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INP-ENSEEIHT
Toulouse, France
tap@enseeiht.fr

Abstract—In order to correct phase non-linearities due to High
Power Amplifiers (HPA) operating near saturation in telecommu-
nication transceivers, a voltage-controlled phase-shifter based on
Differential Difference Current Conveyors (DDCC) and a tunable
resistor were developed. In order to suit a large variety of HPAs
with broad phase non-linearities, the circuit’s tuning capability
has even been optimized up to an unprecedented 100◦ while
maintaining a good linearity (THD<-30 dB) and a gain close to
0 dB at 50 MHz. Designed in a 3.3 V 0.35 µm CMOS technology,
the circuit current consumption ranges from 3.5 mA to 4.5 mA
for a 50 MHz bandwidth, depending on the tuning range to be
achieved. This paper describes the general architecture of the
phase shifter as well as the inner structure of each implemented
function and presents simulation results of the whole circuit.

Index Terms—Phase-shifter, All-pass filter, ASIC, CMOS,
DDCC, EOTA, phase linearization.

I. INTRODUCTION

IN satellite telecommunications, power and spectral efficien-
cies are the two main concerns. In particular, some High

Power Amplifiers (HPA) have to operate close to saturation
so as to achieve the maximum power efficiency onboard.
Nevertheless, this leads to amplitude and phase non-linearities,
strong distortions of the transmitted signals and a deteriorated
link transmission quality [1].

There are several solutions to operate the HPA close to
its saturation point without generating non-linearities [2]. One
method is called the predistortion and consists in implementing
a module among the equipment located before the HPA, to
obtain a linear transfer characteristic of the whole transmission
chain [2], [3]. This method is interesting in case of payloads
with on-board processing, since it becomes possible to pre-
distort the signal at intermediate frequency before frequency
transposition and HPA amplification. Thus, the predistortion
system may operate in lower frequency bands, which opens
new technological solutions never explored before. Particu-
larly, amplitude and phase distortions issues can be addressed
independently, at intermediate frequency.

The phase non-linearity characteristic depends on the HPA
itself and on the signal power at the amplifier input and can
vary over several tenths of degrees. Further, it varies with
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TABLE I
PROPOSED PHASE SHIFTER TARGETED SPECIFICATIONS

Property Value
Peak-to-peak input amplitude 250 mV
Bandwidth > 50 MHz
Tuning range > 60◦
Gain within ± 200 mdB
THD @ 50 MHz < -30 dB

time, along with temperature drifts and components aging.
In this context, a circuit that can provide phase distortion
compensation, that is real-time tunable and introduces neither
any other non-linearities nor amplitude loss, is needed.

This paper presents an analog phase-shift circuit designed
to take into account those concerns. An analog architecture
was chosen to comply with stringent accuracy, consumption
and bandwidth considerations. Here, as a proof of concept,
the circuit was optimized to fit HPA characteristics provided
by the CNES for a 50 MHz input signal bandwidth, that
corresponds to a 200 Mbp/s rate with 16-QAM non-constant
envelope modulation. The circuit was implemented in a CMOS
technology. Table I describes the aimed specifications of the
circuit. The architecture, based on Differential Difference
Current Conveyors (DDCC) and a tunable resistor, as well
as transfer functions of each sub-circuit are presented in sec-
tion II. Then, sections III and IV detail the CMOS integrations
of the proposed DDCC and voltage-controlled resistor. The
simulation results of the whole architecture are shown in
part V. Finally, the conclusions are drawn in section VI.

II. PHASE SHIFTER ARCHITECTURE

A. State of the art

Analog phase shifting circuits are mainly implemented as
all-pass filters [4]–[10]. This family of filters exhibits a con-
stant gain (usually 0 dB) over their whole operating frequency
range and a phase, sometimes tunable via biasing voltage
or current adjustment or passive component values modifi-
cation. Many CMOS implementations have been introduced
in the literature: in [4]–[6], over 60 distinct solutions are
presented and compared. Among all the existing circuits to
the best of our knowledge, none showed the characteristics
required for the linearization of HPA and telecommunication
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Fig. 1. Architecture of the proposed phase shifter circuit on the left, with
DDCC CMOS implementation (on the right), based on a DDA architecture
including a feedback in dotted line between the ouput Vout and the input Vfb

baseband signal processing. First, some cannot be tuned [5]–
[7]. When the circuit is tunable, the phase shift range is
either limited [8], [9], or maximal at frequencies too low
for baseband signal processing and phase HPA linearization
[4], [10]. Further, tunability is often implemented through
current biaising modifications of active blocks over several
decades, which results in linearity issues [4], [5], [8]. In some
cases, the architecture complexity may also prevent the use of
these circuits in the context of HPA phase linearization [8],
[11]. Nevertheless, architectures based on DDCC [9], [10],
[12] show relatively good performances in terms of tuning
range for an architecture rather simple to implement. However,
none of them can be directly used because they do not meet
the specifications mentioned above and because they do not
include the implementation of a tunable passive component.
Here, a new approach is proposed that achieves a highly linear,
widely tunable phase shifting circuit, optimized for a 50 MHz
operation.

B. Proposed phase-shifter architecture

The proposed phase-shifter (Fig. 1) consists in two DDCCs,
one capacitor and one resistor. As mentioned in the previous
section, the DDCC (Fig. 1, in gray) is one of the key block
of our proposed phase shifter. Its input/output voltages and
currents satisfy:

Iin1 = Iin2 = Iin3 = 0 (1)
Vout = Vin1 − Vin2 + Vin3 (2)

Therefore, the phase-shifter transfer function is:

H(jω) =
1− jRCω
1 + jRCω

(3)

Its gain is |H(jω)| = 1 and its phase is ∠H(jω) =
−2arctan(RCω).

It is therefore an all-pass filter with a 0 dB gain and a
phase that can be adjusted thanks to a variable resistor and/or
capacitor (or varactor). Yet, no varactors complying with the
constraints of HPA linearization are available either in the
AMS design kit or in literature: they either suffer from an
insufficient tuning phase range or from a too narrow bandwidth
[13], [14]. Therefore here, the capacitor is fixed and a variable
resistor is implemented instead.

In the following section, the CMOS implementation of
the DDCC and of a voltage-controlled resistor are presented,
complying with the frequency and linearity constraints of
phase linearization, to create a phase shifter with a large
bandwidth and an unprecedented phase shift tuning range (over
100◦) at 50 MHz.

III. DDCC IMPLEMENTATION

The DDCC is based on a Differential Difference Amplifier
(DDA) introduced in [15], with a negative feedback. The
schematic of the DDA (or the DDCC including feedback) is
shown in Fig 1. Its operating principle has been thoroughly
described in [12].

Note that the complete DDCC introduced in [12] includes
an additional high impedance output stage, useless here, thus
not shown.

Here, the transistors channel sizes and the current sources
values have been optimized in the AMS 0.35 µm CMOS
technology, with a supply voltage of 3.3 V, in order to keep
all transistors in saturation within the whole phase shifter
operating range, and to maintain the distortion as low as
possible for input signals up to 500 mV peak to peak for
a bandwidth larger than 50 MHz. The compensation capacitor
CC and resistor RC have been added and sized to improve
the DDCC stability [16].

Note that the targeted peak-to-peak input voltage for the
whole phase shifter circuit is 250 mV (Table I) but the different
building blocks have been overdesigned to accomodate PVT
variations and architecture constraints.

IV. VARIABLE RESISTOR IMPLEMENTATION

To determine the values of the fixed capacitor C and the
tuning range of the resistor R, trade-offs need to be made.
First, the phase-shift depends on R ·C and follows an arctan
function. In order to achieve the maximum phase-shift range
with a minimum R · C variation, R · C must be within the
steep portion of the arctan slope. Further, the capacitance
has to be chosen large enough so as not to be in the same
range as parasitic capacitances, but small enough so that the
capacitor silicon area remains small. Taking into account these
considerations as well as the processing of the data provided
by the CNES, a suitable set [R;C] is chosen with a capacitor
of 1 pF and a resistor varying by at least a factor 2, with a
minimal value between 200 Ω and 2 kΩ.

Note that Resistor-DAC might sometimes be a satisfactory
solution. However, HPA phase linearization requires contin-
uous phase-shift performances and this kind of discretized
approach cannot be chosen here.

A. Emulation of a resistor using an Operationnal Transcon-
ductance Amplifier (OTA)

The most versatile solution to emulate a resistor with one
pin grounded, as shown in Fig. 1, is to use an OTA with
a serial-shunt feedback on the inverter input, as shown in
Fig. 2a [16]. The equivalent resistance is then: R = 1/gm
where gm is the OTA transconductance.



I0

VDD

vc

vin+ vin−

Msource

M1 M2

M3 M4

M5 M6

M7 M8

Vpol1
(= 2.5V )

Vpol2
(= 1.8V )

vfb

Vin
OTA

−

+

(vin−)
(vfb)

(vin+)

m
Vin

R ' 1
gm

(a)

600 700 800

5

10

15

Control voltage vc (mV)

Em
ul

at
ed

re
sis

ta
nc

e
(k

Ω
) Single OTA

EOTA

(b)

Fig. 2. (a) Resistor implementation using an OTA [16] on the left and its
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(b) Emulated resistance as a function of vc using a single OTA (red plain
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TABLE II
DDCC components’ sizes

Transistors W/L(µm)
M1a−b, M2a−b 2/0.35
M3, M4 20/1.4
M5 50/0.35
Passive comp. Value
CC 60 fF
RC 440 Ω

EOTA components’ sizes
Transistors W/L(µm)
M1-M4 8/0.5
M5-M8 40/0.5
Msource 50/0.7

Here, the OTA is implemented with a telescopic cascode
architecture, presented in Fig. 2a. Since the transconductance
gm is proportional to

√
I0 in strong inversion regime and,

assuming that the transistor Msource remains in saturation, I0 is
proportional to (vc − VT )2 where VT is the threshold voltage
of Msource and vc an external control voltage injected at its
gate. Thus, the Req is inversely proportional to (vc−VT ) and
can be adjusted via the voltage vc. By sizing the transistors
and choosing the cascode voltages to comply with the consid-
erations given above for a supply voltage of 3.3 V, we built
a tunable resistor whose value varies from 1.4 kΩ to 4.8 kΩ
for vc varying from 850 mV down to 600 mV (Fig. 2b).

B. Extension of the resistance range

The use of a second OTA and of an additional resistor
Rconv to create an Extended OTA (EOTA) (Fig. 3, in gray)
[17] further enlarges the variation range of the emulated
resistor since, with the use of 2 identical OTA, Req,EOTA =
1/gm,EOTA = 1/(Rconv · g2m). The value of this extended
emulated resistor varies from 1.8 kΩ to 15.3 kΩ for vc from
850 mV down to 600 mV accordingly (Fig. 2b). Moreover,
whatever the control voltage is, the THD at 50 MHz remains
below -34 dB for input signal dynamics up to 500 mV peak-
to-peak: the emulated resistance is highly linear.

The DDCC and EOTA component’s sizes are presented in
Table II.

V. PHASE SHIFTER SIMULATIONS

The DDCC and the EOTA are combined to implement a
phase shifter as shown in Fig. 3 and simulated at 50 MHz
and with a varying control voltage vc, at room temperature
and in typical process conditions. In the proposed architecture,
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Fig. 3. Implementation of the phase-shifter with 2 DDCCs and an EOTA

DDCC2 is configured as a voltage doubler circuit (as implied
by Eq. 2) and its output is injected, through the RC filter, to
one of the DDCC1 inputs. Thus, to maintain DDCC1 in its
operating range, the input amplitude of the whole system is
limited to 250 mV peak-to-peak.

A. Simulations for static values of vc
Fig. 4 shows the transient response of the circuit for

different values of the control voltage vc (Fig. 4a), the gain
and phase at the phase-shifter output (Fig. 4b) and the THD
at 50 MHz (Fig. 4c) for vc varying from 600 mV to 850 mV.
Whatever the value of vc is, the circuit plays the role of an
all-pass filter with a gain close to 0 dB (average gain is -
200 mdB). Moreover, the phase-shift of the circuit can be
tuned via vc from -59.7◦ to -173◦, i.e. over an unprecedented
113.3◦ range (Fig. 4b), while remaining highly linear (Fig. 4c).

B. Results for vc dynamically varying during transient simu-
lations

In the context of phase linearization, the phase shift has to
be dynamically modified. The circuit is therefore tested with
sine wave input signals of 250 mV peak-to-peak at 50 MHz
and vc varying by steps along the simulation. In Fig. 5 vc is
incremented then decremented) by 50 mV steps every 20 ns.
Its value is represented as a shaded background on the figures.
When the differences in the phase-shift to generate is low (for
instance, when vc varies from 750 mV to 800 mV or from
800 mV to 750 mV), the output signal is stabilized within
5 ns. This time increases for higher differences in phase-shift
to generate (i.e. for smaller values of vc) but remains below
16 ns overall.

Depending on the voltage control amplitude, the average
current consumption of the whole phase-shifter is between
3.5 mA and 4.5 mA under a supply voltage of 3.3 V.

C. Process and temperature influence on the overall perfor-
mances

The whole circuit has been simulated over process and
temperature variations (worst, typical, and best cases, -40◦C,
27◦C and 125◦C). The maximum and minimum values are
summarized in Table III. The achievable phase-shift range
typically remains above 100◦ with a gain close to 0 and a low
THD at 50 MHz. Nevertheless, in the context of HPA phase
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TABLE III
CIRCUIT PERFORMANCES OVER PROCESS AND TEMPERATURE VARIATIONS

Property Worst case Typical Best case
Phase tuning range (◦) 87.9 113.3 148.5
Gain variation (dB) 2.02 0.40 0.24
THD @ 50 MHz (dB) - 22.4 -30.5 -33.3

linearization, highly adaptive circuits are used and this partic-
ular phase-shifter will be embedded within a neural network
capable of taking into account these process and temperature
variations [3]. Thus, the phase-shifter performances comply
with the constraints of phase linearization through all the
process and/or temperature conditions.

VI. CONCLUSION

In this paper, a phase-shifter, with key specifications de-
termined by the experimental data provided by the CNES in
the context of phase linearization of HPA, is introduced. The
objectives of its design are a wide range of tunability, a high
operational frequency (50MHz) with low amplitude distortion.
The proposed architecture uses 2 DDCCs, one EOTA and
a fixed capacitor. The optimization of each block leads to
the implementation of a highly linear, widely tunable circuit,
capable of phase-shifting a 50 MHz input signal over an
unprecedented range of 113.3◦, with a THD lower than -34 dB
in typical conditions, for an average current consumption of
3.5 to 4.5 mA (cf. Tab. III). Those performances are barely
degradated over process and tempeature variations and, in
any case, can be compensated thanks to neural networks
control. Further, the circuit presents a fast response to dy-
namic voltage control modifications. With such versatility and
performances, this circuit may be efficiently inserted into

an analog processing chain of HPA linearization, and will
be particularly appropriate for regenerative loads of future
telecommunications satellites.
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