
HAL Id: hal-02352280
https://hal.science/hal-02352280

Submitted on 6 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formation of the Cassini Division -II. Possible histories
of Mimas and Enceladus

B. Noyelles, Kevin Baillie, S. Charnoz, V. Lainey, G. Tobie

To cite this version:
B. Noyelles, Kevin Baillie, S. Charnoz, V. Lainey, G. Tobie. Formation of the Cassini Division -II.
Possible histories of Mimas and Enceladus. Monthly Notices of the Royal Astronomical Society, 2019,
486 (2), pp.2947 - 2963. �10.1093/mnras/stz445�. �hal-02352280�

https://hal.science/hal-02352280
https://hal.archives-ouvertes.fr


MNRAS 486, 2947–2963 (2019) doi:10.1093/mnras/stz445
Advance Access publication 2019 February 25

Formation of the Cassini Division – II. Possible histories of Mimas and
Enceladus

B. Noyelles ,1,2‹ K. Baillié,3,4‹ S. Charnoz,5 V. Lainey3,6 and G. Tobie7

1NAmur Institute for CompleX SYStems (NAXYS), University of Namur, Rempart de la Vierge 8, B-5000 Namur, Belgium
2Institut UTINAM, CNRS UMR 6213, Univ. Bourgogne Franche-Comté, OSU THETA, BP 1615, F-25010 Besançon Cedex, France
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ABSTRACT
This study is a companion paper to Baillié et al., in which we showed that a past episode
of inward migration of Mimas could have created the Cassini Division. We here investigate
the possible causes of this inward migration. We suggest two scenarios: one based on a past
intense heating of Mimas, and another one on a past intense heating of Enceladus, which
would have itself driven an inward migration of Mimas due to a mean-motion resonance.
These two scenarios are challenged with numerical modelling of the orbital motion of the
satellites, and energy budget, which are confronted to our present knowledge of the interior of
Mimas and Enceladus. We show that a past hot Mimas requires an eccentricity of 0.22, while
a past hot Enceladus would have needed an eccentricity of 0.25. While the scenario of a past
hot Mimas preserves the stability of the mid-sized satellites of Saturn, it threatens Janus and
Epimetheus and is inconsistent with the observations of impact basins at the surface of Mimas.
However, a past hot Enceladus which would have almost fully melted could be consistent with
its differentiated interior, but would probably not have preserved the stability of Tethys, given
the high eccentricity required. Both of these scenarios would have challenged the stability
of Aegaeon, Methone, Pallene, and Anthe, and implied that the Cassini Division would be
younger than 10 Myr.

Key words: methods: numerical – celestial mechanics – planets and satellites: individual:
Saturn.

1 IN T RO D U C T I O N

In Baillié et al. (2019), hereafter called Paper I, we have shown that a past inward migration of Mimas over at least 8000 km in a few Myr
would explain the creation of the Cassini Division, implying that this division is a transient structure, which should disappear in ≈40 Myr.
This companion paper tackles the issue of the possible origin of an inward migration of Mimas.

In systems of planetary satellites, an episode of inward migration is usually attributed to an intense dissipation in a satellite, which
outweighs the dissipation in the planet. This dissipation would have consequences for the geophysical activity of the satellite, which would
now present evidence of this active episode. In the system of Saturn, Mimas does not present obvious signature of such past activity, while
Enceladus appears to be much more active.

After describing some aspects of the dynamics of the system of Saturn (Section 2), we will present the secular torque of the rings
(Section 3) and the tidal torque (Section 4). Then we will describe our methodology (Section 5), which consists both of the use of synthetic
trajectories and N-body integrations. Then we will investigate two scenarios: one based on an initially hot Mimas (Section 6), and the other
one based on an initially hot Enceladus (Section 7), before discussing their consequences on the stability of the other satellites of the Saturnian
system (Section 8).
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2 THE PRESENT SYSTEM OF SATURN

This study presents putative histories of the system of Saturn, which must be consistent with its observed state. The mid-sized satellites, i.e.
S-1 Mimas, S-2 Enceladus, S-3 Tethys, and S-4 Dione, have the richest orbital dynamics. We recall their orbital elements in Table 1.

(i) Mimas is in a 4: 2 mean motion resonance (MMR) with Tethys, which excites its inclination. The high libration amplitude of its
resonant argument (≈97◦, Struve 1890) suggests a recent capture. Allan (1969) estimated its age to be 3345/(k2/Q)Y yr in neglecting the
dissipation in Mimas, which evaluates to 21 Myr if we adopt the recent measurement of the dissipative Love number of Saturn (k2/Q)Y by
Lainey et al. (2017). Mimas also has a significant eccentricity (0.02), which could be due to several crossings of mean-motion resonances
(Meyer & Wisdom 2008). Even if its surface appears old and frozen, recent measurements of longitudinal librations in its rotational dynamics
(Tajeddine et al. 2014) are consistent with the presence of a subsurface ocean. Not only the amplitude of libration is probably too high for a
frozen body, but its phase lag (6.35 ± 0.8◦) is the signature of a significant internal dissipation (Caudal 2017; Noyelles 2017).

(ii) Enceladus is in a 2: 1 MMR with Dione, which excites its eccentricity. The observations of jets of water vapour and icy grains at its
South Pole (Porco et al. 2006; Howett et al. 2011), the relaxation of the craters (Bland et al. 2012), the detection of a global ocean (Thomas
et al. 2016) as well as an ice shell thinning at the South Pole (Beuthe, Rivoldini & Trinh 2016; Čadek et al. 2016) associated with a strong
heat flow anomaly (Le Gall et al. 2017) suggest that intense dissipation is currently taking place in Enceladus.

(iii) Tethys does not exhibit any sign of recent activity (Buratti et al. 2011). It has a significant inclination (≈1◦), which cannot be explained
by the resonance with Mimas, given their mass ratio. A recent study (Ćuk, Dones & Nesvorný 2016) identifies a former secular resonance
with Dione as a possible cause for this inclination.

The larger outer satellites, i.e. Rhea, Titan, Hyperion, and Iapetus, can be safely neglected. They induce a small contribution in the
secular precessions of the nodes and pericentres, which is negligible compared to the influence of Saturn’s flattening.

Most interesting are the inner satellites on which Mimas and Enceladus have a critical influence. Their existence could be threatened by
any dramatic change in the orbits of Mimas and Enceladus, so they should either survive the proposed scenario of orbital evolution, or have
been formed very recently. The main satellites to look for are Janus, Epimetheus, Aegaeon, Anthe, and Pallene. Janus and Epimetheus are
two coorbital satellites, i.e. sharing the same orbit. Aegaeon orbits within a bright arc of material near the inner edge of the G-ring, and is in
a 7: 6 MMR with Mimas (Hedman et al. 2010). Methone, Anthe, and Pallene are the Alkyonides satellites; they are in the 15: 14 (Spitale
et al. 2006) and 11: 10 (Cooper et al. 2008) MMR with Mimas, and 19: 16 MMR with Enceladus (Spitale et al. 2006), respectively. We
recall their orbital elements in Table 2.

Moreover, Mimas is known to exert Lindblad resonances across the rings. The first-order 2 : 1 resonance is located at the inner edge of
the Cassini Division and its influence on the shaping of the Division is debated in Paper I. However, higher order Lindblad resonances have
also been noticed to create signatures and structures across the rings such as the Mimas 4: 1 inner Lindblad resonance reported in Baillié
et al. (2011). Though located close to the edge separating the C ring and the B ring, the Mimas 3: 1 has not been positively associated with
any ring structure yet. The difference between the C ring and the Cassini Division, which yet present similar optical depth, may be due to
possible different origins of the ring particles between these rings as suggested by particle size distribution analyses by French & Nicholson
(2000) and Baillié et al. (2013).

3 TH E P U S H O F T H E R I N G S

From Goldreich & Tremaine (1980), Champenois (1998, Chapter 3) shows that the push exerted by the rings of Saturn on Mimas mostly
comes from the 2: 1 Lindblad resonance, and the resulting secular variation of the mean motion reads

dn1

dt
= −2π2σ2:1n

2
1a

2
1α

3 m1

M2
Y

(
4b

(2)
1/2(α) + α
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dα
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)2

, (1)

where α = 2−2/3 ≈ 0.63 is the ratio of the semimajor axes of the 2: 1 Lindblad resonance and Mimas, and σ 2: 1 is the density of the rings at
this resonance. Baillié et al. (2011) and Hedman & Nicholson (2016) provide estimations of the ring density at various locations in the rings
corresponding to specific resonances with outer satellites. b

(2)
1/2(α) is a classical Laplace coefficient, which reads:
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4 TIDES IN THE SYSTEM OF SATURN

Tidal interaction can be a major source of energy through internal friction in planetary satellites, and is responsible for their secular migration.
The relevant equations are (e.g. Yoder & Peale 1981)
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for a small eccentricity ei, a synchronous rotation of the satellite, and an orbital period which is larger than the rotation period of the planet.
Here ni is the orbital frequency of the satellite i, mi its mass, Ri its radius, and ai its semimajor axis. RY and MY are the mean radius and the
mass of Saturn, respectively. k2 and Q are the Love number and the dissipation factor, in Saturn (subscript Y ) and in the satellite i. The raise
of the eccentricity of the satellite would not be enough to destabilize the synchronous rotation.

Lainey et al. (2017) measured (k2/Q)Y = (1.59 ± 0.74) × 10−4 for the whole system of Saturn. An investigation of the dependency
of (k2/Q)Y on the orbital frequency suggests that the dissipation increases when the frequency decreases, in particular the same study found
(k2/Q)Y = (1.2394 ± 0.1727) × 10−3 at Rhea’s frequency. This could be the first observational confirmation of the resonance locking predicted
by Fuller, Luan & Quataert (2016). This mechanism consists of a high dissipation in the atmosphere of the planet at a very specific frequency,
but which evolves with the orbit of a given satellite, so that the satellite experiences a large migration rate all along its migration process,
except if a catastrophic event disrupts this resonance.

We can notice that the secular migration of a planetary satellite is driven by opposite phenomena:

(i) the dissipation in the planet is responsible for the outward migration of satellites (dni/dt < 0),
(ii) this effect is supplemented by the push of the rings, while
(iii) the dissipation in the satellite translates into a loss of orbital energy, i.e. an inward migration (dni/dt > 0).

This assumes that the only gravitational action which does not average to zero is the tides. Actually, when two satellites are trapped in
a mean-motion resonance, energy exchanges between them result in a joint migration. A consequence is that a satellite can migrate inwards
because another one is dissipating.

This allows us to identify two possible causes for an inward migration of Mimas:

(i) A past intense dissipation in Mimas,
(ii) A past intense dissipation in another satellite, which would be locked in mean-motion resonance with Mimas and drive it inwards.

It could also be a combination of both processes. For the sake of simplicity, we will consider these two scenarios separately here.
An intense dissipation in a satellite should be the consequence of an intense heating. In this study we will assume that this heating results

from an increase of the eccentricity. A higher eccentricity results in a higher tidal heating, which would tend to melt the satellite and elevate
(k2/Q)i, which would itself trigger an inward migration. During the migration process, the eccentricity would be damped, eventually stopping
the dissipation in the satellite and reversing the migration outwards.

5 ME T H O D O L O G Y

To investigate the long-term dynamics of the satellites of Saturn, we will essentially use two tools: a full N-body integrator and an analytical
theory of the orbital evolution of satellites in resonance. The analytical evolution gives us trajectories of the satellites very efficiently, while
the N-body integrator checks their validity in a realistic system.

5.1 Secular and resonant orbital motion

Over Gyr time-scales, the orbital variations of the satellites are mainly due to tides and resonant interactions. Resonant interactions originate
from mean-motion resonances between two bodies, and result in a pair which migrates with a stable semimajor axial ratio, and some orbital
elements, i.e. eccentricities and / or inclinations, of one or of the two satellites, which are raised. To represent this evolution, we will average
the equations that determine the variation of the relevant orbital elements over time, to only keep the secular and resonant contributions. This
model is widely inspired from the PhD dissertation of Sylvain Champenois (Champenois 1998, Chapter 4), which has been itself inspired by
Allan (1969).

When a satellite is disturbed by an external potential U, then the time evolution of its orbital elements is determined by the classical
Lagrange equations:
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dt
= − 3
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∂λ
, (5)
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with γ = sin (I/2).
The disturbing potentials U1 and U2 can be expanded with respect to the small eccentricities and inclinations e1, e2, γ 1, and γ 2 as a sum

involving six integer indices l, m, s, s
′
, t, t

′
, as Kaula (1962, e.g.):

U =
∑

lmss′t t ′

GMY

a2
Flmss′t t ′ cos φlmss′t t ′ , (11)

with

φlmss′t t ′ = (l − 2s + t)λ1 − (l − 2s ′ + t ′)λ2 − (l − m − 2s)�1 + (l − m − 2s ′)�2 − t	1 + t ′	2, (12)

and Flmss′t t ′ is a function of the orbital elements verifying

Flmss′t t ′ ∝ e
|t |
1 e

|t ′ |
2 γ

|l−m−2s|
1 e

|l−m−2s′ |
2 . (13)

If we assume a (p + q) : p mean-motion resonance between Satellites 1 and 2, then the resonant argument φ reads

φ = pλ1 − (p + q)λ2 + q1	1 + q2	2 + q3�1 + q4�2, (14)

where λi, 	 i, and �i are the mean longitudes, the longitudes of the pericentres, and of the ascending nodes of Satellite i, respectively. p, q,
q1, q2, q3, and q4 are integers such that q = q1 + q2 + q3 + q4 and q3 + q4 are even.

After averaging over the non-resonant angles, only the resonant argument is kept in the disturbing potential, and the Lagrange equations
yield:
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with α = a1/a2 < 1.
The subscripts T, R, and S refer to the tides, the rings, and to the secular conservative variations, respectively. Tides are expected to have

a very small influence on the inclinations, which is why we neglect the quantities (dIi/dt)T. The secular variations of the angles λ, 	 , and �
are mostly due to the flattening of Saturn.

Since the precessions of the nodes and pericentres are very slow with respect to the mean motions ni, we can write

φ̈ ≈ p
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and since it follows from the resonance that φ librates, we have < φ̈ >= 0, <x > being the average of the quantity x over a period of
variations. This yields
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2
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MY

, (28)

which can then be used in the Lagrange equations to express the evolution of the orbital elements over long time-scales.
This study requires eccentricities up to 0.25, which challenges the accuracy of this analytical representation. This is why we will confront

it with full N-body simulations. However, the analytical representation has the advantage to show which mechanism, i.e. the MMR, is
responsible for the eccentricity of Mimas. This is necessary for a preliminary exploration of the initial conditions and parameters. An attempt
to make it convergent in adding higher order terms would prejudice this goal.

5.2 Full N-body integrator

We model the motion of the main satellites of Saturn in a Cartesian planetocentric reference frame, and consider the perturbations of N
satellites seen as point masses, and the spherical harmonics (Stokes coefficients) J2, J4, and J6 of the gravity field of Saturn. We give the
required numbers in Table 3. In practice, we limit the integrations to N = 4, the involved satellites being Mimas, Enceladus, Tethys, and
Dione. Even if Rhea and Titan are the most massive ones, numerical tests have shown that they have only limited influence on the dynamics
of Mimas and Enceladus.

In this framework, the equations of the problem are

�̈ri =
�Fi

mi

−
�Fp

MY

, (29)

where �ri = (xi, yi, zi) locates the satellite i, mi being its mass, �Fi the force acting on it, and �Fp the force acting on Saturn. We write the
general equations of motion for the N satellites as

r̈i = −G(MY + mi)

r3
i

�ri +
N∑

j=1,j 	=i

Gmj

(
�rj − �ri

r3
ij

− �rj

r3
i

)
+ GMY ∇iUi, (30)

with

Ui = −
3∑

n=1

R2n
e

r2n+1
i

J2nP2n (sin φi) , (31)

G being the gravitational constant, Re the equatorial radius of Saturn, φi the latitude of the satellite i in a frame connected to Saturn, and
Pn the classical Legendre polynomial. As in Verheylewegen, Noyelles & Lemaitre (2013), the tidal effects, given by equations (3) and (4),
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are added on the orbital osculating elements derived from the Cartesian coordinates, these orbital elements being then converted back into
Cartesian elements.

We have then numerically integrated the equations of motion of the N-body problem and of the tides with the Adams–Bashforth–Moulton
10th-order predictor-corrector integrator (Hairer, Nørsett & Wanner 1993). This integrator has been successfully validated in comparing it
with SWIFT (Levison & Duncan 1994), in a similar study on the satellites of Uranus (Verheylewegen et al. 2013).

6 SC E NA R I O I: FRO M A H OT MI M A S

Assuming Mimas has been hot enough to trigger inward migration, we consider the following scenario:

(i) The satellites of Saturn migrate outwards, with α13 = a1/a3 < 0.63107. This ratio increases with time.
(ii) At α13 = 0.63107, the system Mimas–Tethys encounters the resonance, whose argument is φ1 = λ1 − 2λ3 + 	 1, with p = q = 1. This

resonance raises the eccentricity of Mimas.
(iii) When the internal temperature of Mimas reaches the melting point of water ice, the production of melt and the subsequent formation

of an internal ocean leads to a dramatic increase of its dissipation function (k2/Q)i. As a consequence, the MMR with Tethys is disrupted,
Mimas migrates inwards, and its eccentricity is damped.

(iv) The orbit of Mimas is now almost circular and migrates outwards. While Mimas is cooling, the quantity α13 increases until it reaches
0.62930. At this point, Mimas and Tethys are trapped into the present 4 : 2 MMR, whose resonant argument is φ2 = 2λ1 − 4λ3 + �1 + �3,
with p = q = 2.

The time-scale for eccentricity increase before runaway melting occurs is mostly controlled by the dissipation rate in Saturn and takes a
few hundreds of Myr, while the time-scale for eccentricity damping is determined by the dissipation rate inside Mimas. In this ‘hot Mimas’
scenario, we assume that melting runaway and abrupt increase of dissipation in Mimas occur when the eccentricity exceeds a critical value,
typically varying between 0.18 and 0.22. This maximal eccentricity controls the range of orbital recession of Mimas, see Fig. 2. The dissipation
function of Mimas (k2/Q) typically varies between 10−7 and 10−6 before melting occurs, and between 10−4 and 10−2 once a liquid layer
forms, depending on the ocean/ice thickness and the effective viscosity/strength of the rocky core and outer ice shell, (Appendix A).

6.1 Analytical model

While Mimas and Tethys are locked in the 2: 1 resonance, the equations (15), (16), (17), and (28), which determine their long-term orbital
motions, become〈

dn1

dt

〉
= 3n2

1α13
m3

MY

< e1f (α13) sin φ1 > +
(

dn1

dt

)
T

+
(

dn1

dt

)
R

, (32)

〈
dn3

dt

〉
= −6n2

3

m1

MY
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, (33)
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)
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]
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MY

+ 12n2
3

m1
MY

. (35)

Fig. 1 gives an example of trajectory of Mimas in this scenario. We took (k2/Q)Y = 1.59 × 10−4, an initial semimajor axis of Tethys
a3 = 284 000 km, no dissipation in Tethys, i.e. (k2/Q)3 = 0, and (k2/Q)1 = 10−7 before the eccentricity of 0.22 is reached, (k2/Q)1 = 10−3

after, and (k2/Q)1 = 1.227 × 10−6 at the end, so as to maintain the current eccentricity of Mimas. Here the capture into the present inclination
resonance with Tethys is not simulated. The trapping into the 2: 1 e-resonance with Tethys occurs at ≈46 Myr, from which the evolution of
the orbital elements of Mimas and Tethys is modelled with equations (32)–(35). This resonance is disrupted when the eccentricity of Mimas
reaches 0.22, at ≈303.5 Myr.

Once Mimas’ interior starts melting, the internal dissipation rapidly increases, leading to a disruption of the resonance and to an inward
migration. A critical point is the length of Mimas’ recession, i.e. the �a, which is the difference in semimajor axis between its maximum, at
the beginning of the inward migration phase, and its minimum, when the migration is reversed. This recession can be analytically estimated.

From the equations of the secular evolution of the orbit of Mimas due to the tides and the rings (equations 1, 3, and 4), we can write

da1

dt
= κ0 + κ1e

2
1, (36)

e1(t) = e0 exp

(
− t

τ

)
, (37)
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Formation of the Cassini Division – II 2953

Figure 1. Synthetic evolution of the orbit of Mimas in the Scenario 1, the bottom being a zoom on the inward migration. During a phase of outward migration
due to the tides and the push of the rings, Mimas is caught in the 2: 1 e-resonance with Tethys, which triggers a rapid raise of its eccentricity. When this
eccentricity reaches 0.2, we consider that Mimas is hot enough to experience an impulsive raise of its (k2/Q), which disrupts the MMR, triggers the inward
migration, and damps its eccentricity. After this phase, Mimas recrystallizes, and resumes its outward migration.

with

κ0 = 4

3
π2σ2:1na3α3 m1

MY

(
4b

(2)
1/2(α) + α

db
(2)
1/2

dα
(α)

)2

+ 3

(
k2

Q

)
Y

n
m1

MY

R5
Y

a4
, (38)

κ1 = 153

4

(
k2

Q

)
Y

n
m1

MY

R5
Y

a4
− 21

(
k2

Q

)
1

n
MY

m1

R5
1

a4
, (39)

τ =
(

n

(
21

2

(
k2

Q

)
1

MY

m1

(
R1

a

)5

− 57

8

(
k2

Q

)
Y

m1

MY

(
RY

a

)5
))−1

, (40)

in which the mean motion and semimajor axis of Mimas are fixed to constant values n = 6.269 rad d−1 and a = 190 000 km, given their
relative small range of variation. Moreover, we took σ 2: 1 = 28.6 g cm−2 from our model of initial ring (cf. Paper I).

The duration of the recession phase td is the time for which da1/dt = 0, i.e.

td = − τ

2
ln

(
− κ0

κ1e
2
0

)
, (41)

and the length of the inward migration �a reads:

�a = κ0td + κ1

2
τe2

0

(
1 − exp

(
−2

td

τ

))
. (42)

These quantities are represented in Fig. 2. We aim at migrating inwards over at least 8000 km, which would imply a maximal eccentricity
e0 = 0.208 for (k2/Q)1 = 2 × 10−3, and e0 = 0.225 for (k2/Q)1 = 2 × 10−4.
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2954 B. Noyelles et al.

Figure 2. Length (left) and duration (right) of the orbital recession of Mimas, with respect to its dissipation and initial eccentricity.

Figure 3. Two examples of orbital evolution of Mimas, with very close initial conditions, from N-body simulations. The chaoticity of the real system when
Mimas attains a significant eccentricity makes the stability of the MMR between Mimas and Tethys impossible to control, which is why several simulations
are necessary. When the eccentricity gets too high (red curve), the inward migration is so abrupt that the simulation becomes numerically unstable.

6.2 Numerical validation

We ran more than 100 N-body simulations, and in all of them Mimas and Tethys were trapped into the e-resonance we mentioned, provided
the numerical simulations were not accelerated too much. We tested the influence of the acceleration on the trapping into resonance, and it
appeared that an acceleration by a factor 50 000 remains slow enough to have a certain capture. This acceleraton is obtained by multiplying
the tidal coefficients (k2/Q) by 50 000. However, accelerating the migration by a factor 500 000 prevents the locking into that resonance
(Fig. 4) However, the resonance is still certain when the migration is accelerated only by a factor 5000. Our last set of simulations consisted
of 10 runs involving six satellites, from Mimas to Titan, which differed by the initial mean anomaly of Mimas. We got a trapping in all of
these simulations. However, they differ by the disruption of this resonance (Fig. 3). We conjecture that slower simulations would give the
same behaviours over a set of simulations. Unfortunately, the chaoticity of the problem, especially when Mimas reaches high eccentricities,
prevents two simulations differing only by the acceleration factor to result in the same trajectory. The trapping into the e-resonance with
Tethys is preserved, however the disruption of this resonance cannot be accurately constrained by N-body simulations (Fig. 4). The increase
of (k2/Q)1 is based on the semimajor axis instead of being based on the eccentricity as it would be physically relevant. This way, we initiate
the orbital decay where the Paper I predicts it.

Fig. 3 shows two trajectories. In the first one, the resonance is disrupted for e ≈ 0.17, which gives an inward migration over ≈4500 km.
However, the second trajectory maintains the resonance until e = 0.25, which induces such an abrupt inward migration that it challenges the
numerical accuracy of our code. In both cases, the dissipative Love number of Mimas (k2/Q)1 is abruptly raised when the semimajor axis
of Mimas reaches 193 150 km. As further explained in Section 6.3 and in Appendix A, the abrupt rise of (k2/Q)1 is explained by a melting
runaway event. Such an event is triggered when the eccentricity and hence the tidal heating reach a critical value. In reality, the associated
(k2/Q)1 rise is not instantaneous and should proceed on a time-scale of a few hundred thousands of years. As this time-scale is relatively short
compared to the orbital evolution, we simplify it by considering an abrupt instantaneous jump in (k2/Q)1.

MNRAS 486, 2947–2963 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/2/2947/5364563 by O
bservatoire D

e Paris - Bibliotheque user on 16 M
ay 2019



Formation of the Cassini Division – II 2955

Figure 4. Influence of the artificial acceleration of the tidal migration on the simulated orbital evolution of Mimas. Accelerating it 5000 times (left) does not
give exactly the same trajectories as 50 000 (Fig. 3, left, green curve), but renders the trapping into the e-resonance and the raise of the eccentricity. However,
accelerating it 500 000 times (right) prevents the trapping into the resonance, the evolution is not adiabatic anymore.

6.3 Origin of the (k2/Q)1 increase and thermal implications

In the proposed scenario, the abrupt change of (k2/Q)1 when the eccentricity exceeds a critical value (0.22 in the example shown in Fig. 1)
is related to the melting of the icy interior of Mimas. This runaway melting leads to the formation of an internal ocean and hence to a
strong increase of interior deformation in response to tides raised by Saturn. Using the approach of Tobie, Mocquet & Sotin (2005), we
determined the possible values of (k2/Q)1 assuming various interior structures. The interior is assumed to behave as a Maxwellian body and
to be differentiated into a rock-rich core (consisting of a mixture of rock and ice or rock and liquid water) and an ice shell, possibly separated
by a liquid water layer, with various thickness (see Appendix A for further details). Our calculations show that values of (k2/Q)1 lower than
10−6 are predicted for fully solid body consisting of a rock-ice core overlaid by a thick ice mantle with average viscosity larger than 1017

Pa.s, while values higher or equal to 10−3 correspond to an interior model consisting of a porous water-filled core overlaid by a thick ocean
and ice shell. The abrupt change can be understood as the consequence of a melting runaway that occurs once the melting point was reached
in the icy interior.

The total dissipated power, Ptide, can be estimated using the following formula (e.g. Tobie et al. 2005):

Ptide = 21

2

k2

Q

(ωRs)
5

G e2, (43)

where ω is the rotational frequency of the satellite, usually assumed to be equal to the mean motion n.
At an eccentricity equal to 0.22, the total dissipated power rapidly jumps from 0.6 GW for (k2/Q)1 = 10−7 to 6 TW for (k2/Q)1 = 10−3

when melting would first occur. As long as the eccentricity is low, the heat rate is too low to significantly increase the internal temperature.
But once temperature reaches the melting point in the interior, (k2/Q)1 is expected to increase leading to an enhancement of heat rate and
hence to more melting. The total energy required to melt the ice phase of Mimas is estimated to be about 1025 J, implying that the entire ice
phase would be melted in about 300 kyr at a rate of 1 TW.

Our simulation shows that the orbital recession of Mimas over a distance of 8000–9000 km requires Mimas to remain in a highly
dissipative state during at least 3 Myr (Simulation 2 in Paper I). This implies that Mimas would be in a fully molten state during this entire
period, with only a very thin ice shell (<1 km) which is incompatible with its highly cratered surface, showing no sign of significant past
tectonic activity (e.g. Rhoden et al. 2017). Even though we show that a highly dissipative state can be reached when Mimas started melting,
the duration over which such dissipation must act to proceed the required orbital decay and the lack of significant tectonic activity strongly
constrain a scenario of hot Mimas.

7 SC E NA R I O I I : F RO M A H OT E N C E L A D U S

Mimas does not show evidence of a past heating as intense as expected from Scenario 1. However, Enceladus shows intense activity at
present (e.g. Porco et al. 2006; Spencer et al. 2006), which may have been even higher in the past (e.g. Běhounková et al. 2012). In particular,
several ancient tectonized terrains have been identified outside the active south polar terrains (Crow-Willard & Pappalardo 2015), suggesting
significant variations in surface activity and internal dissipation. This prompts us to examine the following scenario:

(i) Enceladus attains a high eccentricity, which triggers an episode of intense dissipation and inward migration,
(ii) While it migrates inwards, it traps Mimas into a mean-motion resonance, and they both migrate inwards. The stability of this resonance

is enforced by the convergence of the two orbits when the resonance occurs, but could be threatened by a trapping into another resonance.
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2956 B. Noyelles et al.

Table 1. Orbital elements of the mid-sized satellites of Saturn. These are mean
elements given by JPL HORIZONS, except for the eccentricity of Enceladus, which
is given as 0 since it is its free component. Its typical instantaneous value is more
relevant.

Satellite Semimajor axis (km) Eccentricity Inclination

S-1 Mimas 185 539 1.96 × 10−2 1.574◦
S-2 Enceladus 238 042 5 × 10−3 0.003◦
S-3 Tethys 294 672 10−4 1.091◦
S-4 Dione 377 415 2.2 × 10−3 0.028◦

Table 2. Semimajor axes of some small, inner satellites of Saturn. These are
mean elements given by JPL HORIZONS.

Satellite Semimajor axis (km) Eccentricity

S-10 Janus 151 450 9.8 × 10−3

S-11 Epimetheus 151 450 1.61 × 10−2

S-15 Atlas 137 774 1.1 × 10−3

S-16 Prometheus 139 429 2.2 × 10−3

S-17 Pandora 141 810 4.2 × 10−3

S-18 Pan 133 585 0
S-32 Methone 194 402 0
S-33 Pallene 212 282 4 × 10−3

S-49 Anthe 196 888 1.1 × 10−3

S-53 Aegaeon 167 425 2 × 10−4

Table 3. Gravity field (Jacobson et al. 2006) and radii (Thomas et al.
2007; Thomas 2010) of Saturn and its mid-sized satellites used in our
simulations.

GM Mean radius
(km3.s−2) (km)

Saturn 37 931 272 58 232
Mimas 2.5023 198.2
Enceladus 7.2096 252.1
Tethys 41.2097 531
Dione 73.1127 561.4

Saturn
Equatorial radius 60 330 km
J2 1.629071 × 10−2

J4 −9.3583 × 10−4

J6 8.614 × 10−5

Table 4. Constraints on the past motion of Enceladus in Scenario 2, with respect to
the resonance involved.

Resonance 3: 2 4: 3
Argument φ32 = 2λ1 − 3λ2 + 	 2 φ43 = 3λ1 − 4λ2 + 	 2

α = a1/a2 0.76337 0.82564
Capture sma 253 029 km 233 939 km
Release sma 242 347 km 224 067 km
Required migration 10 676 km 9871 km

(iii) The eccentricity of Enceladus is then damped enough so that the inward migration is stopped. The mean-motion resonance with Mimas
is disrupted, and the two bodies migrate outwards independently. Mimas is eventually trapped into its present 4 : 2 MMR with Tethys, while
Enceladus is trapped into the 2: 1 MMR with Dione.

The two strongest candidates for the MMR between Mimas and Enceladus are the 3: 2 and the 4: 3 ones. We compare their effects in
Table 4.

The capture semimajor axis is the semimajor axis where Enceladus would have been trapped into MMR with Mimas, if Mimas started
its inward migration at 193 150 km. The release semimajor axis is the one of Enceladus at the disruption of the resonance, if it would have
happened when Mimas was at 185 000 km. These numbers are to be compared with the current mean semimajor axis of Enceladus, which is
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Formation of the Cassini Division – II 2957

Figure 5. Length (left) and duration (right) of the orbital recession of Enceladus, with respect to its dissipation and its initial eccentricity.

238 042 km. This means that if the system was trapped into the 3: 2 MMR, then an extra inward migration would have been needed to drive
the semimajor axis of Enceladus below its current value, and then outward migration would have started to get Enceladus trapped into the
current MMR with Dione. This extra migration would not have been needed for the 4: 3 MMR, but it would have required a fast outward
migration instead, Enceladus moving from 224 000 to 238 000 km while Mimas would have moved from 185 000 to 185 500 km.

Deriving the decay range of Enceladus should consider that the dissipated energy into Enceladus would translate into the inward
migration of Enceladus and of Mimas. This dissipated energy should read as:

�E = GMY m2

2a2
2

�a2 + GMY m1

2a2
1

�a1

= GMY

2a2
2

�a2

(
m2 + m1

α

)
, (44)

which means that the length of the migration, if calculated for Enceladus alone, should be multiplied by m2/(m2 + m1/α). This factor is equal
to 0.687 for the 3: 2 MMR, and to 0.704 for the 4: 3 MMR. This migration is represented in Fig. 5, for the 3: 2 MMR.

This figure shows in particular that the required migration associated with the 3: 2 MMR, i.e. 10 676 km, would require an initial
eccentricity e2 = 0.294 for (k2/Q)2 = 10−4, and e2 = 0.258 for (k2/Q)2 = 2 × 10−3. For the 4: 3 MMR, which would require an inward
migration over 9871 km, an initial eccentricity e2 = 0.291 would be needed for (k2/Q)2 = 10−4, and e2 = 0.246 for (k2/Q)2 = 2 × 10−3.

For an initial e2 = 0.25 and (k2/Q)2 = 2 × 10−3 we obtain an orbital decay over 9659 km. This is actually an optimistic estimate, since it
does not consider the push of the rings and of the tides of Saturn on Mimas. To check this number, we simulated secular resonant trajectories.
If Mimas and Enceladus are trapped into the 3: 2 MMR, the equations (15), (16), (18), and (28) become, with p = 2, q = q2 = 1, and q1 =
q3 = q4 = 0:〈
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and the simulation of the trajectory gives a migration of ≈8900 km instead of 9659 km, which was obtained with optimistic assumptions.
This means that the initial eccentricity given by Fig. 5 should be slightly raised to be realistic.

7.1 Numerical limits

If the migration of Mimas had been due to the migration of a hot, dissipating Enceladus, it would have required its eccentricity to reach at
least 0.25, which is extremely high for a natural satellite. Such an eccentricity could threaten the very stability of part of the system, i.e. the
presence of Enceladus around Saturn, and/or the survival of smaller satellites.
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2958 B. Noyelles et al.

Figure 6. Scenario 2, with Mimas and Enceladus initially close to the 3: 2 MMR, and Dione perturbing them. Mimas experiences two episodic captures into
the 3: 2 and the 4: 3 MMR, but which are too unstable to permit an inward migration over more than 8000 km, as wished to create the Cassini Division.

We have run 10 numerical simulations close to the 3: 2 MMR, with only three bodies, i.e. Mimas, Enceladus, and Dione (cf. example
Fig. 6), with the tides accelerated 5000 times, and with an initial eccentricity of Enceladus of 0.25. It appeared that in none of them, the
3: 2 MMR is stable enough to drive Mimas closer to Saturn. Actually, the migration of the satellites is dominated by the chaotic interaction
between them.

In some of our trajectories, we get temporary trappings into the 4: 3 MMR (cf. Fig. 6, between 4 and 7 Myr), indicating that this
resonance is more stable. We ran 10 simulations with the same three bodies and Mimas–Enceladus close to the 4: 3 MMR, and in five of them
we got the desired-for migration for Mimas, unfortunately over a range of up to ≈2000 km only. Moreover, this process does not survive the
gravitational interactions with the other bodies, i.e. the system of the mid-sized satellites of Saturn becomes unstable. We ran 20 simulations
close to the 4: 3 MMR, in which the first six satellites were considered, i.e. from S-1 Mimas to S-6 Titan. In none of them, the process works,
and usually the trajectory becomes quickly unstable (cf. Fig. 7).

Many other MMR could be considered, but they would be much weaker since there are higher order resonances. We tried the same
three-body simulations with Mimas and Enceladus close to the 7: 5 MMR, with no success.

7.2 Thermal implications

Like in the ‘hot Mimas’ scenario, the ‘hot Enceladus’ scenario implies an abrupt change in dissipation inside Enceladus. This occurs again
when a global ocean is generated by ice melting. When the eccentricity of Enceladus exceeds a critical value, estimated to be about 0.25 in
our scenario, an episode of intense dissipation is triggered, leading to inward migration. As Mimas is trapped into a mean-motion resonance,
it is dragged inwards by Enceladus. Our calculations (equation 44) show that an orbital regression of Mimas over a distance of 8000–9000 km
requires a total energy of 4.8 × 1026 J to be dissipated inside Enceladus. Like in the hot Mimas scenario, this would imply an almost complete
melting of the internal ice. At present, Enceladus’ ice shell thickness is estimated to about 20–25 km on average (Thomas et al. 2016), with
thickness as small as 2–4 km in the south polar region (Beuthe et al. 2016; Čadek et al. 2016). During periods of intense dissipation, the ice
shell could be even thinner, especially in the south polar terrain as well as in other area outside the south polar region where highly tectonized
terrains have been identified (Crow-Willard & Pappalardo 2015). In very thin and highly deformable regions, the surface heat flux could
exceed several tens of W m−2, providing a means to evacuate the excess of dissipated heat. During periods of high eccentricity, the tidal
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Formation of the Cassini Division – II 2959

Figure 7. Scenario 2, with Mimas and Enceladus initially close to the 4: 3 MMR. Six satellites are present in this simulation. When Enceladus has such a
significant eccentricity, the system of the satellites of Saturn is destabilized, which is why all the simulations are stopped before 1 Myr.

deformation will be very large especially in regions with reduced ice thickness (Souček et al. 2016), which is expected to lead to a break-up
of the ice shell and exposure of liquid water on a large fraction of the ice shell. The radiative cooling of erupted water would provide an
efficient way to release the dissipated heat. For water/ice mixture exposed at the surface at temperature between 200 and 270 K, the radiative
cooling heat flux is estimated between 90 and 300 W m−2. Less than 5 per cent of the surface of Enceladus with such a surface activity would
be sufficient to release 3–4 TW. This indicates that a period with a very intense dissipation exceeding 1 TW is possible on Enceladus and is
not incompatible with its surface activity. However, as mentioned above, a highly eccentric orbit for Enceladus challenges the stability of the
orbits of the other satellites.

8 SU RV I VA L O F TH E OTH E R SAT E L L I T E S

Pumping the eccentricity of Mimas or Enceladus might threaten the existence of small satellites in case of collision, and the stability of
the system of Saturn if larger satellites were affected. Table 5 presents the maximal eccentricities Mimas and Enceladus could have while
preserving the existence of the satellites listed in the first column. For Mimas and Enceladus, two semimajor axes were considered: a location
slightly closer than the present one, and the maximal one predicted by our study. We give these two locations to cover the full putative
excursions of the satellites, but large eccentricities are more relevant for the highest of these semimajor axes, where the inward migration
starts.

We derived the minimum distance D between two orbits as the distance between the pericentre of the outer satellite (2) with the apocentre
of the inner one:

D = |a1 − a2| − a1e1 − a2e2. (49)

This formula assumes that there is no resonant interaction between the two orbits, and that the orbits are coplanar. This last assumption
is reasonable since only Mimas and Tethys have significant inclinations, and the one of Mimas is assumed to be younger than the Cassini
Division. So, the result could be slightly pessimistic for Tethys. Then this mininum distance D should be compared to 2.2RH, RH being the
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Table 5. Maximal eccentricities of Mimas and Enceladus at different locations to avoid collisions with
the existing other satellites. These numbers should be compared with 0.22 in the hot Mimas scenario,
and with 0.25 in the hot Enceladus one.

Mimas Mimas Enceladus Enceladus
185 000 km 194 000 km 238 000 km 248 000 km

(hot Mimas) (hot Enceladus)

Aegaeon 0.089 0.131 0.289 0.317
Janus 0.168 0.206 0.350 0.376
Epimetheus 0.163 0.201 0.346 0.372
Pandora 0.225 0.260 0.395 0.419
Prometheus 0.239 0.274 0.406 0.430
Atlas 0.249 0.284 0.414 0.437
Pan 0.273 0.306 0.432 0.455
Methone 0.045 0 0.175 0.208
Anthe 0.057 0.008 0.164 0.197
Pallene 0.136 0.083 0.096 0.132
Mimas – – 0.196 0.229
Enceladus 0.269 0.210 – –
Tethys 0.572 0.499 0.219 0.170

Hill radius of the two satellites, with

RH = a1 + a2

2

(
m1 + m2

3MY

)1/3

. (50)

8.1 Stability of the inner satellites

The scenario of a hot Mimas leaves no chance to Aegaeon and threatens the existence of Janus and Epimetheus, since an eccentricity of 0.21
would be high enough to destabilize them, unless trapped in mean-motion resonance with Mimas. However, Pandora, Prometheus, Atlas, and
Pan would probably be preserved. Nevertheless, this calculation does not consider the orbital perturbations that a highly eccentric Mimas
would induce on these bodies. However, the scenario of a hot Enceladus preserves all of these bodies.

8.2 Stability of the Alkyonides

The very small satellites Methone, Pallene, and Anthe would not have survived either of these scenarios if they were not trapped in mean-
motion resonances. Anyway, a significant past eccentricity of Mimas or Enceladus raises questions about their origin. Either they are younger
than 10 Myr, or the MMR survived that episode. Answering this question would require a dedicated study.

The stability of these bodies has recently been addressed in Munõz-Gutiérrez & Giuliatti Winter (2017) over the last 500 kyr, the authors
have particularly shown that the mean-motion resonances do play a compelling role in this issue.

8.3 Stability of the system of Saturn

Close encounters between two massive satellites may threaten the very existence of the system as presently observed. And it appears that a
significant increase of the eccentricity of Enceladus is very likely to induce a collision with Tethys, while a high eccentricity of Mimas could
provoke a collision with Enceladus, though less certain.

9 C O N C L U S I O N S

In this paper, we investigated two a priori possible explanations for a past episode of inward migration of Mimas: an intense past heating of
Mimas, and an intense past heating of Enceladus. Both scenarios have pros and cons. The scenario of a hot Mimas preserves the structure
of the system of the mid-sized satellites of Saturn, but threatens the existence of Janus and Epimetheus and implies a past melting of the
surface of Mimas, which is hardly consistent with the observations of impact basins by Cassini (e.g. Roatsch et al. 2009, 2013). However,
the scenario of a hot Enceladus could be supported by our knowledge of the interior of Enceladus, but would have destabilized the system
of the mid-sized satellites. None of these scenarios preserves the small satellites of the Alkyonides group unless trapped in MMR. Another
explanation would be that they are younger than 10 Myr.

Despite our difficulties in finding a self-consistent scenario, we believe that the assumption of a past inwardly migrating Mimas should
be kept in mind, since no alternative explanation in the literature explains the finite size of the Cassini Division. The two scenarios we
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investigated are actually two end-members of a process combining both, i.e. dissipation in Enceladus and in Mimas. We hope that further
theoretical studies and data would permit to improve this explanation and/or elaborate a better one.

We could expect future improvements at least in the accuracy of the response of the rings, and in the tidal response of the
satellites. The interaction of dense rings with a massive satellite is a non-linear problem, and its determination is still challenging
when the perturber is eccentric. Realistic simulations of the behaviour of dense rings with an N-body code are still unreachable by
classical computation facilities, while the response of a collisional ring as a viscous gas is still modelled under assumptions of small
perturbation.

The response of the satellites to tidal excitation could be improved with a better knowledge of their interior, and a better modelling
of tides. This topic is still under development. For instance, Renaud & Henning (2018) recently published a new tidal model, using the
Sundberg–Cooper rheology, which suggests that the dissipation in icy satellites is currently underestimated.

Since we have two scenarios explaining part of the observed reality, we could expect that a combination of both of them, involving a
moderate heating of Mimas and a limited elevation of the eccentricity of Enceladus, would improve the model. Fine-tuning the combination
of these two mechanisms would require a whole study.
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Munõz-Gutiérrez M. A., Giuliatti Winter S., 2017, MNRAS, 470, 3750
Noyelles B., 2017, Icarus, 282, 276
Porco C. C. et al., 2006, Science, 311, 1393
Renaud J. P., Henning W. G., 2018, ApJ, 857, 98
Rhoden A. R., Henning W., Hurford T. A., Patthoff D. A., Tajeddine R., 2017, J. Geophys. Res.: Planets, 122, 400
Roatsch T. et al., 2009, Planet. Space Sci., 57, 83
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APPENDIX A : C OMPUTATION O F MIMAS AND ENCELADUS’S k2 /Q RATI O

To model the tidal response of Mimas’ and Enceladus’ interiors, we consider interior structures consisting of three main layers from centre to
surface: a porous water-saturated unconsolidated core, an ocean, and an ice shell thickness with density and radius summarized in Table A1.
A Maxwell rheology is considered, characterized by constant values of elastic modulus, μi and μc, and viscosity, ηi and ηc for the ice shell
and the porous rock core, respectively. Range of explored parameter values are listed in Table A1. The ice shell is assumed to be relatively
cold and characterized by a high viscosity, while for the porous core we explored a wide range of viscosity and rigidity, corresponding to
a cold mixture of rock and ice for the larger values (e.g. Roberts 2015) to an unconsolidated water-filled porous core for the lowest values
(Choblet et al. 2017).

Table A1. Model parameters used to compute the tidal response of Mimas and
Enceladus.

Parameter Symbol (unit) Mimas Enceladus

Tidal period T (d) 0.984 1.37
Satellite mass M (kg) 3.84 × 1019 1.08 × 1022

Surface radius Rs (km) 198 252
Ice shell thickness d (km) 5–50 5–50 km
Ice shell density ρi (kg m−3) 920 920
Ice shell rigidity μi (GPa) 3.3 3.3
Ice shell viscosity ηi (Pa.s) 1018−1022 1018−1022

Ocean density ρo (kg m−3) 1007 1007
Core density ρc (kg m−3) 2500 2500
Core rigidity μc (GPa) 3–10 3–10
Core viscosity ηc (Pa.s) 1010−1022 1010−1022

The viscoelastic deformation under the action of periodic tidal forces is computed following the method of Tobie et al. (2005). The
satellite interior is divided in three layers, from the centre to the surface: a weak unconsolidated water-saturated porous core, an inviscid water
ocean and a viscoelastic ice shell. For simplicity, each layer is assumed to have constant and uniform densities and mechanical properties
(see values above and in Table A1). From these profiles, the Poisson equation and the equations of motion are solved for small perturbations
in the frequency domain assuming a compressible viscoelastic rheology. The potential perturbation, associated displacement, and stress are
computed as a function of radius by integrating the radial functions associated with the radial and tangential displacements (y1 and y3,
respectively), the radial and tangential stresses (y2 and y4, respectively), and the gravitational potential (y5), as defined by Takeuchi & Saito
(1972) in the elastic equivalent problem. For the deformation of the inviscid water ocean, the static simplified formulation of Saito (1974)
is adopted relying on two radial functions, y5 and y7. The solution in the solid part (porous core and ice shell) is expressed as the linear
combination of three independent solutions, which reduces to two independent solutions in the liquid part. The system of six differential
equations is solved by integrating the three independent solutions using a fifth-order Runge–Kutta method with adjustive stepsize control
from the centre (r = 0 km) to the surface (r = 252 km) and by applying the appropriate boundary conditions at liquid/solid interface. The
complex Love number kC

2 , whose imaginary part is equal to k2/Q is determined from the complex fifth radial function at the planet surface,
yc

5(Rs).
As shown on Fig. A1, values of k2/Q lower than 10−6 are obtained in the case of Mimas for core viscosity higher than 1017 Pa.s in the

absence of internal ocean, which is consistent with a mixture of water ice and rock below the melting point of water ice. As the interior is
warming up, the viscosity is expected to progressively reduce, leading to a progressive increase of k2/Q. For core viscosity ranging between
1013 and 1016 Pa.s, which are typical viscosity values expected for ice-rock mixture at the melting point, the formation of an internal ocean
increases only slightly the k2/Q ratio. The strong amplification of the k2/Q ratio occurs only once the water ice in the core is fully molten and
the core becomes very weak due to the presence of water in the pores. This indicates that once ice melting initiates in the core, the increase
of dissipation leads to further melting, which in turn amplifies the dissipation, corresponding to a melting runaway. Enceladus should also
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Figure A1. Comparison of k2/Q ratio computed for Mimas (grey) and Enceladus (black) assuming the same mechanical properties for the interior for models
with no ocean (dotted line) and with an ocean beneath an ice shell of 5 km (solid line) or 50 km (dashed line), as a function of the effective core viscosity.

follow a similar trend. Note, however, that in the case of Enceladus, for core viscosities ranging between 1014 and 1020 Pa.s, the k2/Q ratio is
reduced when the internal ocean is considered. A strong increase of the dissipation for models with ocean compared to the model with no
ocean occurs only when the core viscosity gets below 1013 Pa.s, corresponding to a full melting of the ice phase. For Enceladus, k2/Q values
potentially as high as 7 × 10−2, which is about one order of magnitude above the maximal value reached for Mimas. This difference between
Mimas and Enceladus is due to the size of the core, which corresponds to about half of the total radius for Mimas, while it is about 3/4 in the
case of Enceladus.
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