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Abstract 

 

DNA Double Strand Breaks (DSB) are harmful lesions that severely challenge genomic 

integrity and recent evidence suggests that DSBs occur more frequently on the genome 

than previously thought. These lesions activate a complex and multilayered response 

called the DNA Damage Response, which allows to coordinate their repair with the cell 

cycle progression. While the mechanistic details of repair processes have been narrowed 

thanks to several decades of intense studies, our knowledge of the impact of DSB on 

chromatin composition and chromosome architecture is still very sparse. However, the 

recent development of various tools to induce DSB at annotated loci, compatible with next-

generation sequencing-based approaches, is opening a new framework to tackle these 

questions. Here we discuss the influence of initial and DSB-induced chromatin 

conformation and on the strong potential of 3C-based technologies to decipher the 

contribution of chromosome architecture during DSB repair. 

  



3 
 

The DNA Double Strand Break response and repair 

DNA Double Strand Breaks (DSBs) represent challenging lesions for cells, as they can lead to 

major genome rearrangement such as translocations, aneuploidy, and deletions/amplifications. 

While previously considered to be almost exclusively induced by environmental agents 

(radiation, chemicals) with the exception of programmed induction by endogenous nucleases 

(during meiosis and Immunoglobulin loci rearrangement), it is now well admitted that DSBs 

are also regularly triggered during normal cell metabolism. More specifically, the development 

of DSB mapping technologies, such as BLESS, BLISS, DSBCapture, END-seq or BrlTL ([1–

6], reviewed in [7]) have recently revealed insights on the distribution of endogenous DSBs 

across the genome. These genome-wide analyzes identified transcriptionally active loci and 

Transcription Start Sites (TSS) as particularly prone to breakage (for instance [3,6], reviewed 

in [7,8]). These studies also further revealed a compelling connection between DSB production 

and chromosome architecture, identifying binding sites for CTCF and cohesin (main genome 

organizers) as preferential damage sites due to Topoisomerase activity and/or fork collapse 

[5,9–12]. At loop anchors, Topoisomerase II recruitment could further trigger production of 

DSB, upon transcriptional activation of closeby genes [9–11].  

Beyond the influence of chromosome loops in DSB formation, supported by a growing body 

of evidence, an emerging concept is also that DSB formation further modifies chromosome 

architecture and organization in the nuclear space. Given the potential for unscheduled rejoining 

of two DSBs to trigger translocations, and the previously reported bias for translocation to occur 

in active loci in cancer cells, it is urgent to understand how DSBs modify chromosome 

organization and architecture and how this impacts genome (in)stability.  

Various pathways contribute to repair DSB in eukaryotes, including Homologous 

Recombination (HR) and Non Homologous End Joining (NHEJ) (reviewed in [13,14]). HR 

entails processing of DNA ends in order to generate single strand DNA (resection) which will 



4 
 

invade a homologous copy of the broken locus, further used as template for DNA synthesis. 

NHEJ rather directly rejoins the two DNA ends. Mechanistically these two pathways are 

profoundly different and likely necessitate different chromatin composition and properties for 

proper execution. At a molecular level, ChIP-seq and imaging studies have started to determine 

the histone modifications landscape assembled at DSB, as well as their function in DSB repair 

(reviewed in [15]). Yet the conformation of chromatin around DSBs and the chromosome 

organization in damaged nuclei have only recently started to be investigated. 

One of the striking feature of the DNA Damage Response (DDR) is the assembly of 

microscopically visible foci in the nucleus, which display massive phosphorylation of the 

H2AX histone variant (H2AX) [16], as well as accumulation of repair factors. Although efforts 

have been made to understand the protein content of these foci, their exact composition and 

conformation at the DNA level is still unknown. One of the main reasons for this scarcity of 

data stands in the long-lasted inability to control the position of induced DSB on the genome. 

Indeed, except in yeast where the ability of the HO endonuclease to cleave the MAT locus for 

mating type switching was utilized as a tool to investigate site-specific DSB repair, DSBs have 

routinely been induced by exposure to genotoxic (drugs and radiation) generating damage in a 

heterogeneous manner in the cell population and at unknown (but not necessarily random) 

positions, which precluded the use of Chromosome Conformation Capture (3C)-based methods 

to investigate chromatin conformation around DSBs. This has been solved recently thanks to 

the development of several tools to induce breaks at annotated positions, using restriction 

enzymes and homing endonucleases (e.g. AsiSI, I-PpoI), Zinc Fingers and TALE Nucleases, 

or the CRISPR/Cas9 system [17]. With these novel experimental systems, the molecular 

characterization of DNA conformation around DSB and more generally the folding of damaged 

chromosomes within the nucleus is now within reach. 
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Two main questions should primarily focus our attention. First we need to understand how the 

initial chromosome conformation and organization in the nucleus may contribute to ensure 

proper DSB signaling and repair. Second, we shall wonder how this initial chromatin 

conformation is modified upon damage to participate in repair events safeguarding genome 

integrity.  

 

How does initial chromatin architecture contribute to DSB signaling and repair? 

The genomic localization of DSBs strongly impacts their signalization and repair. For instance, 

clear evidence suggests that DSB occurring in heterochromatin [18,19], rDNA [20] or 

transcribed loci [8] display specialized repair pathways. The chromatin composition of the 

broken locus (involving for example histone marks like H3K36me3 for Transcription-Coupled 

DSB repair [21–23]; or bona fide chromatin constituents such as KAP1 for heterochromatic 

repair [24,25]) as well as its spatial position within the nucleus (for instance, at the nuclear 

periphery [26]) have been clearly established as main contributors in determining which 

pathway should be used at each genomic location (a decision known as “DSB repair pathway 

choice”) [27]. However, at this stage it is not known whether, beyond the sub-nuclear 

localization of a locus and its chromatin composition, the chromosome conformation also plays 

a role in DSBs signaling and repair. Nevertheless, some hints suggest this is likely the case.  

Initial chromatin conformation regulates HR. 

The fact that chromosome conformation within the nucleus regulates HR is particularly evident 

from studies in yeast, showing that efficiency of sub-telomeric recombination is strongly 

affected by telomeres clustering and anchorage [28,29]. Beyond telomeres, moving an HO site 

at different positions along yeast chromosomes revealed a compelling correlation between the 

frequency of homologous recombination and the proximity with the homologous locus, 
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observed by 3C before damage induction [30]. Thus initial spatial proximity between the broken 

locus and a donor sequence is a key feature that determines the efficiency of homologous 

recombination. 

Initial chromatin conformation could regulate H2AX spreading. 

Evidence also suggests that chromosome architecture might control H2AX spreading 

(reviewed in [31,32]) (Figure 1). Indeed, H2AX mapping by ChIP-chip around multiple DSBs 

induced by the restriction enzyme AsiSI in human cells (the so called DIvA cell line for DSB 

Induced via AsiSI) revealed that H2AX spreads on 1-2 megabases surrounding DSBs, in a 

manner that is i) reproducible and constrained within boundaries, ii) not necessary symmetrical 

around the break and iii) uneven with peaks and valleys, suggesting that the surrounding 

epigenomic landscape and/or chromatin architecture may regulate H2AX spreading [33]. A 

follow up study uncovered a potential function for cohesins in regulating H2AX distribution 

and in insulating transcribed genes encompassed in H2AX domains from transcription 

extinction [34]. Moreover, by then, comparison of published Hi-C data generated in undamaged 

cells [35] with H2AX domains boundaries revealed a striking tendency of H2AX spreading 

to stop at Topologically Associating Domains (TADs) boundaries [34]. In agreement, the 

occupancy of the chromatin looping factor CTCF was found juxtaposed to γH2AX foci using 

super-resolution light microscopy [36]. Altogether, these results raise the exciting hypothesis 

that once bound to the DSB, the kinase(s) involved in H2AX phosphorylation allows H2AX 

spreading by modifying nucleosomes brought into spatial proximity thanks to the initial 

chromatin architecture surrounding the DSB (the “Intra-TAD model” [31,32]) rather than by 

linearly walking along the chromosome. This hypothesis is further supported in yeast, where 

H2A spreading was also found to occur in trans (on other chromosomes) when a DSB was 

induced close to a centromere, as a consequence of centromeres clustering within nuclei [37]. 
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Initial chromatin conformation regulates production and repair of programmed DSB. 

Beyond these evidences that pre-existing chromosome architecture contributes to DSB 

signaling and repair, chromosome organization is also likely a key feature in the repair of 

programmed DSBs induced during meiosis and immunoglobulin loci rearrangements (Figure 

1). During the prophase of meiosis, chromosomes undergo profound reorganization which 

entails progressive condensation, loss of long-range inter-chromosomal contacts, TADs 

dissolution and the formation of arrays of chromatin loops anchored to a chromosomal axis 

[38–43]. Within this context, the topoisomerase-like Spo11 endonuclease induces DSBs in a 

tightly regulated manner, which are further processed and -for some of them- converted into 

mature crossovers, necessary to ensure chromosome segregation and completion of meiosis. 

Importantly, crossover formation depends on the “homologous bias” that consists in choosing 

the homologous chromosome as a template over the sister chromatid (reviewed in [44,45]). 

Notably, germ cells-specific chromosome architecture plays a critical role in both determining 

the distribution of DSBs along the chromosome and in the homologous bias. Indeed, in 

S.cerevisae, Spo11-dependent DSBs are being formed within DNA loops in a manner that 

depends on multiple axial factors such as the meiosis specific cohesin subunit Rec8 [46,47], the 

Spp1 protein [48], Red1 [46], or the Spo11 accessory complex, RRM (Rec114-Mei4-Mer2) 

[49]. Additionally, components of the structural axis (such as Rec8 or Red1) are also strongly 

involved in regulating the homologous bias [47] and the axis further acts as a platform for 

recombination. This peculiar chromosome architecture that is assembled in meiotic cells hence 

displays a prominent role into DSB production and repair. 

Programmed DSBs also occur at the Immunoglobulin (Ig) loci to ensure V(D)J recombination 

for antibody diversification and Class Switch Recombination (CSR) to generate different 

antibody isotypes. On the Ig heavy chain locus (Igh) productive CSR results in a deletion event 

after recombination between two Switch (SH) sequences, located up to 100kb apart. Here as 
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well, the initial 3D chromatin conformation exerts a regulatory role on both break formation 

and repair ([50,51] reviewed in [52]). For instance, deletion of the CTCF-binding sites 

encompassed in the Igh Superanchor (SA), correlates with a decrease in cohesin-mediated loop 

extrusion (detected by “stripes” on Hi-C maps) and reduces CSR [50]. Similarly, V(D)J 

recombination, both on Ig and Igh loci, strongly relies on long-range chromatin interactions. 

For instance, deletion of CTCF-binding sites in the Intergenic Control Region-1 (IGCR1) 

upstream the D segments on Igh locus, impairs normal V to DJ recombination and B cells 

development in a manner that coincides with modification of chromosomal loops [53,54]. 

Similarly, deletion of a specific enhancer-CTCF bound- element on the Ig locus perturbs the 

antibody repertoire in a manner that also correlates with the loss of long-range interaction [55]. 

It is hence clear from all these studies that the initial chromosome architecture contributes to 

DSB signaling, processing and repair. Yet, while our knowledge regarding the role of long-

range chromatin interactions and TADs during repair of programmed DSBs quickly expands, 

our understanding of their function into repair of endogenous DSBs in somatic cells still lags 

behind and will necessitate future 3C-based studies using sequence-specific DSB induction 

systems.  

 

How does Chromatin Architecture change post- damage in cis to DSB, within H2AX 

domains? 

Another important question that needs to be addressed is the nature of the changes in 

chromosome architecture following damage (Figure 2). Indeed, DSB-induced modifications in 

the size of DNA loops or the position of TADs boundaries could regulate chromatin flexibility 

(stiffness) thereby regulating the DSB mobility in the nucleus [56]. This could also help to 

“burry” (ie. protect) the DSB from its environment which therefore may have profound impacts 
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on translocation biogenesis, partner choice for homologous recombination and more generally 

on genome integrity. Plenty of evidence supports that chromatin in cis to DSB displays a 

different behavior in terms of mobility, rigidity and compaction (reviewed in [31,57]). In 

particular, laser-mediated, localized damage triggers a rapid chromatin decompaction at the 

sites of breaks [58–60], in agreement with observations that H2AX foci displays decondensed-

like appearance [61,62], suggesting that indeed, a DSB induces dramatic changes in chromatin 

conformation in cis. However, nearly all studies were performed using imaging, and our current 

knowledge of DSB-promoted 3D changes at the level of DNA sequence remains incredibly 

sparse. The first experiment using 3C methodology to assess cis modification of long-range 

interactions was performed in yeast following induction of a single DSB within the MAT locus 

by the HO endonuclease [63]. Strikingly long-range contacts were dramatically reduced 

following DSB in asynchronous cells, while such a decrease was not observed in G1-arrested 

cells [63], suggesting that end-processing (which occurs specifically in S/G2) rather than H2A 

spreading and checkpoint activation (occurring all throughout the cell cycle) was responsible 

for decreased chromosomal contacts. Reduced chromosome interaction frequency was further 

shown to depends on Rad51 loading and attributed to the sequestration of the DSB at the nuclear 

periphery [63,64] (see next section). However, this decrease in long-range interaction following 

DSB was not reported in human cells [65]. Instead, by using Capture Hi-C in the DIvA system 

(in which ~100 DSBs can be induced at annotated loci ([21,33])) it was shown that, in average, 

the DSB itself engages more long-range contacts with neighboring sequences encompassed in 

H2AX domains, than before break induction ([65], reviewed in [66]). Contrary to yeast, DSBs 

have not been found to relocate to the nuclear envelope in mammalian cells, which may account 

for the discrepancy between both studies. Notably, enhanced interactions between the DSB and 

DNA loci embedded in H2AX domains, would be in agreement with the increased mobility of 

DNA ends reported in multiple studies (reviewed in [31,57,67]).  
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Of note, the resolution achieved by Capture-HiC in the above-mentioned study [65] was 

insufficient to draw conclusions regarding the DNA loops reorganization around DSBs. 

Interestingly, although this was not directly assessed using Hi-C or 4C experiment, strong 

evidence suggests that chromosome loops are reorganized in cis to DSB induced by Spo11 in 

yeast meiotic cells. Indeed, in a WT strain, DSB production by Spo11 is negatively counteracted 

in a ~100kb window around an initial Spo11-created break. Notably, this phenomenon, called 

negative interference, depends on the yeast ATM ortholog Tel1, one of the main kinase 

activated during DDR [68]. This led to the proposal that, in cis to an initial break, ATM/Tel1 

activation could drive chromatin loops reorganization, themselves being required and targeted 

for DSB formation (see previous section), hence contributing to negative interference and 

ensuring a proper distribution of DSBs along meiotic chromosomes [68,69]. 

It is likely that the usual suspects shaping chromosome architecture, i.e. the cohesin complex 

and CTCF, are involved in such DSB-induced DNA loops reorganization. Studies in both yeast 

and mammals have demonstrated that cohesins and their loaders/regulators are recruited at 

DSBs [34,70–81], and post-translationally modified following damage (for instance, 

[76,77,82–85]). Strikingly, in yeast, DSB-induced cohesin binding takes place on a large 

chromosomal domain surrounding the break [71,72], in contrast to mammalian cells, where it 

only occurs on few kilobases [34]. While cohesin loading has long been involved in sister 

chromatid cohesion during HR [75,83,84,86–90], in mammalian cells, it is also recruited at 

DSBs during G1 phase [34,74], suggesting that this complex exerts a function beyond sister 

chromatid cohesion at DSB. In agreement, cohesin regulates transcriptional repression of genes 

immediately in cis to DSBs [74], insulate the active genes located farther within the H2AX 

domain to maintain their transcription [34] and controls the NHEJ repair pathway [91]. 

Similarly, CTCF has also been shown to be recruited at DSBs [92–94] and to contribute to HR 

[92,93].  
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Beyond these well-known architectural proteins involved in chromatin looping, DSB repair 

factors may also contribute to shape chromatin 3D structure in cis to DSB. Among these, 53BP1 

is an interesting candidate since it was shown to spread on entire H2AX domains [95] and to 

be a critical determinant of the architecture of the Igh locus, even before damage formation 

[51,96]. Additionally, the 53BP1 effector Rif1, which is recruited at DSB to regulate resection 

[97–99] is also of interest, as it was recently shown by 4C-seq to be a main organizer of 

chromatin architecture in unchallenged cells [100]. Importantly both factors are essential for 

productive CSR [97,98,101,102], which further highlight their potential role in organizing the 

3D structure of DSB-surrounding chromatin. 

Yet, despite all these studies, a clear picture of the DNA conformation within H2AX foci is 

still awaited. Mapping of architectural proteins using ChIP-seq as well as determining 

chromatin conformation by 3C-based approaches around annotated DSBs, will certainly help 

to better understand the nature and function of DSB-induced chromosome loops changes.  

 

How does Chromatin Architecture change post- damage in trans to DSB, within the 

nucleus? 

In addition to the changes in cis described in the previous section, damaged chromosomes also 

experience more global reorganization within the nucleus. This is particularly apparent in yeast 

and Drosophila, where persistent, heterochromatic and/or rDNA breaks are relocalized at the 

nuclear periphery ([63,64,103,104] reviewed in [31]). Similarly in mammals, DSBs induced in 

rDNA and  satellites are extruded at the periphery of the nuclear sub-compartment (nucleolus 

and heterochromatic focus respectively) [105–107]. Beyond these large scale reorganizations, 

DSBs are also capable of clustering together (i.e.: regrouping in one visible focus) ([65,108–

115] reviewed in [31,116]). Using Capture Hi-C to map long-range interactions following 
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induction of multiple annotated DSBs on the human genome, it was recently demonstrated that 

DSBs can cluster together if they occur in transcriptionally active, RNA Pol II-bound, loci [65] 

(reviewed in [8,15,116]). Of interest, clustering was mostly observed in G1 cells [65,108] and 

coincided with delayed repair [65], suggesting that it may contribute in “poising” DSB repair 

in order to ensure faithful genetic information recovery [65,116].  

The mechanism(s) at work to ensure DSB clustering and other DSB mobility events are still 

under investigation but may rely on both active/directional and passive/diffusive movement 

(Figure 3).  

Cyto and nucleo-skeleton networks.  

Evidence suggests that DSB ends mobility and DSB clustering are mediated at least in part 

thanks to the cyto-and nucleo-skeleton network (reviewed in [116,117]). Indeed, formin 2, an 

actin organizer, as well as the Arp2/3 actin branching factor and the Arp2/3 activator WASP, 

are required for clustering in human cells [65,114] (Figure 3, left panel). Moreover, nuclear 

myosin 1 and actin were recently reported as mediating damaged-induced homologous 

chromosome pairing in G0/G1 cells, in a manner that depends on the ability of actin to 

polymerize (by the use of actin mutants) [118]. Of importance, although nuclear actin filaments 

(F-actin) have been reported and involved in relocating heterochromatic DSBs in Drosophila 

nuclei [119], such actin filaments still remain to be observed in mammalian nuclei. Indeed, 

DNA damaging agents do induce nuclear F-actin [120], but no clear link with damage sites 

were reported. More recently, actin was described to form foci colocalizing with H2AX rather 

than filaments following damage [114]. Hence the contribution of nuclear F-actin during 

clustering still needs further clarification. On another hand, the microtubule (MTs) network 

may also contribute to DSB mobility and clustering. Perturbation of MTs using drugs impairs 

DNA ends mobility [121,122], although this was not observed in other settings [115,123]. 
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Moreover, nuclear MTs were observed in yeast damaged nuclei and proposed to mediate 

directional movement [124]. While DSB-induced nuclear MTs still need to be identified in 

other conditions and organisms, it is nevertheless clear from many studies that the LINC 

complex, embedded in the nuclear envelope and connecting the cytoskeleton (including 

cytoplasmic MTs) to nuclear lamina and chromatin, also controls DSB mobility and clustering 

([65,121], reviewed in [31,116]). It was therefore proposed that the cytoskeleton may also 

contribute to DSB mobility and clustering by transmitting forces from the cytoplasm to 

chromatin through the nuclear envelope and the LINC complex ([121], reviewed in in [116]) 

(Figure 3 middle panel). 

Contribution of phase separation in compartmentalization.  

It is also tempting to speculate that phase separation could contribute into DSB clustering, as 

reported for heterochromatin foci formation (Figure 3 right panel). Indeed, H3K9me3 covered 

chromatin tends to phase separate thanks to the contribution of Heterochromatin Protein 1 

(HP1) [125,126]. In this respect it is of interest that HP1 is involved in DSB repair and recruited 

at DSB [79,127–132]. Moreover damage foci were found to form liquid-like compartments in 

a manner that is seeded by Poly-ADP-Ribose Polymerase (PARP) activity and by the formation 

of Poly-ADP-Ribose (PAR) chains [133], as well as by the contribution of the low-complexity 

domains (LCDs) RNA binding proteins, such as FUS [134]. Notably, a recent study reported 

that 53BP1 foci display droplet like behavior, and that their assembly, fusion and dissociation 

are phase separation dependent [135]. Hence, the chromatin landscape established in cis to DSB 

(including histone modifications but also LCD-proteins, or other repair proteins recruitment at 

sites of damage), may contribute to compartmentalize DSBs repair sites through a phase-

separation driven mechanism. 
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Concluding remarks  

While our knowledge of the nature and function of chromatin during DSB repair recently 

greatly expanded, more studies are now necessary to understand the nature and function of 

chromatin conformation in these processes. Importantly, modifications of chromosome looping 

likely display essential function in safeguarding genome integrity and driving genome 

evolution. For instance, chromosome architecture is strongly linked to the generation of 

translocation involving the Igh locus [136] and DSB clustering is a key player in translocation 

biogenesis [137]. In conclusion, time has now come to make use of the ever growing, 

sequencing-based, methodologies designed to investigate chromosome architecture at the 

highest achievable resolution, to tackle the function of chromatin conformation and looping in 

genome stability.  
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Figure Legends 

 

 

Figure 1: Contribution of the initial chromatin conformation into H2AX establishment 

and programmed DSB induction and repair. 
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A. The initial chromosome conformation may dictate H2AX spreading following DSB 

induction. In this model, ATM, the main H2AX kinase is locally recruited at the DSB. Once 

bound, it is able to phosphorylate H2AX containing nucleosomes brought to its physical 

proximity, thanks to chromatin dynamics that takes place within the TAD. Sustained signaling 

and ATM activation eventually triggers the phosphorylation of H2AX on the entire TAD. In 

this model, H2AX distribution, as observed by ChIP-seq, should mimic the 3D chromatin 

conformation.  

B. Chromosome conformation is critical during meiotic breaks formation by Spo11. During 

prophase, meiotic chromosomes are strongly reorganized with the formation of DNA loops 

anchored to a proteinaceous axis. Spo11 generates DSBs within DNA loops, which can further 

pair with the homologous chromosome in order to produce crossover and to complete meiosis. 

The 3D chromatin structure and the chromosomal axis are required for both DSB production 

by Spo11 and to ensure the “homologous bias” (i.e. the choice of the homologous chromosome 

rather than the sister chromatid, as a template for HR) 

C. Chromosome conformation is also critical for the rearrangements that occur on 

immunoglobulin loci, in order to generate immunoglobulin isotypes (class switch 

recombination (CSR)) and the antibody repertoire (VDJ recombination). For example, during 

CSR (shown here), the long-range physical interactions between switch (S) sequences on the 

heavy chain locus (Igh) allows two DSBs to be rejoined.  

 

 

 

Figure 2: DSB-induced modification(s) of the chromosome conformation in cis to the 

break 
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Following DSB production and H2AX spreading, the 3D conformation of damaged TAD 

could also be modified, due to the binding of cohesin, CTCF or repair proteins with potential 

function in chromatin architecture such as 53BP1 and RIF1. The DSB-induced histones 

modifications (including H2AX spreading), nucleosome loss or/and generation of single 

strand DNA (resection) may also collectively change the dynamics of chromatin within TADs. 

Altogether, these changes could translate in enhanced mobility and efficient DSB repair. 

 

Figure 3: Changes in chromosome conformation upon damage in trans such as during 

DSB clustering 

Both live cell imaging and 3C-based methods allowed to demonstrate that multiple DSBs can 

coalesce together within a single H2AX focus. Yet the mechanisms that ensure clustering are 

unclear and may entail various pathways. A. The nucleoskeleton (both polymerized actin and/or 

microtubules) could allow DSB mobilization and clustering in a directional manner. B. The 

cytoskeleton could also contribute to clustering thanks to the transmission of forces from 

cytoskeleton to chromatin via the LINC complex, embedded in the nuclear envelope. In this 

context, the forces transmitted to chromatin may trigger a general increase in chromatin 

dynamics, increasing the probability of H2AX collision/clustering. C. Finally, the chromatin 

landscape established following damage could allow compartmentalization thanks to phase 

separation. 
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