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The NRQED approach is applied to the calculation of relativistic corrections to the fine and
hyperfine structure of hydrogenlike atoms at orders mα6 and mα6(m/M). Results are found to be
in agreement with those of the relativistic theory. This confirms that the derived NRQED effective
potentials are correct, and may be used for studying more complex atoms or molecules. Furthermore,
we verify the equivalence between different forms of the NRQED Lagrangian used in the literature.

I. INTRODUCTION

Precision spectroscopy of simple atoms and molecules is a fruitful approach for testing fundamental physics at
a low-energy scale. Since the discovery of the Lamb shift in hydrogen, comparisons between experiments and pre-
dictions of the bound-state QED theory have been performed at ever increased levels of accuracy, as experimental
progress stimulated development of theoretical methods to compute high-order QED corrections. Among these, the
nonrelativistic quantum electrodynamics (NRQED) approach [1, 2] is a powerful tool to study QED corrections in
weakly bound (low-Z) few-body systems. It has been applied to hydrogenlike (two-body) systems: muonium [2, 3]
positronium [4–6] and the hydrogen atom [7], but also to three-body systems such as the helium atom [8, 9] and
hydrogen molecular ions [10, 11], and to four-body systems like Li, Be+ [12, 13] or the hydrogen molecule [14], to cite
only a few examples.
Here, we use NRQED to calculate relativistic corrections at the mα6 and mα6(m/M) orders, more specifically,

those contributing to the fine and hyperfine splitting. This is motivated by recent experimental advances in the HD+

molecular ion, where the comparison with theory is currently limited by the hyperfine structure calculations [15, 16].
So far, the hyperfine coefficients have been calculated at the leading orders mα4 and mα5 using the Breit-Pauli
Hamiltonian with account of the anomalous magnetic moment [17, 18]. Higher-order corrections have been included
only for the leading term i.e. the electron-nucleus spin-spin Fermi interaction [19, 20]. This led us to derive the
complete effective Hamiltonian for the electron spin-orbit and electron-nucleus spin-spin interactions in hydrogen
molecular ions (HMI) (H+

2 , HD
+, and their isotopes) [21].

The NRQED approach consists in constructing from QED a nonrelativistic Lagrangian describing the interaction of
an electron (or a spin-1/2 nucleus) with the electromagnetic field, and then using it to calculate the QED corrections by
applying the nonrelativistic perturbation theory. The NRQED Lagrangian may be constructed ab initio by writing all
possible interactions satisfying the required symmetries; its coefficient are then fixed by imposing that the NRQED and
QED scattering amplitudes coincide up to the desired order [2, 22]. This procedure leads to a unique, gauge-invariant
expression of the Lagrangian, which we have used in our work on the hyperfine structure of HMI. Alternatively,
one can obtain the NRQED Hamiltonian directly from the Dirac Hamiltonian through Foldy-Wouthuysen (FW)
transformations [23]. In this case, the expression of the effective Hamiltonian is not uniquely defined, and the form
used e.g. in recent works onmα6(m/M)-order corrections to the spin-averaged energy levels in helium [9] and HMI [11]
differs from the gauge-invariant form.
The hydrogen atom, where the exact fine and hyperfine splitting in the nonrecoil limit is known from the relativistic

theory (see e.g. [24] for a summary of results on the hyperfine structure), plays an essential role to cross-check the
derivation of the NRQED effective Hamiltonian. In the present work, we derive the effective Hamiltonian at the mα6

and mα6(m/M) orders describing spin-dependent interactions in a hydrogen atom, using both forms of the NRQED
Hamiltonian discussed above. We have used the same notations as in Ref. [21] where the corresponding terms are
derived in the case of HMI. The effective Hamiltonian is then used to calculate the complete fine and hyperfine
structure corrections for the 2P state, which are found to coincide with the (Zα)-expansion of relativistic results.
This shows the equivalence between the two forms of the NRQED Hamiltonian, while the operators appearing in the
effective Hamiltonian are different. This work may also serve as an introduction to the use of NRQED for calculation
of higher-order relativistic corrections.
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Natural relativistic units are used in Secs. II-V. For application to the 2P state (Sec. VI) we switch to atomic units.

II. NOTATIONS

In the NRQED framework, the general expression of the correction to the energy levels at order mα6 is

∆E(6) =
〈

ψ
∣

∣

∣
H(4)Q(E0 −H0)

−1QH(4)
∣

∣

∣
ψ
〉

+
〈

ψ
∣

∣

∣
H(6)

∣

∣

∣
ψ
〉

(1)

where H0, E0, and ψ are respectively the nonrelativistic (Schrödinger) Hamiltonian, energy, and wave function. One
takes into account the finite nuclear mass M :

H0 =
P2

2M
+

p2
e

2m
+ V =

p2

2mr
+ V, (2)

where p = pe = −P, V = −Zα
r , and mr = mM/(m+M). Q is a projection operator on a subspace orthogonal to ψ,

and H(4) is the Breit-Pauli Hamiltonian yielding the leading-order (mα4) relativistic correction. Since our goal is to
calculate the mα6 and mα6(m/M) orders, we select the terms of orders mα4 and mα4(m/M):

H(4) = HB +Hrec +Hso +Hso−M +H(0)
ss +H(2)

ss +Hso−N , (3)

HB = − p4

8m3
+
πZα

2m2
δ(r),

Hrec =
Zα

2

pi

m

(

δij

r
+
rirj

r3

)

P j

M
,

Hso =
Zα

2m2

[r× p]

r3
se,

Hso−M = − Zα

mM

[r×P]

r3
se,

H(0)
ss = −8π

3
µeµM δ(r),

H(2)
ss =

µeµM

r3
− 3

(µer)(µMr)

r5
,

Hso−N =
α

m

[r× p]

r3
µM

|e| .

(4)

Here, µe and µM are respectively the electronic and nuclear magnetic moments, which may be expressed in terms of
the electronic and nuclear spins:

µe = −|e|
m

se µM = µM
|e|
2mp

I

I
.

For a 1H atom, I = 1/2 and µM = µp = 2.79.... Throughout the paper, e denotes the electron’s charge (and is thus
negative), the elementary charge is then |e|. Note that the electron’s anomalous magnetic moment is not taken into
account here. The derivation of the mα6-order effective Hamiltonian H(6) appearing in the second term of Eq. (1) is
the object of Secs. III and IV.
It should be noted that ∆E(6) as written in Eq. (1) contains contributions at all orders mα6(m/M)n, n = 0, 1, 2 . . .

not only because of the recoil terms present in H(4) and H(6), but also because H0, E0 and ψ, which depend on the
reduced mass mr, may be expanded in powers of (m/M).

III. NRQED LAGRANGIAN

As discussed in the Introduction, we have used two different expressions of the NRQED Lagrangian in order to
derive the effective Hamiltonian at orders mα6 and mα6(m/M). The general form of the NRQED Lagrangian for an
electron is

L = ψ∗ (i∂t −H)ψ + Lcontact (5)
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where ψ is the two-component Pauli spinor field for an electron, and Lcontact represents the contact type interactions.
Since the latter do not contribute to the quantities of interest here (note that contact terms vanish for a state of
angular momentum l 6= 0), they will not be considered further.

A. Foldy-Wouthuysen-Pachucki Hamiltonian

One way of deriving the NRQED Hamiltonian is to use successive FW transformations of the Dirac Hamiltonian as
done in several papers by Pachucki and co-workers [9, 23, 25]. We will use as our starting point Eq. (23) of Ref. [9]:

HFWP = eA0 +
π2

2m
− e

2m
σ ·B

− e

8m2
(∇·E‖) +

e2

2m2
σ ·(E‖×A)− e

8m2
σ ·(E‖×p− p×E‖)

− π4

8m3
+

e2

8m3
E2

‖ +
e

8m3

{

p2,σ ·B
}

− ie

16m3

[

σ ·
(

p×A−A×p
)

, p2
]

+
5e

128m4

[

p2, [p2, A0]
]

− 3e

64m4

{

p2, (∇2A0)
}

+
3e

32m4

{

p2,σ ·(E‖×p)
}

+
p6

16m5
,

(6)

where π = p−eA, , E = −∂tA−∇A0, B = ∇×A and E‖ = −∇A0. The ∇ and ∇2 operators only act inside the
parentheses that surround them.

B. Gauge invariant Hamiltonian

Alternatively, one can build the NRQED Lagrangian following an ab initio approach as initially proposed by Caswell
and Lepage [1, 2, 22]. Starting from Eq. (1) of Ref. [22], and neglecting the dependence of coefficients on the anomalous
magnetic moment, we obtain a gauge invariant NRQED Hamiltonian in the following form:

HGI = eA0 −
D2

2m
− e

2m
σ ·B

− e

8m2

(

D·E−E·D
)

− ie

8m2
σ ·(D×E−E×D)

− D4

8m3
+

e2

8m3
E2 − e

8m3

{

D2,σ ·B
}

+
5e

128m4

[

D2, (D·E+E·D)
]

+
3e

64m4

{

D2, (∇·E)
}

− 3ie

16m4

{

D2,σ ·(D×E−E×D)
}

− D6

16m5
,

(7)

where D = ∇− ieA = iπ. By simple algebraic transformations, and keeping only the terms of order up to mα6, one
can get an expression that is easier to compare to the FWP Hamiltonian:

HGI = eA0 +
π2

2m
− e

2m
σ ·B

− e

8m2
(∇·E‖) +

e2

4m2
σ ·(E‖×A)− e

8m2
σ ·(E×p− p×E)

− π4

8m3
+

e2

8m3
E2

‖ +
e

8m3

{

p2,σ ·B
}

+
5e

128m4

[

p2, [p2, A0]
]

− 3e

64m4

{

p2, (∇2A0)
}

+
3e

32m4

{

p2,σ ·(E‖×p)
}

+
p6

16m5
.

(8)

This expression coincides with that obtained in the penultimate step of the FW transformations leading to Eq. (6),
see Eqs. (19) and (20) of Ref. [9]. The FWP Hamiltonian (6) may be obtained from Eq. (8) by means of the canonical
transformation eiS(H − i∂t)e

−iS , where

S =
e

8m2
σ ·(π×A−A×π). (9)
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C. Nuclear Hamiltonian

Since we are only interested in the first order in m/M , the nucleus can be treated nonrelativistically, using the
Hamiltonian

HM = −ZeA0 +
1

2M
(P− Z|e|A)

2 − µM ·B. (10)

D. NRQED Vertices

For the derivation of effective potentials, it is convenient to translate NRQED Hamiltonian given by Eq. (6) or (8)
in terms of NRQED vertices and ”Feynman” rules, as done in Fig. 3 of Ref. [2]. The list of vertices which play a role
in interactions up to the mα6(m/M) order is given in Table I.

Name [2] Foldy-Wouthuysen Hamiltonian Gauge invariant Hamiltonian

1. Coulomb eA0

2. Dipole −ep′+p

2m
A

3. Fermi e i[q×σ]
2m

A

4. Darwin −e q2

8m2 A0

5. Seagull e2 i[q1×σ]

2m2 A0(q1)A(q2) e2 i[q1×σ]

4m2 A0(q1)A(q2)

6. Spin-orbit e i[p′
×p]σ

4m2 A0

7. Time derivative absent −e iq0(p
′+p)×σ

8m2 A

8. e (p′2+p2)(p′+p)

8m3 A

9. −e2
qi
1
qi
2

8m3 A0(q1)A0(q2)

10. Derivative Fermi −e i(p′2+p2)(q×σ)

8m3 A

11. −e i(p′2−p2)(p′+p)×σ

16m3 A absent

12. e
(

3q2(p′2+p2)

64m4 + 5(p′2−p2)2

128m4

)

A0

13. −e
(

3i(p′2+p2)[q×p]σ

32m4

)

A0

1M. Coulomb −ZeA0

2M. Dipole ZeP′+P

2M
A

3M. Fermi i[Q×µM ]A

4M. A·A Z2e2
δij
2M

A(q1)A(q2)

TABLE I: NRQED ”Feynman” rules for vertices. In order to facilitate the comparison with Ref. [2], the names of the vertices
considered in that work are given in the first column. The first part of the Table concerns the electron, and the second part
deals with the nucleus. q = p′

− p, and Q = P′
−P.

The differences between alternative expressions of the effective Hamiltonian are clearly apparent in this Table. In
the FWP Hamiltonian,
- the ”seagull” vertex is multiplied by two;
- the ”time derivative” vertex does not appear;
- the vertex numbered 11 appears in addition to the ”derivative Fermi” vertex.
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IV. SPIN-DEPENDENT INTERACTIONS AT ORDER mα6 AND mα6(m/M)

From the NRQED vertices of Table I and the photon propagator in the Coulomb gauge, effective potentials are
obtained by systematic application of the nonrelativistic Rayleigh-Schrödinger perturbation theory (see e.g. [2, 19,
23, 25]). We will not write the explicit derivation of all terms but give some illustrative examples (see [21] for more
details).

A. Coulomb photon exchange

The only spin-dependent contribution of order mα6 from Coulomb photon exchange is obtained by having the
nucleus interact via the Coulomb vertex (1M) while the electron interacts via the higher-order vertex (13). The
corresponding potential in momentum space is given by

U1b =

[

−e3i(p
′2 + p2)[q×p]·σ

32m4

]

[−Ze]
[

1

q2

]

(11)

In order to facilitate comparison with Ref. [21], which deals with the HMI case, we have used the same labeling of
effective potentials. A Fourier transform yields the effective potential in coordinate space,

U1b = − 3Zα

16m4

{

p2,
1

r3
[r×p]·se

}

. (12)

B. Transverse photon exchange without retardation

For illustration, let us write the potential obtained by having the nucleus interact via the dipole vertex (2M), while
the electron interacts via the Fermi derivative vertex (10). The potential in momentum space is

U2b =

[

−e i(p
′2 + p2)(q×σ)

8m3

] [

Ze
P′ +P

2M

] [

− 1

q2

(

δij − qiqj

q2

)]

=
iZα

8m3M
(p′2 + p2)

[q×σ]·P
q2

(13)

After Fourier transform, one obtains

U2b =
Zα

4m3M

{

p2,
1

r3
[r×P]·se

}

. (14)

C. Retardation in the transverse photon exchange

The last example we will consider in some detail is a retardation term in the exchange of one transverse photon,
where the electron interacts via the time derivative vertex while the nucleus interacts via the lowest-order vertices
(dipole or Fermi). The total one-photon exchange potential, which contains contributions at orders mα5 and above,
is [25]

U (5+)
3c =

∫

d4q

(2π)4i

4π

(q0)2−q2+iǫ

(

δij− qiqj

q2

)[

− ie

8m2
q0(p′ + p)×σ

]i

×
{

eiq·re
1

E0 −H0 − q0 + iǫ
e−iq·R

}(

Ze
P′ +P

2M
−i[(−q)×µM ]

)j

+ (h.c.) (15)

After integration over q0, one gets

U (5+)
3c = − ie

16m2

∫

d3q

(2π)3
4π

(

δij− qiqj

q2

)

[(p′ + p)×σ]
i ×

{

eiq·re
1

E0 −H0 − q
e−iq·R

}(

Ze
P

M
+i[q×µM ]

)j

+ (h.c.) (16)
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We perform the expansion

1

E0 −H0 − q
= −1

q
+
H0 − E0

q2
− (H0 − E0)

2

q3
+ . . . (17)

where the first and second terms correspond to a contributions of order mα5 and mα6, respectively. Then,

U (6)
3c = − ie

16m2

∫

d3q

(2π)3
4π

q2

(

δij− qiqj

q2

)

[(p′ + p)×σ]
i ×

{

eiq·re(H0 − E0)e
−iq·R

}

(

Ze
P

M
+i[q×µM ]

)j

+ (h.c.) (18)

Using R = −mr/(m+M), it is easy to show that

[H0, e
−iq·R] = e−iq·RO(m/M). (19)

As a consequence, neglecting a term of order (m/M)2 we get

U (6)
3c ≃ − ie

16m2

∫

d3q

(2π)3
4π

q2

(

δij− qiqj

q2

)

[(p′ + p)×σ]
i
eiq·r(H0 − E0)

(

Ze
P

M
+i[q×µM ]

)j

+ (h.c.) (20)

and since (H0−E0) commutes with [q×µM ], the nuclear spin dependent part of Eq. (20) has a vanishing expectation
value in the state ψ. With the replacement P = −p one obtains

U (6)
3c =

iZα

16m2M

∫

d3q

(2π)3
4π

q2

(

δij− qiqj

q2

)

[(p′ + p)×σ]
i
eiq·r(H0 − E0)p

j + (h.c.)

=
iZα

16m2M

∫

d3q

(2π)3
4π

q2

(

δij− qiqj

q2

)

[(p′ + p)×σ]
i
eiq·r[H0, p

j ] + (h.c.) (21)

After Fourier transform:

U (6)
3c =

iZα

8m2M
[p×σ]

i 1

2r

(

δij +
rirj

r2

)

[V, pj] + (h.c.)

= − Zα2

8m2M
[p×σ]i

1

2r

(

δij +
rirj

r2

)

rj

r3
+ (h.c.)

= − Zα2

8m2M
[p×σ]

i r
i

r4
+ (h.c.)

= − Zα2

2m2M

1

r4
[r×p]·se = − Zα2

2m2M

1

r4
l·se. (22)

D. Total effective Hamiltonian

We give in this Section the complete set of spin-dependent effective operators. At the (nonrecoil) mα6 order, there
is only one term, which is the Coulomb photon exchange considered in Sec. IVA:

U1b = − 3Zα

16m4

{

p2,
1

r3
l·se

}

(23)

The mα6(m/M)-order (recoil) terms are listed in Table II, where we have separated the terms depending only on the
electronic spin and those on the nuclear spin, which respectively contribute to the fine and hyperfine structure.

V. SECOND-ORDER AND FINITE-MASS CORRECTIONS

The total second-order contribution is given by the first term of Eq. (1). Using expression (3) of H(4), we pick up
the terms contributing to the electronic spin-orbit interaction (fine structure) and those depending on nuclear spin
(hyperfine structure). For the fine structure, we also separate the nonrecoil (mα6) and recoil (mα6(m/M)) terms.



7

Type of interaction Vertices Foldy-Wouthuysen Hamiltonian Gauge invariant Hamiltonian

Transverse photon (no retard.)
10-2M U2b = −

Zα

4m3M

{

p2, 1
r3
l·se

}

11-2M U
′

2b = 1
2
U2b −

(

iZα

8m3M
p2 1

r3
[r×(r·p)p]·se + (h.c)

)

absent

Transverse photon (retard.)
3-2M U3b = Z2α2

2m2M

1
r4
l·se

7-2M absent U3c = −
Z2α2

2m2M

1
r4
l·se

Seagull 5-1M-2M U
(FWP )
5a = −

Z2

2m2M

1
r4
l·se U

(GI)
5a = −

Z2

4m2M

1
r4
l·se

Double Coulomb photon 9-1M-1M U6b = −
Z2α2

2m2M

1
r4
l·se

Transverse photon (no retard.)

8-3M U2c = −
αµM

4m3mp

{

p2, 1
r3
l·I

}

10-3M U2d = −
αµM

4m3mp

{

p2,
[

8π
3
δ(r)se ·I−

r2se·I−3(rse)(rI)

r5

]}

11-3M U
′

2d = 1
2
U2d −

(

iαµM

4m3mp
p2 (rp)(seI)−(rse)(pI)

r3
+ (h.c.)

)

absent

Seagull 5-1M-3M U
(FWP )
5b = ZαµM

m2mp

r2se·I−(rse)(rI)

r6
U

(GI)
5b = ZαµM

2m2mp

r2se·I−(rse)(rI)

r6

TABLE II: Spin-dependent effective operators at order mα6(m/M) for a hydrogenlike atom. The upper and lower parts
respectively correspond to interactions depending on the electronic spin only, and to those depending on the nuclear spin.

A. Electronic spin-orbit interaction

• Nonrecoil contributions

∆E
(2)
B−so = 2 〈HBQ(E0 −H0)

−1QHso〉 (24)

∆E
(2)
so−so = 〈HsoQ(E0 −H0)

−1QHso〉 (25)

Note that the Darwin term in HB (Eq. (4)) vanishes because we are considering l 6= 0 states.

• Recoil contributions

∆E
(2)
B−so−M = 2 〈HBQ(E0 −H0)

−1QHso−M 〉 (26)

∆E
(2)
rec−so = 2 〈HrecQ(E0 −H0)

−1QHso〉 (27)

∆E
(2)
so−so−M = 2 〈HsoQ(E0 −H0)

−1QHso−M 〉 (28)

We also have to take into account the corrections to the nonrecoil terms, Eqs. (23) induced by the finite nuclear
mass in H0, E0, and ψ, to first order in m/M :

δM (∆E
(6)
fs ) = δM (〈U1b〉) + δM (∆E

(2)
B−so) + δM (∆E

(2)
so−so). (29)

B. Nuclear spin dependent contributions

The second-order terms that involve nuclear spin at the mα6(m/M) order are:

∆E
(2)
B−ss = 2 〈HBQ(E0 −H0)

−1QH(2)
ss 〉 (30)

∆E
(2)
B−so−N = 2 〈HBQ(E0 −H0)

−1QHso−N〉 (31)

∆E
(2)
so−ss = 2 〈HsoQ(E0 −H0)

−1QH(2)
ss 〉 (32)

∆E
(2)
so−so−N = 2 〈HsoQ(E0 −H0)

−1QHso−N 〉 (33)

Note that the scalar part of the spin-spin interaction H
(0)
ss does not appear because we are considering l 6= 0 states.
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VI. FINE AND HYPERFINE STRUCTURE OF THE 2P STATE

In this Section, we calculate analytically all the first-order, second-order and finite-mass contributions for the 2P
state of the hydrogen atom and compare with known results from the relativistic theory. No ultraviolet divergences
(at r → 0) appear in any of the above expressions, because of the r factor in the 2P wavefunction. Such divergences
are found in the case of S states, e.g. in the mα6-order correction to the spin-averaged energy levels [26]. From here
on, we switch from the relativistic units to atomic units.

A. Zero-order and first-order wavefunctions

In the limit of an infinite nuclear mass, the radial wavefunction and non-relativistic energy of the 2P state are
expressed as

ψ0(r) =
Z3/2

2
√
6
(Zr) e−

1

2
Zr (34)

E0 = −Z
2

8
. (35)

One may notice that all the second-order perturbation terms (Eqs. (24-28) and (30-33) depend either on HB or Hso

(see Eq. (4)). In order to calculate them, we introduce the first-order perturbation wave functions ψ
(1)
B and ψ

(1)
so ,

defined by

(E0 −H0)ψ
(1)
B = (HB − 〈HB〉)ψ0 (36)

(E0 −H0)ψ
(1)
so = (Hso − 〈Hso〉)ψ0 (37)

These perturbation wavefunctions may be obtained analytically. For the 2P state we have

ψ
(1)
B (r) = Z2

[

1

2
− Zr

3
lnZr − γE Zr

3
+

97Zr

144
− (Zr)2

48

]

Z3/2

2
√
6
e−

1

2
Zr (38)

ψ(1)
so (r) = Z2

[

−1

4
+
Zr

12
lnZr +

γE Zr

12
− 31Zr

144
+

(Zr)2

48

]

Z3/2

2
√
6
e−

1

2
Zr〈l·se〉, (39)

where γE is the Euler-Mascheroni constant. In the case of a finite nuclear mass, the zero- and first-order wavefunctions
are obtained through the replacement Z → (mr/m)Z in Eqs. (34) and (38-39), and the nonrelativistic energy through
multiplication of Eq. (35) by (mr/m).

B. Nonrecoil mα6-order contributions to the fine structure

The total contribution to the fine structure splitting is the sum of the first-order and second-order terms, respectively
given by Eq. (23) and Eqs. (24-25):

∆E
(6)
fs = 〈U1b〉+∆E

(2)
B−so +∆E

(2)
so−so (40)

The calculations are straightforward and require no particular explanations. One obtains

〈U1b〉 = −2
3Z

16

∫ ∞

0

2

(

E0 +
Z

r

)

|ψ0(r)|2
1

r3
r2dr 〈l·se〉 = −7Z6

256
〈 l·se〉 (41)

∆E
(2)
B−so = Z

∫ ∞

0

ψ0(r)ψ
(1)
B (r)

1

r3
r2dr 〈l·se〉 =

115Z6

3456
〈 l·se〉 (42)

∆E
(2)
so−so =

Z

2

∫ ∞

0

ψ0(r)ψ
(1)
so (r)

1

r3
r2dr 〈(l·se)2〉 = −49Z6

3456
〈(l·se)2〉 =

49Z6

6912
〈l·se〉+ . . . (43)

In the last line, we have used the fact that in the 2p1/2 − 2p3/2 subspace, (l·se)2 = 1
2 − 1

2 l·se, and kept only the term

that contributes to the fine-structure splitting. Note that a common factor of α4 is omitted in all expressions. Finally,

∆E
(6)
fs =

5Z6

384
〈l·se〉 (44)

which is in agreement with the Zα-expansion of the Dirac result (see e.g. Eq. (3.5) of Ref. [27]).
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C. Recoil mα6(m/M)-order contributions to the fine structure

Let us first use the effective Hamiltonian derived from the gauge invariant NRQED Hamiltonian of Eq. (8). Col-
lecting results from the rightmost column of Table II and from Eqs. (26-29), the total mα6(m/M)-order contribution
is

∆E
(6M)
fs = 〈U2b〉+〈U3b〉+〈U3c〉+〈U (GI)

5a 〉+〈U6b〉+∆E
(2)
B−so−M+∆E

(2)
rec−so+∆E

(2)
so−so−M+δM (∆E

(6)
fs ) (45)

=

(

−Z
2

m

M

〈

p2
1

r3

〉

− 3Z2

4

m

M

〈

1

r4

〉)

〈l·se〉+∆E
(2)
B−so−M+∆E

(2)
rec−so+∆E

(2)
so−so−M+δM (∆E

(6)
fs ) (46)

Like in the preceding paragraph, a common factor of α4 will be omitted in all the expressions. For the first-order
terms we have:

〈

p2
1

r3

〉

=

∫ ∞

0

2

(

E0 +
Z

r

)

|ψ0(r)|2
1

r3
r2dr =

7Z5

96
(47)

〈

1

r4

〉

=

∫ ∞

0

|ψ0(r)|2
1

r4
r2dr =

Z4

24
(48)

The second-order terms are:

∆E
(2)
B−so−M = 2

m

M
∆E

(2)
B−so =

115Z6

1728

m

M
〈l·se〉 (49)

∆E
(2)
rec−so = −Z m

M

{
∫ ∞

0

1

r
2

(

E0 +
Z

r

)

ψ0(r)ψ
(1)
so (r)r2dr (50)

+

∫ ∞

0

1

r3
r
∂ψ0

∂r
ψ(1)
so (r)r2dr −

∫ ∞

0

1

r3
r
∂

∂r

(

r
∂ψ0

∂r

)

ψ(1)
so (r)r2dr

}

〈l·se〉

=
35Z6

576

m

M
〈l·se〉 (51)

∆E
(2)
so−so−M = 4

m

M
∆E

(2)
so−so =

49Z6

1728

m

M
〈l·se〉 (52)

To get the second line of Eq. (50) we have used r(r·p)p = (i+ r·p)r·p. The finite mass corrections are

δM (〈U1b〉) = −5
m

M
〈U1b〉 =

35Z6

256

m

M
〈l·se〉 (53)

δM (∆E
(2)
B−so) = −6

m

M
∆E

(2)
B−so = −115Z6

576

m

M
〈l·se〉 (54)

δM (∆E
(2)
so−so) = −5

m

M
∆E

(2)
so−so = −245Z6

6912

m

M
〈l·se〉 (55)

and the total finite mass correction is

δM (∆E
(6)
fs ) = −85Z6

864

m

M
〈l·se〉. (56)

Finally, the total contribution of order Zα6(m/M) is

∆E
(6M)
fs = −Z

6

96

m

M
〈l·se〉, (57)

in agreement with the expansion in powers of Zα and m/M of the relativistic result (Eq. (3.5) of [27]).
We should now check that by using the FWP effective Hamiltonian of Eq. (6) we arrive at the same result. The

second-order and finite-mass terms are unchanged, and the first-order contribution becomes

∆E
(6M)(FWP )
fs−1storder = 〈U2b〉+〈U ′

2b〉+〈U3b〉+〈U (FWP )
5a 〉+〈U6b〉

=

(

−3Z

4

m

M

〈

p2
1

r3

〉

−Z2

2

m

M

〈

1

r4

〉)

〈l·se〉 −
iZ

4

m

M

〈

p2
1

r3
[r×(r·p)p]·se

〉

=

(

−Z
2

m

M

〈

p2
1

r3

〉

− iZ

4

m

M

〈

p2
1

r3
(r·p)

〉

−Z2

2

m

M

〈

1

r4

〉)

〈l·se〉 (58)
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To get the last line, we have used the relationship r×(r·p)p = (i+ r·p)[r×p]. Comparing Eq. (58) with the first term
of Eq. (46) one can see that both results are equivalent if the equality

〈

ip2
1

r3
(r·p)

〉

=

〈

Z

r4

〉

(59)

is verified. Using the relationship r·p = 1
i r

∂
∂r and integration by parts, it is straightforward to obtain this equality.

This verifies the equivalence of results obtained from the Foldy-Wouthuysen and gauge-invariant forms of the NRQED
effective Hamiltonian for an arbitrary bound state of a hydrogenlike atom.

D. mα6(m/M)-order contributions to the hyperfine structure

1. Results from relativistic theory

We recall the relativistic expression of the hyperfine energy for the (n, l, j, F ) level of a hydrogenlike atom in natural
relativistic units [24, 28]:

Ehfs(n, l, j, F ) = α(Zα)3m(2µM )
m

mp

κ[2κ(γ + n− |κ|)−N ]

N4
(

κ2 − 1
4

)

γ(4γ2 − 1)
〈I·j〉 (60)

where j = l + se, F = j + I, κ = (−1)j−l+ 1

2

(

j + 1
2

)

is the Dirac angular quantum number, γ =
√

κ2 − (Zα)2, and

N =
√

(n− |κ|)2 + 2(n− |κ|)γ + κ2 is the effective principal quantum number. Expansion of this formula in powers
of Zα yields the relativistic correction of order mα6(m/M) to the hyperfine structure [28]:

∆Erel
hfs = (Zα)2

[

12κ2 − 1

2κ2(2κ− 1)(2κ+ 1)
+

3

2n

1

|κ| +
3− 8κ

2n2(2κ− 1)

]

EF , (61)

where

EF = α(2µM )
m

mp

κ

|κ|
(Zα)3m

n3(2κ+ 1)
(

κ2 − 1
4

) 〈I·j〉 (62)

is the Fermi energy. For the 2P state one obtains, going back to atomic units:

∆Erel
hfs(2P1/2, F ) =

47

24
(Zα)2EF (2P1/2, F ) (63)

EF (2P1/2, F ) = Z3α2µM
m

mp

1

9
〈I·j〉 (64)

∆Erel
hfs(2P3/2, F ) =

7

24
(Zα)2EF (2P3/2, F ) (65)

EF (2P3/2, F ) = Z3α2µM
m

mp

1

45
〈I·j〉 (66)

2. NRQED calculation

We will now evaluate this correction from NRQED using the gauge-invariant effective Hamiltonian (8). Collecting
the results from Table II and Eqs. (30-33) we have

∆E
(6M)
hfs = 〈U2c〉+〈U2d〉+〈U (GI)

5b 〉+∆E
(2)
B−ss+∆E

(2)
B−so−N+∆E

(2)
so−ss+∆E

(2)
so−so−N (67)

Various combinations of spin operators appear in the above expression, and in order to make a comparison with
Eqs. (63-66) they should be ”projected” into I·j. This is done in the Appendix A for all the relevant operators. We
now evaluate all terms and, using the results of the Appendix A, express them in terms of I·j. In order to alleviate
the expressions, we have omitted a common factor of α4µM (m/mp).
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• First-order terms:

〈U2c〉 = −1

2

〈

p2
1

r3

〉

〈l·I〉 = −7Z5

192
〈l·I〉 = −7Z5

192

j(j + 1) + 2− 3/4

2j(j + 1)
〈I · j〉 (68)

〈U2d〉 =
1

2

〈

p2
1

r3

〉(

〈se ·I〉 − 3

〈

(rse)(rI)

r2

〉)

=
7Z5

192

(

〈se ·I〉 − 3

〈

(rse)(rI)

r2

〉)

=
7Z5

192

j(j + 1)− 2− 3/4

2j(j + 1)
〈I · j〉 (69)

〈U (GI)
5b 〉 =

Z

2

〈

1

r4

〉 (

〈se ·I〉 −
〈

(rse)(rI)

r2

〉)

=
Z5

48

(

〈se ·I〉 −
〈

(rse)(rI)

r2

〉)

=
Z5

48

j(j + 1) + 1/4− 2

2j(j + 1)
〈I · j)〉 (70)

• Second-order terms (we recall that the first-order wavefunctions ψ
(1)
B and ψ

(1)
so are taken from Eqs. (38-39)):

∆E
(2)
B−ss = −2

∫ ∞

0

ψ0(r)

r
ψ
(1)
B (r)dr

(

〈se ·I〉 − 3

〈

(rse)(rI)

r2

〉)

= −115Z5

1728

(

〈se ·I〉 − 3

〈

(rse)(rI)

r2

〉)

= −115Z5

1728

j(j + 1)− 2− 3/4

2j(j + 1)
〈I · j〉 (71)

∆E
(2)
B−so−N = 2

∫ ∞

0

ψ0(r)ψ
(1)
B (r)

1

r3
r2dr 〈l·I〉 = 115Z5

1728
〈l·I〉 = 115Z5

1728

j(j + 1) + 2− 3/4

2j(j + 1)
〈I·j〉 (72)

∆E
(2)
so−ss = −Z

∫ ∞

0

ψ0(r)ψ
(1)
so (r)

1

r3
r2dr

(

〈(l · se)(se · I)〉 − 3

〈

(r · se)(r · I)
r2

(l·se)
〉)

=
49Z5

864

(

〈(l · se)(se · I)〉 − 3

〈

(r · se)(r · I)
r2

(l·se)
〉)

= −49Z5

864

j(j + 1)− 4− 3/4

4j(j + 1)
〈I · j〉 (73)

∆E
(2)
so−so−N = Z

∫ ∞

0

ψ0(r)ψ
(1)
so (r)

1

r3
r2dr 〈(l · se)(l · I)〉 = −49Z5

864
〈(l · se)(l · I)〉

= −49Z5

864

[

2
j(j + 1)− 2− 1/4

2
− j(j + 1)− 2− 3/4

4

] 〈I · j〉
j(j + 1)

(74)

Adding up these results, we find

∆E
(6M)
hfs (2P1/2, F ) =

47Z5

216
〈I·j〉 (75)

∆E
(6M)
hfs (2P3/2, F ) =

7Z5

1080
〈I·j〉 (76)

in agreement with Eqs. (63-66). Finally, one can show that the FWP effective Hamiltonian leads to the same result,
not only for the 2P state but for any bound state, se Appendix B for details.

VII. CONCLUSION

In this work, we have used the NRQED approach to calculate relativistic corrections to the fine and hyperfine
structure of hydrogenlike atoms. Our results are in agreement with those obtained by expanding the relativistic
results in powers of Zα and m/M . This constitutes a cross-check of the validity of the effective potentials we have
derived, which may then be applied to more complex systems. Such a cross-check is very useful since in this type
of calculations, the probability of mistakes is increased by the relatively large number of terms. It should be noted,
though, that our results cannot be considered as a complete validation of the effective potentials we have derived in
the case of HMI [21], because a few additional terms appear which have no equivalent in the hydrogen atom case,
namely the ”crossed” seagull terms involving both nuclei.
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We have also verified the equivalence of two alternative forms of the NRQED Lagrangian. The choice of one or the
other is largely a matter of taste, but it is worth noticing that the additional terms that appear when one uses the
FWP Hamiltonian (U ′

2b and U ′
2d, see Table II) have the most complicated expressions. This is, of course, not an issue

in the hydrogen atom case, but may give practical reasons to choose the gauge-invariant form for application to more
complex systems, where matrix elements of the effective operators can only be calculated numerically.
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Appendix A: Expression of spin-dependent operators in terms of I·j

The coupling scheme of angular momenta is j = l+ se, F = j+ I. All the expressions below are valid within a given
(n, l, j) subspace.

l · I = l · j
j(j + 1)

(I · j) = j(j + 1) + l(l+ 1)− 3/4

2j(j + 1)
(I · j) . (A1)

se · I =
se · j

j(j + 1)
(I · j) = j(j + 1) + 3/4− l(l+ 1)

2j(j + 1)
(I · j) . (A2)

(r · se)(r · I)
r2

=
(r · se)(r · j)

r2
(I · j)
j(j + 1)

=
(r · se)(r · se)

r2
(I · j)
j(j + 1)

=
1

4

(I · j)
j(j + 1)

. (A3)

(l · se)(se · I) = (l · se)(j · se)
(I · j)
j(j + 1)

=

[

1

4
l2 − 1

2
l · se + (l · se)s2e

]

(I · j)
j(j + 1)

=
j(j + 1) + l(l + 1)− 3/4

8j(j + 1)
(I · j) . (A4)

(l · se)(l · I) = (l · se)(l · j)
(I · j)
j(j + 1)

= [(l · se)l2 +
1

4
l2 − 1

2
l · se]

(I · j)
j(j + 1)

(A5)

=

[

l(l + 1)
j(j + 1)− l(l + 1)− 1/4

2
− j(j + 1)− l(l + 1)− 3/4

4

]

(I · j)
j(j + 1)

. (A6)

ı(r · se)(p · I) = ı(r · se)(p · j) (I · j)
j(j + 1)

= ı(r · se)(p · se)
(I · j)
j(j + 1)

=

[

1

4
ı(r · p)− 1

2
l · se

]

(I · j)
j(j + 1)

=
1

4
[ı(r · p)− (j(j + 1)− l(l + 1)− 3/4)]

(I · j)
j(j + 1)

. (A7)

Appendix B: Equivalence of the FWP and Gauge-invariant Hamiltonians for the hyperfine structure

If one uses the FWP Hamiltonian, the first-order contribution becomes

∆E
(6M)(FWP )
hfs−1storder = 〈U2c〉+〈U2d〉+〈U ′

2d〉+〈U (FWP )
5b 〉 (B1)

Comparing with the first-order terms of Eq. (67), one can see that both expressions are equivalent if the following
equality holds:

〈U ′
2d〉 = 〈U (GI)

5b 〉 − 〈U (FWP )
5b 〉 = −〈U (GI)

5b 〉 (B2)
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We separate U ′
2d into three terms:

〈U
′(1)
2d 〉 =

1

2
〈U2d〉 =

1

4

〈

p2
1

r3

〉(

〈se · I〉 − 3

〈

(r · se)(r · I)
r2

〉)

=

〈

p2
1

r3

〉

j(j + 1)− l(l + 1)− 3/4

8j(j + 1)
〈I · j〉 (B3)

〈U
′(2)
2d 〉 = −1

2

〈

ip2
1

r3
(r · p)

〉

〈se · I〉 = −Z
2

〈

1

r4

〉

〈se · I〉 = −Z
2

〈

1

r4

〉

j(j + 1) + 3/4− l(l + 1)

2j(j + 1)
〈I · j〉 (B4)

〈U
′(3)
2d 〉 =

1

2

〈

ip2
1

r3
(r · se)(p · I)

〉

=

〈

p2
1

r3
[ı(r · p)− (j(j + 1)− l(l + 1)− 3/4)]

〉 〈I · j〉
8j(j + 1)

=

[

Z

〈

1

r4

〉

−
〈

p2
1

r3

〉

(j(j + 1)− l(l + 1)− 3/4)

] 〈I · j〉
8j(j + 1)

(B5)

−〈U (GI)
5b 〉 = −Z

2

〈

1

r4

〉(

〈se · I〉 −
〈

(r · se)(r · I)
r2

〉)

= −Z
2

〈

1

r4

〉

j(j + 1)− l(l + 1) + 1/4

2j(j + 1)
〈I · j〉 (B6)

In the above derivations, we have used the relationship (59). One finally gets

〈U
′(1)
2d 〉+ 〈U

′(2)
2d 〉+ 〈U

′(3)
2d 〉 = −〈U (GI)

5b 〉, (B7)

which proves that the results from both forms of the NRQED Hamiltonian are identical for any l 6= 0 state of a
hydrogenlike atom.
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