)

︸ ︷︷ ︸
mutation

+
d

N(t)

(
eφ(z)−Ct(z) − 1

)
︸ ︷︷ ︸
migration, demography

, z ≥ 0,
(6)

where we recall that µ :=
√
U λ. The immigration term depends on the relative fitness

of the migrants, through φ(z), which is given by (3), and on N(t), which satisfies the

ODE (1), i.e. N ′(t) = (∂zCt(0) + rmax)N(t) + d. This leads to a well-posed coupled

system (1) & (6) which can be solved explicitly, as shown in Appendix D.

The selection term in eq. (6) stems from the increase in frequency of each lineage

proportionally to its Malthusian fitness (frequency-independent selection). The second

term is the WSSM approximation (U > Uc) to a more complex term (Martin and

Roques, 2016, Appendix A) describing the effect of mutation: it depends on the current

background distribution (on Ct(z)) because of the fitness epistasis inherent in the FGM.

The last term describes the effect of the inflow of migrants on lineage frequencies. It

tends to equate Ct(z) with φ(z), the CGF of fitnesses among migrants, proportionally

to d/N(t), the dilution factor of migrants into the current sink population.

2.5 Individual-based stochastic simulations

To check the validity of our approach, we used as a benchmark an individual-based,

discrete time model of genetic drift, selection, mutation, reproduction and migration

with non-overlapping generations.

Source population. A standard Wright-Fisher model with constant population size

was used to compute the equilibrium distribution of phenotypes in the source. Our

computations were carried out with N∗ = 106 individuals in the source. Each indi-

vidual i = 1, . . . , N∗ has phenotype xi ∈ Rn and relative Malthusian fitness mi =

−‖xi − x∗‖2/2, with corresponding Darwinian fitness emi . At each generation, N∗ in-

dividuals are sampled with replacement proportionally to their Darwinian fitness. Mu-

tations are simulated by randomly drawing, every generation and for each individual,

a Poisson number of mutations, with rate U . Mutation acts additively on phenotype,
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with individual effects dx drawn into an isotropic multivariate Gaussian distribution

with variance λ per trait (see Section 2.2). Simulations were started with a homo-

geneous population (xi = x∗ for all i at initial time) and ran for 20/µ generations

(the predicted time taken to reach a proportion q of the final equilibrium mean fitness

is atanh(q)/µ, see Appendix F, Section “Characteristic time” in Martin and Roques

(2016); with atanh(q) = 20, one can consider that the equilibrium has been reached).

An example of the distribution of absolute fitness in the resulting (equilibrium) source

population, after migrating into the sink (distribution of rmax − ‖xi‖2/2) is presented

in Fig. 1.

Sink population. We started with N(0) = 0 individuals in the sink. Then, the process

to go from generation t to generation (t+1) is divided into three steps: (i) migration: a

Poisson number of migrants, with rate d, was randomly sampled from the equilibrium

source population, and added to the population in the sink; (ii) reproduction, selection

and drift: each individual produced a Poisson number of offspring with rate exp(ri) =

exp(rmax + mi) (absolute Darwinian fitness in the sink); (iii) mutation followed the

same process as in the source population. The stopping criterion was reached when

N(t) > 1.5 · 106 individuals or t > 5 · 103 to limit computation times.

All the Matlabr codes to generate individual-based simulations are provided in

Supplementary File 1.

3 Results

3.1 Trajectories of mean fitness

Dynamics of r(t) and N(t). The system (1) & (6) leads to an expression for the

mean absolute fitness (Appendix D):

r(t) =
f(t)− 1∫ t
0
f(τ) dτ

, with f(t) = exp

[(
rmax − µ

n

2

)
t+

mD

2µ
(e−2µ t − 1)

]
. (7)

It also leads to an expression for the population size thanks to N ′(t) = r(t)N(t) + d.

(see eq. (A7) in Appendix D).

As illustrated in Figs. 2-4, under the WSSM assumption (U > Uc := n2 λ/4), both

the stochastic individual-based simulations and the analytic expressions show that sink

invasion tends to follow four different phases, which are all the more pronounced as the
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habitat difference mD increases. Phase 1: During the first generations, the mean fitness

slightly increases; Phase 2: The mean fitness remains stable. Phase 3: Rapid increase

in mean fitness. Phase 4: The mean fitness stabilizes at some asymptotic value. In the

case of establishment failure (Fig. 4), the adaptation process remains in Phase 2.

In Fig. 2, the trajectory from individual simulations (population’s mean fitness,

left panels and population size, right panels) is shown by colored lines, and the mean

outcome over simulations is shown by dashed lines. This mean outcome over simulations

can be compared to the deterministic theory in eq. 7. In all cases, the deviation between

theory and mean of simulations is limited, but the stochastic variation around this mean

can be substantial, as mD increases. Further analysis of the deviation between theory

and simulations is presented in Appendix E (exploring regimes outside the WSSM, when

U < Uc), in Fig. 6 (over a wide range of parameters) and discussed in Appendix F.

Phenotypic dynamics over the different phases of invasion. Obviously the di-

vision into four phases could be deemed somewhat arbitrary, and it is clearly less marked

with milder habitat difference (top panels of Fig. 2). However, it does convey the qual-

itative chronology of the whole process in all cases. This can be further understood by

exploring the dynamics of the phenotypic distribution over time: a typical example for

a single simulation is given in Fig. 3, at four times corresponding to each of the four

phases. We show here the marginal phenotypic distribution along the one meaningful

dimension, that for which the optimum is shifted between source and sink (the opti-

mum in the sink is 0, and the optimum in the source x∗ = (
√

2mD, 0, . . . , 0)). The

corresponding trajectories of fitness and population size are available in Appendix G

(Fig. A2). A video file of the phenotype distribution is also available as Supplementary

File 2.

During Phases 1 and 2, the phenotypic distribution is fairly stable and slightly

shifted from the source distribution towards the sink optimum. The short Phase 1

merely witnesses an increase in population size from zero to the semi-stable Phase 2.

We suggest that this semi-stable state approximately corresponds to a macroscopic

“equilibrium” between migration and selection on the bulk of phenotypes. Here, we

conjecture a negligible impact of mutation on this bulk because simulations in the

absence of mutation in the sink yield a very similar phenotypic distribution during

Phase 2 (Appendix L, Fig. A6). However, over the course of Phase 2, a second mode

slowly appears closer to the sink optimum, due to the invasion of rare, better adapted,

phenotypes (generated by the combined effects of rare adapted migrants and de novo

mutation in the sink).
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(a) mD = 0.2 (b) mD = 0.2

(c) mD = 0.3 (d) mD = 0.3

(e) mD = 0.4 (f) mD = 0.4

Figure 2: Trajectories of mean fitnesses and population sizes in a WSSM regime,

depending on the habitat difference. Solid lines: analytical predictions given by

formulae (1) and (7) vs 100 trajectories obtained by individual-based simulations (blue curves

for r(t) and red curves for N(t); dashed lines: mean values averaged over the 100 populations).

Horizontal dashed-dotted lines: theoretical value of r(∞) = rmax − µn/2 (left panels) and

equilibrium population size −d/r(0) in the absence of adaptation (right panels). The four

phases of invasion (Phases 1-4, see main text) are illustrated by distinct shaded areas on

panel (e). The parameter values are U = 0.1 (thus, U > Uc = 0.03, which is consistent with

the WSSM regime), rmax = 0.1, λ = 1/300, n = 6 and d = 104. Due to the stopping criterion

N(t) = 1.5 · 106 was reached, the mean values could not be computed over the full time span.
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(a) Phase 1: t = 10 (b) Phase 2: t = 60

(c) Phase 3: t = 220 (d) Phase 4: t = 300

Figure 3: Marginal phenotype distribution in the sink, along the direction x1. The

vertical dotted lines correspond to the sink (x1 = 0) and source (x1 =
√

2mD) optima. The

black dotted curve corresponds to the theoretical distribution of migrant’s phenotypes in the

sink (Gaussian distribution, centered at x1 =
√

2mD, and with variance µ =
√
U λ). In all

cases, the parameter values are mD = 0.4, U = 0.1, rmax = 0.1, λ = 1/300, n = 6 and d = 104.

When the second mode generated during Phase 2 becomes significant in frequency,

Phase 3 starts with a rapid increase of the second mode (and of mean fitness), because

phenotypic and fitness variance are then maximized. The last Phase 4 corresponds to

the new equilibrium dominated by a mutation selection balance around the sink opti-

mum. In the present model without density limitations, migration becomes ultimately

negligible as the sink population explodes, and its phenotypic distribution ultimately

reaches exactly a new mutation-selection balance.
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Sources of the stochastic deviations around the deterministic theory. In

Fig. 2, most of the stochastic deviations from the mean trajectory (dashed line) or

model’s prediction (plain lines) appears to arise during Phase 2. Indeed, after this

phase, the trajectories appear regular, similar in shape with the deterministic model,

but shifted in time relative to this expected trajectory. This suggests that after phase 2,

the system is roughly deterministic, with a waiting time that is stochastic, determined

during Phase 2. Intuitively, this stochastic variability in the duration of Phase 2 should

depend on the population size at this stage. Let us approach this population size by the

equilibrium size without evolution, see Appendix F: d/|r(0)| = d/|mD + µn/2− rmax|.
We observe that it decreases as mD is increased, leading to more variation in the waiting

time before Phase 3, as observed in the simulations of Fig. 2.

However, quantitatively, a fairly limited variation of mD (only by a factor 2 from

Fig. 2 (a,b) to (e,f)) implies a large increase in the stochastic variation of the waiting

time. This suggests that the effect does not only lie in a mere population size effect

but also in the fact that, as mD increases, the proportion of mutant genotypes resis-

tant to the sink (coming from the source or arising de novo) drops very sharply with

maladaptation (Anciaux et al., 2019). By “resistant to the sink”, we mean a genotype

with a positive growth rate in that environment (in the absence of migration). The sink

population ultimately descends from these few resistant lineages, which arise at variable

times and show stochasticity in their early growth. These two eects make the initial

dynamics stochastic; only when the lineage has grown in number the dynamics become

deterministic. At large mD, a few resistant lineages determine ultimate trajectory of

the entire sink population, hence there is more variability across replicates.

Effect of the immigration rate. The value of r(t) in formula (7) does not depend on

the immigration rate d. Thus, only the population size dynamics are influenced by the

immigration rate, but not the evolutionary dynamics. Actually, a simple mathematical

argument (Appendix H) shows that this property will apply beyond the present model.

The result arises for any model where (i) the evolutionary and demographic dynamics

in the sink are density-independent (apart from the impact of migration) and (ii) the

sink is initially empty (or at least d � N(0)). This means that it should apply for

a broad class of models of asexual evolution in black-hole sinks. Whether it applies

outside of this class of models remains an open question (e.g. how sexual reproduction

would affect the result).

An intuition for the independence of r(t) on d might be framed as follows: if d is

increased (resp. decreased), the sink fills in more (resp. less) rapidly, from N(0) = 0,
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proportionally to the increase (resp. decrease) in d, at all times. Therefore things

cancel out in the migration contribution on frequencies (d/N(t) is unaffected), and

this contribution is the only one where d enters the dynamics. Overall increasing or

decreasing d thus has no effect on genotype frequency dynamics, although it does affect

population sizes.

Long time behavior. As seen in Fig. 2, r(t) converges towards an asymptotic value

r(∞) at large times. The expression (7) shows that this value depends on rmax, µ and n.

It becomes dependent on the habitat difference mD, only in the case of establishment

failure. More precisely, we get:

if rmax − µn/2 ≥ 0 then r(∞) = rmax − µn/2, and N(∞) =∞
if rmax − µn/2 < 0 then r(∞) = rmax − µn/2− δ(mD), and N(∞) = −d/r(∞),

(8)

for some function δ(mD) such that mD > δ(mD) > mD/8 for µ large enough (the

inequality δ(mD) > mD/8 is true whatever the phenotype dimension n). When n is

large enough, sharper lower bounds can be obtained, e.g. δ(mD) > 3mD/8 for n ≥ 6),

see Appendix I.

These asymptotic results can be interpreted as follows. Below some threshold (U <

Ulethal := 4r2max/(λn
2), or equivalently µ < µlethal := 2rmax/n), establishment is always

successful and the sink population ultimately explodes (as we ignore density-dependence

in the sink). As d/N(∞) = 0, the demographic and evolutionary effects of migrants

thus become negligible (being diluted in an effectively infinite population). The sink

population thus reaches mutation-selection balance, with a mutation load µn/2, as if

it was isolated. It ultimately grows exponentially at rate rmax − µn/2 as illustrated in

Fig. 2.

On the contrary, large mutation rates (U ≥ Ulethal or equivalently µ ≥ µlethal) lead

to establishment failure, which is a form of lethal mutagenesis (see Bull et al. (2007)

for viruses and Bull and Wilke (2008) for bacteria) illustrated in Fig. 4. In this regime,

the mutation load µn/2 is larger than the absolute maximal fitness rmax in the sink.

Therefore, at mutation-selection balance and even in the absence of any migration,

the population could never show positive growth: establishment is impossible because

the fitness peak is too low, given the mutation rate and effect. We further identify a

“jump” of amplitude δ(mD) in the equilibrium mean fitness, as µ increases beyond the

lethal mutagenesis threshold (illustrated in Fig. 5). Then, the population ultimately

reaches a stable size determined by an immigration - decay equilibrium: a migration

load can build up at equilibrium (δ(mD)) together with the mutation load (µn/2). This
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(a) U = 0.44 > Ulethal (b) U = 0.44 > Ulethal

Figure 4: Trajectories of mean fitnesses and population sizes, lethal mutagenesis

regime. Same line types as in Fig. 2. Other parameter values are mD = 0.2, rmax = 0.1,

λ = 1/300, n = 6 and d = 104, leading to a theoretical threshold value for lethal mutagenesis

Ulethal = 4r2max/(λn
2) = 0.33. The panel (a) illustrates the change in the behavior of the

equilibrium mean fitness as rmax − µn/2 becomes negative.

migration load is produced by the constant inflow of maladapted genotypes from the

source and does depend on the habitat difference mD. It is this migration load that

creates the “phase transition” in equilibrium fitness as µ crosses beyond µlethal, the

lethal mutagenesis threshold (Fig. 5).

3.2 Establishment time t0

Of critical importance is the waiting time until the sink becomes a source, when this

happens, namely the time t0 at which r(t) becomes positive. This section is devoted to

the analysis of this time.

Derivation of an analytical expression. Using expression (7), we can solve the

equation r(t0) = 0. We recall that, due to our assumptions, t0 > 0, i.e. r(0) =

rmax − µn/2−mD < 0.

The result in (8) shows that t0 =∞ if rmax − µn/2 ≤ 0 (establishment failure). In

the case of successful establishment (mD > r(∞) = rmax−µn/2 > 0), the waiting time

to this establishment is:

t0 =
1

2µ

[
c+W0

(
−c e−c

)]
, c =

mD

rmax − µn/2
, (9)
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Figure 5: Mean fitness at large times, dependence with µ and mD. The solid lines

are the values given by formula (8). The crosses correspond to the result of individual-based

simulations. The dashed-dot line corresponds to rmax − µn/2; the gap between the dashed-

dot line and the solid lines represents the amplitude of the jump δ(mD). Parameter values:

rmax = 0.1, n = 6.

with W0 the principal branch of the Lambert-W function (see Appendix J).

First of all, eq. (9) shows that the waiting time is independent of the dispersal

rate d. This was further supported by individual-based simulations (Fig. 6a) as t0 was

found to drop rapidly to its predicted value as d increases, to then become independent

of d. The waiting time satisfies (c − 1)/(2µ) ≤ t0 ≤ (c − 1)/µ for all c ≥ 1. As c

becomes larger, W0 (−c e−c) ≈ 0, and t0 ≈ c/(2µ), so the establishment time increases

close to linearly with the habitat difference mD. The condition c ≥ 1 corresponds to

mD ≥ rmax − µn/2 ≈ 0.05 in Fig. 6c (lower values of mD lead to t0 = 0 and are

therefore not taken into account). This near-linear dependence was also found in the

individual-based simulations, at least until the habitat difference becomes too large,

compared to mutation and migration. In that case, the sink population remains fairly

small for a long time and our deterministic approximation no longer applies, at least

in the early phases (1 and 2) of invasion (see Appendix F). Eq. (9) also implies that

the establishment time t0 decreases with rmax and increases with n. The dependence

with respect to the mutational parameter µ is more subtle: as µ is increased, t0(µ) first

decreases until µ reaches an “optimal value” (minimizing invasion time), then t0(µ)

increases until µ reaches the lethal mutagenesis threshold (µlethal = 2 rmax/n). This

behaviour always holds, as proven analytically in Appendix J. This non-monotonic

variation of t0 with mutation rate (here with µ =
√
Uλ) was also found in individual-

based simulations (Fig. 6b). Fig. A4 in Appendix L shows that local mutation in the

18



sink can either reduce or increase t0 depending on µ and mD.

Effect of an intermediate sink. The simulations identify a sharp transition, in the

habitat difference, beyond which establishment does not occur (or occurs at very large

times), see Appendix K. We see in Fig. 6 that as mD gets close to this threshold, the

dependence between t0 and mD shifts from linear to superlinear (convex). Based on

previous results on evolutionary rescue in the FGM (Anciaux et al., 2018), we conjecture

that this pattern is inherent to the phenotype fitness landscape model. In the FGM,

higher habitat difference mD is caused by a larger shift in optimum from source to sink.

This has two effects, (i) a demographic effect (faster decay of new migrants, on average)

and (ii) an evolutionary effect. This latter effect is simply due to the geometry of the

landscape. Indeed, when the shift in optimum from source to sink is larger, there are

fewer genotypes, in the migrant pool, that can grow in the sink and they tend to grow

more slowly. This effect is highly nonlinear with mD, showing a sharp transition in the

proportion of resistant genotypes beyond some threshold (for more details see Anciaux

et al., 2018).

We argue that this type of dependence has important implications for the potential

effect of an intermediate milder sink, with phenotype optimum xI in between x∗ (opti-

mum in the source) and 0 (optimum in the sink), connected by a stepping-stone model

of migration. A natural question is then whether the presence of this intermediate sink

affects the waiting time to establish in the harsher sink. In that respect, assume that

the overall habitat difference (fitness distance between optima) is the same with and

without the intermediate habitat I: schematically, mD = mD(x∗ → 0) = mD(x∗ →
xI) +mD(xI → 0). When mD is low, t0 is roughly linear with mD so that it may take a

similar time to establish in two step and in one (the sum of intermediate establishment

times would be the same as that to establish in a single jump). However, for higher

habitat difference where t0 is superlinear with mD, the intermediate habitat could pro-

vide a springboard to invade the final sink, if both intermediate jumps are much faster

than the leap from source to final sink.

To check this theory, we considered a new individual-based model with an interme-

diate habitat with phenotype optimum xI such that ‖x∗ − xI‖2/2 = ‖xI‖2/2 = mD/2.

The dynamics between the source and the sink are the same as those described in

Section 2.5. In addition, we assume that (1) the source also sends migrants to the

intermediate habitat at a rate d; (2) reproduction, selection and drift occur in the in-

termediate habitat following the same rules as in the sink, until the population NI(t)

in the intermediate habitat reaches the carrying capacity K = N∗ (same population

19



(a) (b)

(c)

Figure 6: Establishment time t0, dependence with the immigration rate d, the

mutational parameter µ and the habitat difference mD. Theoretical value of t0

(black curve) vs value obtained with individual-based simulations (red crosses) and interval

between the 0.025 and 0.975 quantiles of the distribution of t0 obtained from 103 simulations

(pink shading), with fixed mD = 0.2, U = 0.1 (panel a), mD = 0.2, d = 103 (panel b)

and fixed d = 103, U = 0.1 (panel c). The vertical dotted line in panel b corresponds to

U = Uc (µ =
√
Uc λ). The blue crosses in panel (c) correspond to the establishment time

tI0(mD), obtained by individual-based simulations, in the presence of an intermediate habitat

with phenotype optimum xI such that ‖x∗ − xI‖2/2 = ‖xI‖2/2 = mD/2. In all cases, the

parameter values are rmax = 0.1, λ = 1/300, n = 6.
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size as in the source); (3) the intermediate habitat sends migrants to the ultimate sink,

at rate dNI(t)/N
∗. Then, we computed the time tI0(mD) needed to establish in the

final sink, in the presence of the intermediate habitat (value averaged over 100 replicate

simulations).

The results presented in Fig. 6c (blue crosses) confirm that for small mD, the pres-

ence of an intermediate habitat has almost no effect (tI0(mD) ≈ t0(mD)). However, when

mD becomes larger and t0(mD) becomes superlinear, the establishment time in the sink

is dramatically reduced by the presence of the intermediate sink (tI0(mD) � t0(mD);

e.g., for mD = 0.5, 5 · 103 ≈ t0(mD)� tI0(mD) ≈ 364).

4 Discussion

We derived an analytically tractable PDE-ODE framework describing evolutionary and

demographic dynamics of asexuals in a source-sink system. This approach reveals the

typical shape of the trajectories of mean fitness and population sizes in a sink: (1)

in the case of establishment failure, after a brief increase, the mean fitness remains

stable at some negative level which depends on the habitat difference; (2) in the case of

successful establishment, this “plateau” is followed by a sudden increase in mean fitness

up to the point where it becomes positive and the sink becomes a source. Note that

here, we ignored density dependent effects in the sink, so that mean fitness ultimately

converges towards an equilibrium that is independent of any migration effect, the latter

being diluted into an exploding population.

The first three phases predicted by the model, for the case of successful estab-

lishment, are qualitatively observed in (Dennehy et al., 2010), an experimental study

of invasion of a black-hole sink (an asexual bacteriophage shifting to a new bacterial

host). The “host shift” scenario in their Fig. 3 corresponds roughly to our scenario

with a population evolved on the native host sending migrants to a new host. The

conditions may differ however as the population may not be initially at equilibrium in

the native host at the onset of migration. Yet, the dynamics are qualitatively simi-

lar to those in our Fig. 2, although the time resolution in the data is too limited to

claim or test any quantitative agreement. An extension of the present work could be

to allow for non-equilibrium source populations, which can readily be handled by the

PDE (6) (reformulating φ(z) = φ(z, t)). However, our analytical result on t0 does rely

on an equilibrium source population. Note also that the four phases identified here

are observed, in simulations, even in the low d or low U regimes where our analytical

derivations can break down quantitatively. Therefore, while the model may provide
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qualitatively robust insight, quantitative analyses are necessary to really test its pre-

dictions. This would ideally include associated measures of decay rates rD, mutation

rate U and ideally maximal possible growth rate rmax, with a known immigration rate

d.

Quite unexpectedly, the evolutionary dynamics (especially the waiting time t0 to

establishment) do not depend on the immigration rate. This emerges mathemati-

cally from the fact that the evolutionary dynamics only depend on the population size

through the ratio N(t)/d between the current population size and the immigration rate,

this ratio itself remaining independent of d. This is confirmed by stochastic individual-

based simulations (Fig. 6a): establishment time roughly decreases as 1/d when d is

small but indeed stabilizes as d becomes larger. This result a priori extends to any

model where evolution and demography are density-independent (see Appendix F).

However density dependent effects on demography or evolution (including sexual re-

production) might alter this outcome. Yet, we argue that purely demographic effects

due to a finite carrying capacity in the sink environment should have limited impact

on the conclusions of our model, up until establishment time (as long as K is large

enough).

Instead of the establishment time t0, one may adopt an “evolutionary rescue” view-

point, and focus on the time t1 at which a lineage ultimately destined to produce a

resistant genotype, enters the sink. This lineage may be very rare by t = t1, it may

even not be resistant itself but only destined to produce a mutant offspring that will be.

The time t0 at which the sink will de facto be a positively growing source can thus be

far later. A study and comparison of both waiting times is interesting and feasible, but

beyond the scope of the present paper. This remark, however, has one key implication:

migration may be stopped long before t0 and the sink may still ultimately become a

source, with some probability that depends on d.

Some insight into the possible effects of management strategies, e.g. quarantine (d),

lethal mutagenesis (U), prophylaxis (mD and rmax), can be developed from the results

presented here.

Migration (propagule pressure) is considered an important determinant of the suc-

cess of biological invasions in ecology (Von Holle and Simberloff, 2005; Lockwood et al.,

2005). Consistently, it has been shown that the factors increasing potential contacts

between human populations and an established animal pathogen or its host tend to in-

crease the risk of emergence of infectious diseases (Morse, 2001). Under the “repeated

rescue approach” above, it is indeed expected that emergence risk should increase with

the contact rate. However, the present work shows that the time at which this emer-
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gence will be de facto effective (visible) may be unaffected by this contact rate. This

means that care must be taken in the criteria chosen to evaluate strategies, and between

the minimization of emergence risk vs. emergence time.

The use of a chemical mutagen to avoid the adaptation of a microbial pathogen

and the breakdown of drugs is grounded in lethal mutagenesis theory (Bull et al., 2007;

Bull and Wilke, 2008). Our approach successfully captures the occurrence of this phe-

nomenon: the establishment fails when the mutation rate U exceeds a certain threshold,

which depends on rmax, on the mutational variance λ and on the dimension of the phe-

notypic space. Additionally, once this threshold is reached, the equilibrium mean fitness

ceases to depend linearly on the mutational parameter (µ =
√
U λ), but rapidly decays

(see Fig. 5). The existence of this negative “jump” in the equilibrium mean fitness,

whose magnitude depends on the habitat difference, leaves no room for evolutionary

rescue. Conversely, our approach also reveals that below the lethal mutagenesis thresh-

old, increasing the mutation rate decreases the establishment time as 1/
√
U . Hence, the

use of a mutagen may be a double-edged sword since it can both hamper or increase the

potential for adaptation in the sink. Note that these effects of lethal mutagenesis are

only meaningful when the maximum absolute fitness in the source is larger than that in

the sink (rmax); otherwise, the source itself would be destroyed by lethal mutagenesis.

As expected, the establishment time t0 increases with the habitat difference mD;

the population simply needs more time to adapt to harsher environmental conditions.

Increasing mD or decreasing rmax, whenever possible, are probably the safest ways

to reduce the risks of biological invasions through adaptive processes or cross-species

transmissions of pathogens (in both low and high d regimes). The precise dependence of

t0 with respect to mD brings us further valuable information. As long as our approach

is valid (not too large mD, leading to finite establishment times), a linear dependence

emerges. It suggests that, in a more complex environment with a source and several

neighbouring sinks connected by a stepping stone model of migration, the exact pathway

before establishment occurs in a given sink does not really matter. Only the sum of

the habitat differences due to habitat shifts has an effect on the overall time needed to

establish in the whole system. Conversely, for larger mD our analytical approach is not

valid, and the numerical simulations indicate a convex (superlinear) dependence of t0

with respect to mD. In such case, for a fixed value of the cumulated habitat difference,

the establishment time in the sink could be drastically reduced by the presence of

intermediate sink habitats.

This result, which needs to be confirmed by more realistic modelling approaches

and empirical testing, might have applications in understanding the role of so-called
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“preadaptation” in biological invasions. Recent adaptation to one or more facets of

the environment within the native range has been proposed as a factor facilitating

invasions to similar environments (e.g. Hufbauer et al., 2012, anthropogenically induced

adaptation to invade). Our results suggest that preadaptation might reduce the overall

time to invasion (i.e., taking the preadapation period into account) only when invading

habitats very different from the native habitat (as measured by the habitat difference).

The effect of a given environmental challenge, and thus their joint effects when com-

bined (Rex Consortium, 2013), might be modelled in various ways in a fitness landscape

framework (see also discussions in Harmand et al., 2017; Anciaux et al., 2018). The first

natural option is to consider that multiple stresses tend to pull the optimum further

away, and possibly lower the fitness peak rmax. In the simplified isotropic model studied

here, a larger shift in optimum amounts to increasing mD. However, a possibly more re-

alistic anisotropic version, with some directions favored by mutation or selection, might

lead to directional effects (where two optima at the same distance are not equally easy

to reach) and be particularly relevant to multiple stress scenarios. Such a more com-

plex model could be handled by focusing on a single dominant direction (discussed in

Anciaux et al., 2018), or by following multiple fitness components (one per direction).

With this last approach, (Hamel et al., 2019) showed that, in a single-population model

without immigration and demography, most of the mathematical results in (Martin and

Roques, 2016) in the WSSM regime can be extended to take anisotropic effects into

account (e.g., on mutations). This leads to trajectories of adaptation which can exhibit

several “plateaus”, corresponding to successive adaptation along each direction, at time

scales which depend on the respective mutational variances at each trait. The joint ef-

fects of immigration and anisotropy could be handled by combining their results with

the framework developed here. Although some of the effects predicted in the present

work should still hold within this more general framework (for instance regarding the

effect of d and mD), the four-phases trajectory of adaptation may be modified (occur-

rence of additional plateaus?), and the mutational effects on the establishment time

should depend on the directions favored by mutation.
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