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Abstract— In telecommunications, the combination of 
modulations with non-constant envelope together with 
nonlinearities leads to strong distortions of the transmitted 
signals. The linearization purpose is to assure an optimal link 
transmission quality. In this article, an innovative method to 
extract linearization characteristics is presented. This technique, 
using directly experimental data rather than a High Power 
Amplifier (HPA) modeling, is fast and allows an important 
linearization accuracy and computational workload 
improvement compared to classical modeling techniques. It is 
then applied to determine the ideal linearizer AM/AM and 
AM/PM transfer characteristics to exploit three real HPA to 
their fullest. 
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I. INTRODUCTION  

With currently more than 300 active satellites in 
geostationary orbit dedicated to them, telecommunications 
represent the first spatial application. In this specific domain, 
power and spectral efficiencies are the two main concerns. In 
particular, some High Power Amplifiers (HPA), named 
Travelling Wave Tubes Amplifiers (TWTA), have to operate 
close to saturation so as to achieve the maximum power 
efficiency onboard the satellite. Nevertheless, this leads to 
amplitude and phase non-linearities. The main consequences 
are the link transmission quality deterioration and the spectrum 
pollution due to intermodulation products [1]. In other spatial 
applications, such as telemetry or payload data transfer, another 
kind of HPA, named Solid State Power Amplifiers (SSPA), are 
used, especially for low orbits. These amplifiers have to be 
highly linear in order to transfer correctly data from satellite to 
Earth without distortion. Nevertheless, depending on the 
waveform of the signal to transmit and the operating conditions 
of the payload, distortion may also appear. 

There are several solutions to operate a HPA close to its 
saturation point without generating non-linearities. A first 
solution is to use post-distortion modules or equalization 
devices on Earth to compensate intermodulation products and 
intersymbol interferences at the receiver end [2]. However, this 
solution is complex, especially because the signal collected by 
the terminal undergoes strong modifications between the 
transmitter and the receiver, and is therefore hard to process. 
Another solution, called the predistortion method, consists in 
implementing a module among the equipment located before 

the HPA, to obtain a linear transfer characteristic of the whole 
transmission chain [3]-[5]. It is highly interesting for satellites 
with regenerative payloads in which the signal is available in 
baseband, before transposition. Indeed in this context, 
assuming that the frequency transposition does not distort the 
signal envelope, it is possible to apply a predistortion on the 
baseband signal before frequency transposition and HPA 
amplification. Particularly, amplitude and phase distortions 
issues can be processed independently. 

Nevertheless, the definition of the predistortion 
characteristic as a function of the amplifier and time is not 
simple. Most often, modeling the HPA transfer distortion in 
amplitude and in phase as a function of the operating 
conditions is needed. If high resolution is required, the 
modeling process becomes heavy in time and processing 
resources. Likewise, if computational resources are low, 
resolution losses appear in the model. The modeling process of 
the HPA is not simple either. Eventually, finding the 
predistortion system optimal parameters as a function of the 
HPA and its drifts in time is complex, in particular if the 
linearization process has to be fast and precise. 

Thus, the methods classically used to determine the 
predistorter transfer function require heavy computational 
workload, are not highly accurate and not always adapted to all 
the technologies used to develop HPA [6]-[8]. This paper 
presents a novel procedure to extract the predistorter 
characteristics from experimental data in the context of a 
single-carrier AM/AM and AM/PM characteristics 
linearization. In section II, the main two methods currently 
used to extract predistortion characteristics, as well as their 
drawbacks, are described. The innovative extraction technique 
is then detailed in section III; it is fast, accurate and requires 
very few computational resources. In section IV, this very 
interesting procedure is used to determine the predistortion 
functions for a 170W Ka-band TWT amplifier, a 110W Ku-
band TWT amplifier and a 65W C and X-band SSP amplifier, 
whose characteristics have been provided by the French Space 
Agency (CNES). Finally, the conclusions are drawn in section 
V. 

II. PREDISTORSION CHARACTERISTICS DETERMINATION 

To determine predistortion and/or HPA transfer 
characteristics, several techniques are found in the literature, 
such as look-up tables (LUT) [10-12], or various mathematical 



 

Fig. 1. AM/AM (plain line) and AM/PM (dotted line) characteristics at 20.2GHz of three HPA: 
(a) 170W Ka-band TWTA, (b) 110W Ku-band TWTA, (c) 65W C and X-band SSPA (data provided by the CNES

models (Saleh [13], polynomial with or without memory [14], 
[15], Volterra [16], Hammerstein and Wiener [17], [18], 
Neural Networks [19]).  

Many properties may justify the use of one of these 
techniques rather than the others and compromises have to be 
made. Mainly, a trade-off between precision and complexity of 
the model has to be determined. For instance, the extraction of 
the Saleh model parameters is almost immediate, whereas the 
Volterra series model requires a heavy computational 
workload. However, the Saleh model does not fit accurately to 
any AM/AM and AM/PM characteristics, whereas Volterra 
series can. Moreover, the HPAs may show memory effects 
[20]-[23]. This property may be defined as the dependence of 
the distortion on the input signal frequency variation. The 
ability to take into account these effects improves significantly 
the model accuracy. Eventually, some models can work 
equally with TWTA or SSPA, and are therefore highly generic. 
Nevertheless, in general, modeling methods are very 
application-specific. Table I summarizes the different models 
with their advantages and drawbacks. 

III. INNOVATIVE PREDISTORSION CHARACTERISTICS 

EXTRACTION TECHNIQUE 

To alleviate the aforementioned drawbacks, an innovative 
transfer characteristics extraction technique is developed [10]. 
It is usable to linearize single-carrier AM/AM and AM/PM 
characteristics of HPA such as the ones shown in Fig. 1. They 
represent the average power (plain line) and the phase (dotted 
line) of the signal at the amplifier output as a function of the 
average power of the signal injected at its input. The saturation 
point is also highlighted in this figure. 

The extraction technique detailed below is fast, perfectly 
accurate and uses few resources as it only requires data tables. 
It follows 3 steps whose order is fixed, detailed in Fig. 2. The 
order of those steps is essential. Let’s assume that the 
amplitude and phase characteristics of the linearizer are 
modeled by the functions f and φ respectively and the 
amplitude and phase characteristics of the amplifier by the 
functions g and ψ respectively, as shown in Fig. 3. This 
formalism has no physical nor mathematical reality but is only 
used for a demonstration purpose.  

The average power at the HPA output is given by: 
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(��
,���) (3) 

The average power at the linearizer output is: 
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Therefore: 
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Calling Gideal the function modeling the ideal gain desired 
at the output of the system “Linearizer+HPA”: 

 ������ = ����,���/��
,��
 (4) 

Then: 

 (
 ∘ �) = ������ ⋅ �� (5) 

with ID the identity function.  

The linearizer AM/AM transfer function is therefore: 
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�� ⋅ ������  (6) 

 

 
Fig. 2. Predistortion characteristics extraction steps 

 

 

Fig. 3. “Linearizer+HPA” system and  
associated transfer function 



TABLE I.  COMPARISON BETWEEN DIFFERENT HPA MODELING TECHNIQUES 

 

TABLE II.  HPA CHARACTERISTICS AND IDEAL OUTPUT VALUES  
NEEDED TO ESTABLISH THE MODEL 

 

TABLE III.  PREDISTORTION LINEARIZER TRANSFER AM/AM AND  
AM/PM CHARACTERISTICS CORRESPONDING TO THE VALUES MEASURED IN TABLE II 

 

So f only depends on the desired gain characteristic and on 
the HPA properties. But, since the linearizer introduces a phase 
shift φ(Pin,Lin) and the HPA a phase-shift ψ(Pin,HPA), the total 
phase-shift at the HPA output is: 
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Therefore, the linearizer AM/PM transfer function is: 

  = ������ − (" ∘ �) (8) 

ϕ depends on the amplitude transfer characteristic. 
Consequently, the AM/AM characteristics of the linearizer 
must be computed before the phase one. The same formalism is 
kept in the rest of the paper. 

The first step of the extraction method is the HPA 
characterization: a continuous wave signal at a specific power 
Pin.exp is injected in the HPA and the output power Pout.exp and 
phase ψ are extracted thanks to a vector network analyzer. By 
varying the input power on N values, the whole AM/AM and 
AM/PM characteristics are reported in a table (see the first 

three columns of Table II). The greater N is, the more precise 
the characteristics are. This table reflects the computational 
resources used in the extraction method and highlights how 
only few of these resources are needed. 

Based on these data and on the gain and phase ideal 
functions desired at the HPA output only (respectively Gideal 
and θideal), which are summarized in table II, the linearizer 
characteristics can be constructed. 

From Eq. 4 applied to the element i, the linearizer gain 
transfer function is directly determined by: 

 ��
,��
($) = ����,���($)/������($) (9) 

 The vectors couple [Pin,Lin(i), Pin,HPA(i)] represents the 
whole linearizer AM/AM characteristic. 

Considering Eq. 7 applied to element i with φ(i) the phase-
shift introduced by the linearizer excited at a power Pin,Lin(i) 
and ψ(i) the phase-shift introduced by the HPA excited at a 
power Pin,HPA(i), it comes: 

  ($) = ������($) − "($) (10)



 
Fig. 4. Input power interval limitation 

 
Fig. 5. Ideal AM/AM linearized transfer characteristic 

 

Fig. 6. Ideal linearizer AM/AM and AM/PM characteristics for the HPA presented in Fig. 1 

 
The vectors couple [Pin,Lin(i), φ(i)] represents the whole 

linearizer AM/PM characteristic. 

Through the 3 steps detailed above, and for each point 
reported in table II, two vectors couples shown in Table III and 
representing the linearizer transfer characteristics are extracted. 
This extraction technique is fast, requires no complex 
calculation and can be applied to any type of HPA, regardless 
of its technology, its nominal power or frequency, in order to 
linearize single-carrier AM/AM and AM/PM characteristics. 
Its accuracy is the highest possible since it requires no prior 
inexact modeling nor any approximation. 

IV. APPLICATION TO THE LINEARIZATION OF A TWTA 

AND A SSPA 

In telecommunications, the combination of modulations 
with non-constant envelope together with nonlinearities leads 
to strong distortions of the transmitted signals. The 
linearization purpose is to assure an optimal link transmission 
quality. One linearization scheme in such a context is to select 
a fixed gain and a constant phase at the output of the system 
“Linearizer+HPA”: 

 ∀$ ∈ '1. . *+, ��,-./(i) = �� and ��,-./($) = �� (11) 

It is not required that θL=0. In practice, the value θL has to 
be chosen according to the linearization capabilities of the 
electronic circuit. On the opposite, for power efficiency 
purposes, the value of GL has to be carefully chosen. The 
following paragraph describes how to determine the best 
AM/AM linearized characteristic and the optimal GL value. 

First, it is possible to restrain the input power interval of 
interest of the HPA AM/AM characteristic to [0,Pin,sat] as the 

Fig. 4 shows. Indeed, as there is a bijection between [0, Pin,sat] 
and [0,Pout,sat], any output power can be reached with an 
input power belonging to [0,Pin,sat]. Then, the optimal 
linearized AM/AM characteristic is represented in Fig. 5. As a 
matter of fact, under those conditions, it is linear on the whole 
input power interval to [0,Pin,sat]. Moreover, since the 
saturation output power is reached, the HPA is exploited to its 
fullest and its efficiency is the highest possible. 

The innovative technique described in the previous section 
is applied to the three characteristics shown in Fig. 1. The 
extracted predistorder transfer functions are plotted in Fig. 6. 

CONCLUSION 

 In this paper, an innovative technique to compute 
predistorter AM/AM and AM/PM characteristics has been 
presented and applied to three real HPA whose experimental 
characteristics have been provided by the CNES. In the 
perspective of a potential generic linearization system design, 
this extraction technique is of high interest. As a matter of fact, 
it is fast, perfectly accurate, requires only few computational 
resources and can be used for any type of HPA, regardless of 
its technology, its nominal power or frequency and the desired 
linearized characteristics. Hence, the future development of an 
innovating fast and accurate single carrier predistortion module 
may considered the implementation of such a method. Even if 
the linearizer needs to be reconfigured due to HPA 
characteristics drifts (due to aging or temperature variations), 
the reconfiguration time and precision may be largely 
improved thanks to this method. Thus, this method could grant 
linearizer designers an important gain of time, performances 
and implementation efficiency. 
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