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Abstract—Cued Speech (CS) is an augmented lip reading with
the help of hand coding. Due to lips and hand movements are
asynchronous and a direct fusion of these asynchronous features
may reduce the efficiency of the recognition, the fusion of them
in automatic CS recognition is a challenging problem. In our
previous work, we built a hand preceding model for hand posi-
tions (vowels) by investigating the temporal organization of hand
movements in French CS. In this work, we investigate a suitable
value of the hand preceding time for consonants by analyzing the
temporal movements of hand shapes in French CS. Then, based
on these two results, we propose an efficient resynchronization
procedure for the fusion of multi-stream features in CS. This
procedure is applied to the continuous CS phoneme recognition
based on the multi-stream CNN-HMMs architecture. The result
shows that using this procedure brings an improvement of about
4.6% in the phoneme recognition correctness, compared with the
state-of-the-art, which does not take into account the asynchrony
of multi-modalities.

Index Terms—Cued Speech, multi-modal fusion, hand preced-
ing time, resynchronization procedure, CNN-HMMs

I. INTRODUCTION

To overcome the problems of lip reading [1] and improve
the reading ability of deaf children, in 1967, Cornett [2]
invented the Cued Speech (CS) system, which complements
the lip reading and makes all the phonemes of a spoken
language clearly visible. In the French CS named Langue
franaise Parle Complte (LPC) [3], five hand positions are used
to encode the vowel groups, and eight hand shapes are used to
encode the consonant groups [4]. In this system, these sounds,
which may look similar on lips (e.g., /y/, /u/ and /o/), can
be distinguished using the hand information (three different
hand positions for /y/, /u/ and /o/), and thus it is possible for
the deaf people to understand a spoken language using visual
information alone.

The automatic continuous CS recognition is a multi-modal
task, as it includes the lips, hand position and hand shape
information. To realize this task, one challenging problem
is the fusion of these multi-stream features given the fact
that lips and hand movements are asynchronous. In fact, it
was investigated that the hand reaches its target on average
239ms [5] (based on non sense syllables logatome, like
’tatuta’), and 144.19ms [6] (based on syllables extracted from
French sentences) before the vowel being visible at the lips
in case of CV syllables, respectively. This hand preceding

phenomenon is illustrated in Fig. 1 by an example where the
CS speaker utters petit ([p ø t i]). In Fig. 1(a), the speaker
points to her cheek position to indicate the vowel [ø], while
the corresponding instant (red line) in the acoustic signal is not
yet the vowel [ø]. Fig. 1(b) shows the transition of the syllable
[p ø], and the speaker is preparing to utter [p]. In Fig. 1(c),
the speaker pronounces the vowel [ø], while the hand position
has already indicated the next vowel [i].

Fig. 1. Illustration of the asynchrony phenomenon in CS production. Top: lips
and hand zoomed from the middle image. Bottom: the audio speech signal.
Red vertical lines: the instant where the middle image is taken.

In [4], [7], a direct feature fusion was applied to the
isolated1 French CS recognition without taking into account
the asynchrony problem. In our recent work [8], the tan-
dem architecture that combines convolutional neural networks
(CNN) [9], [10] with multi-stream hidden markov model
(MSHMM) [11] was used for the continuous CS recognition.
In this architecture, MSHMM merges different features by
adding different weights, but it does not take into account the
asynchrony between different feature modalities. Therefore,
there is still a room for us to improve the CS recognition
performance by exploring a reasonable approach to tackle the
fusion of asynchronous multi-modalities.

We remark that the deep leaning method encoder-decoder
[12] with the recurrent neural network (RNN) [9], [10] and
attention mechanism could learn the contexts and variabilities

1the temporal boundaries of each phoneme to be recognized in the video
are known at test stage.



of the multi-stream features if sufficient data is available.
In this work, instead of exploit the the deep learning based
methods which need large data set, we explore a study that
is able to give a more clear explanation for us to deeply
understand the principle of the CS multi-modal fusion.

In this work, based on the hand preceding time (i.e., the
time difference that hand precedes lip movement) for vowels
that has been studied in [13], we deal with the optimal
hand preceding time for consonants, and then propose a
resynchronization procedure to align the hand position and
shape features with lips features. One important point is that
we use two different hand preceding time for all vowels and
consonants, respectively, instead of resynchronizing them by
their own corresponding hand preceding time. For the evalua-
tion, we build a new automatic CS recognition architecture Sre

(see Fig. 2), where the resynchronization procedure is added
to process the CNNs based features before the MSHMM-
GMM [14] decoder. It is shown that this method significantly
improves the CS recognition performance compared with the
state-of-the-art of the continuous/isolated CS recognition [8]
and [4], respectively. As far as our knowledge, this is the
first work that proposes the resynchronization procedure for
multi-modal features fusion in automatic continuous French
CS recognition system.

Fig. 2. Proposed architecture Sre in this work. The main difference with [8]
(architecture S3 in [8]) is adding a new resynchronization procedure.

II. RELATED WORKS

Regarding the modeling of hand preceding time, in our pre-
vious work [13], the relationship between the hand preceding
time for vowels and their target time instant was analyzed. We
found that hand preceding time follows a Gaussian distribution
that remains almost the same for all the instants of vowels,
except a small time interval just before the end of each sen-
tence. Based on the hand preceding time for vowels that was
studied in [13], in the present work, we explore the optimal
hand preceding time for consonants and propose a novel
resynchronization procedure to align the hand position and
shape features with lips features for the automatic continuous
CS recognition.

As for the automatic continuous CS recognition, a tandem
CNN-HMM architecture which extracts the CS feature from
raw image was proposed in [8]. However, it did not take into
account the asynchrony of the multi-modalities when merging

multi-stream features in the automatic CS recognition. In the
present work, in order to tackle the multi-modal feature fusion
in the automatic CS recognition, we propose a new automatic
CS recognition architecture Sre (see Fig. 2) by adding a novel
resynchronization procedure to process features extracted by
CNNs and ANN before feeding them to the MSHMM-GMM
decoder. The result shows that this resynchronization proce-
dure significantly improves the CS recognition performance
compared with the state-of-the-art of the isolated/continuous
CS recognition [4] and [8], respectively.

III. PROBLEM FORMULATION

In the automatic continuous CS phoneme recognition task,
the features of lips O(L), hand position O(P ) and hand shape
O(S) are merged and fed to the phonetic decoder. Let phoneme
Υ be extracted from a continuous French sentence with a
certain time step t. It is determined by

Υ = arg max
Υ

P (O(LPS)|ΘΥ), (1)

where O(LPS) = [O(L)T , O(P )T , O(S)T ] is the merged feature
and ΘΥ is the model parameter for Υ.

As introduced in Section I, the lips features, hand shapes
and positions are asynchronous in CS, which results in the fact
that features corresponding to different phoneme classes may
be merged to represent one common phoneme. Therefore, at
time t, the direct concatenated feature will be interfered and
thus not suitable to train one particular phoneme class Υ.

The aim of this work is to propose a way to align the hand
position O(P ) and shape features O(S) with lips feature O(L),
i.e., to build two transformations τ1 and τ2 such that:

O(P )
resy = τ1(O(P )), (2)

O(S)
resy = τ2(O(S)), (3)

are synchronized with lips feature O(L), respectively. Then
the merged feature of resynchronized features O

(LPS)
resy =

[O(L)T , O
(P )T

resy , O
(S)T

resy ] for phoneme Υ can be used to train
the model of the phoneme without interference.

IV. METHODOLOGIES

In this section, we will first introduce the hand preceding
time for vowels and consonants. Then, based on these two
results, the resynchronization procedure will be proposed.

A. Hand preceding time for vowels
In our previous work [13], the relationship between the

hand preceding time for vowels (∆v) and their target time
instant was analyzed. We found that ∆v follows a Gaussian
distribution that remains almost the same for all the instants
of vowels, except a small time interval just before the end
of each sentence (about one second). In this work, instead
of following the piece-wise linear relationship, which gives
different ∆v for each vowel, we assume that the mean value
∆v (about 140ms) of the Gaussian distribution is suitable for
all vowels. Indeed, we have tried the complex way by using
their corresponding ∆v for each vowel. However, only minor
gains were obtained.



B. Hand preceding time for consonants
Without loss of generality, we consider the hand preceding

time for consonants in the CV (i.e., consonant vowel) syllable
context. We carry out a statistical study on the average distance
of consonant and vowel based on our database, and it shows
that the average distance is about 110ms. It is observed from
our data that the stable time interval for vowels and consonants
is about 60ms (three images). Therefore, we can deduce that
the hand preceding time for hand shape movement ∆c is about
60ms (see Fig. 3).

Fig. 3. Relationship between different parameters. ∆c and ∆v are the hand
preceding time for consonants and vowels, respectively. Dv and Dc are the
time duration for target hand position and shape, respectively.

Fig. 4. Eight hand shapes recognition using Gaussian classifier with the
feature extracted by CNNs. The hand position stream is shifted by increasing
∆c values.

To further confirm this value, a Gaussian classifier is applied
to recognize eight classes of hand shapes, based on the CNN
hand shape features (i.e., the features before the softmax layer
of CNN). The temporal segmentation is obtained by shifting a
∆c value based on the audio-based temporal segmentation. By
modifying this value, different recognition scores are obtained
in Fig. 4, which confirm that the maximum score is obtained
with ∆c = 60ms.

C. Resynchronization procedure
Based on the hand preceding time for vowel and consonant,

the proposed resynchronization procedure contains two steps:
1) By applying τ1 to the hand position feature stream O(P ),

which positively shift the O(P ) by ∆∗
v temporally. More

precisely, the pre-aligned hand position feature O(P )
resy is

obtained by

τ1(O(P )(t)) = O(P )(t−∆∗
v), (4)

where ∆∗
v = 140ms, and t is the time step.

2) By applying τ2 the hand shape feature stream O(S),
which positively shift O(S) by ∆∗

c temporally. More
precisely, the pre-aligned hand shape feature O

(S)
resy is

obtained by

τ2(O(S)(t)) = O(S)(t−∆∗
c), (5)

where ∆∗
c = 60ms, and t is the time step.

We take the vowel case (see Fig. 5) as an example to illus-
trate this procedure. The audio signal is shown in Fig. 5(a) with
its phonetic annotation for the French sentence Ma chemise
est roussie. Note that the lips feature stream is assumed to
be synchronous with the audio signal [15]. In Fig. 5(b), the
hand position is presented by the x coordinate of the hand
back point. We can clearly observe that the hand position
stream is not synchronous with the audio signal, and thus a
direct fusion of these two streams will not be optimal for
the fusion. In Fig. 5(c), the aligned hand position stream is
obtained by positively shifting the original one (see Fig. 5(b))
with ∆v = 140ms [13]. With this alignment, the hand position
stream is resynchronized with the audio signal on average. For
consonants, the alignment of the hand shape feature is similar,
with ∆c = 60ms as introduced in Section IV-B.

In fact, we observe that the hand position feature is more
sensitive to the asynchrony problem than the hand shape. This
may be due to the intrinsic fact that the hand often stays in
its target position for a very short time, while the full realized
hand shape keeps longer time in the CS coding.

Fig. 5. Proposed resynchronization procedure. (a) The audio speech with its
phonetic annotation. (b) The original hand position stream. (c) The aligned
hand position stream shifted by ∆v . Two green lines correspond to the
temporal boundaries of vowel [i].

V. EXPERIMENT AND RESULTS

In order to evaluate the proposed resynchronization proce-
dure, we carry out the continuous CS phoneme recognition
experiments with both S3 architectures and Sre.



Fig. 6. The result of the continuous CS phoneme recognition with and without using the proposed resynchronization procedure and context-dependent modeling.
non-resyn means the case that does not use the proposed resynchronization procedure, and resyn means the case using the proposed resynchronization procedure.

A. Cued Speech material

A professional CS interpreter was asked to utter and encode
simultaneously a set of 476 French sentences [16] (about
11770 phonemes totally). Color video images of the inter-
preter’s upper body were recorded at 50 fps, with a spatial
resolution of 720x576. This dataset was made publicly avail-
able on Zenodo (https://doi.org/10.5281/zenodo.1206001). The
phonetic transcription was extracted automatically using Lli-
aphon [17] and post-checked manually. We remark that the
French language is normally described with a set of 34
phonetic classes (14 vowels and 20 consonants). The audio
based temporal segmentation for vowels and consonants are
obtained based on the force-alignment using HTK [18]. The
ground truth hand position in this work is manually determined
for all the images of the corpus. We choose this position in the
following way: the 2D position of the index finger extremity
is assumed if no middle finger appears.

B. CNN-HMMs based CS recognition

The tandem CNN-HMMs structure (see Fig. 2) is used
in this work. CNNs are used as the feature extractor and a
triphone HMM-GMM is used as the CS phonetic decoder.

As S3 in [8], in this work, for the proposed CS recognition
architecture Sre, each phoneme is modeled by a context-
dependent triphone MSHMM (i.e., takes into account the
contextual information about the left and right phoneme) [19],
and three emitting states are used with GMM to model the
features of lips, hand position and hand shape together with
their first derivatives. The main difference between S3 amd
Sre is that MSHMM-GMMs are used to model the resyn-
chronized multi-modal features (i.e., O(LPS)

resy ) in Sre, while
in S3, MSHMM-GMMs are used to model the asynchronous
multi-modal features.

In the CNN-HMM architecture, lips and hand shape features
are extracted by CNN, and hand position coordinates are pro-
cessed by ANN. These features with their first derivatives are
modeled together in MSHMM-GMM for phonetic decoding.
For S3, lips and hand information are combined at the state

level using the three-stream MSHMM-GMMs. The stream
weights are optimized empirically using the cross-validation,
resulting in the optimal weights 0.4 for lips, 0.4 for hand
shapes and 0.2 for hand positions. It should be noted that
neither the pronunciation dictionary nor language model is
used in this architecture.

C. Evaluation: Cued Speech recognition system based on the
novel resynchronization procedure

In this experiment, 80% of the data is used as the training
set, while the rest is the test set. The measure is the correctness

Tc =
N −D − S

N
, (6)

where D is the number of deletion errors, S is the number
of substitutions and N is the data size. For all the results, we
take the average of ten experiments with different training and
test sets. The results are shown in Fig. 6.

We observe that, based on the hand position features given
by the Adaptive Background Mixture Models (ABMMs) [20],
[21], using the architecture S3 in the state-of-the-art [8],
the phoneme recognition obtained a recognition correctness
71.0%, without using any resynchronization procedure. When
the proposed resynchronization is incorporated (i.e., using
Sre), it increases to 72.67% (see the 3rd and 4th columns
in Fig. 6). As we know, in the current recognition system, the
triphone context-dependent modeling is helpful to correct the
recognition errors due to the co-articulation or the asynchrony
of multi-modalities [22]. Thus, the context-dependent mod-
eling may hide the effect of the proposed resynchronization
procedure. In order to get rid of this effect, we examine
the recognition scores without using the context-dependent
modeling. In this case, a correctness of only 60.4% is obtained
without any resynchronization, while it increases to 64.38%
when using the proposed resynchronization procedure (see
the 1st and 2nd columns in Fig. 6). This improvement (about
4%) is more evident than the case using the context-dependent
modeling (about 1.6%).



In fact, there are two possible reasons for the above weak
improvements: (1) only a small weight of 0.2 is applied to
the hand position stream, and this weight reduces the effect
of the resynchronization procedure given the fact that hand
position is more sensitive to the asynchrony problem than
hand shape (introduced in Section IV-C); (2) the hand position
stream extracted by the ABMMs may have some errors,
which directly reduce the efficiency of the resynchronization
procedure, since the hand position target can be identified
only when the correct hand position2 is selected with a good
temporal boundary for a given vowel.

To reduce the effect of the above second reason, instead of
using the hand positions given by the ABMMs, we use the
ground truth hand positions, which are manually determined
for all the images. The results are shown in the 5th to
8th columns of Fig. 6. We see that, without the context-
dependent modeling and resynchronization procedure, a score
of 62.33% is obtained (5th column), which is close to the
result 60.4% (1st column). This can be explained by the
above first reason. When the resynchronization procedure is
used, a correctness of 70.1% is achieved (6th column), which
shows a significant improvement (7.3%). In this case, the real
benefit of the proposed resynchronization procedure is shown.
Finally, we consider the case using the context-dependent
modeling (see 7th to 8th columns in Fig. 6). Without the
resynchronization procedure, the recognition correctness is
72.04%. However, when combined these two in the recognition
system, an evidently higher score of 76.63% is obtained (with
an improvement of 4.6%), outperforming the state-of-the-art
[8], as well as the work of Heracleous et al., [4] with 74.4%
correctness (in case of the isolated CS phoneme recognition).

VI. CONCLUSION

In this work, we propose a novel resynchronization proce-
dure for the CS feature fusion in a CNN-HMMs continuous
French CS recognition system. By exploring the optimal hand
preceding time for all vowels (140ms) and for all consonants
(60ms) in the sentences, and delaying the hand position and
shape feature streams by these two different optimal hand
preceding time, respectively, the lips and hand features can be
resynchronized on average. The evaluation on the continuous
phoneme CS recognition shows a significantly improvement
(about 4.6%) after using this resynchronization procedure. In
the future, we will 1) improve the accuracy of the automatic
hand position tracking; 2) record more CS data, and explore
the deep learning fusion methods, which might be able to
exploit the asynchrony delay in the neural network training.
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2It has been reported in [8] that the lips and hand shape features extracted
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