
HAL Id: hal-02352095
https://hal.science/hal-02352095

Submitted on 6 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schedule Earth Observation satellites with Deep
Reinforcement Learning

Adrien Hadj-Salah, Rémi Verdier, Clément Caron, Mathieu Picard, Mikaël
Capelle

To cite this version:
Adrien Hadj-Salah, Rémi Verdier, Clément Caron, Mathieu Picard, Mikaël Capelle. Schedule Earth
Observation satellites with Deep Reinforcement Learning. IWPSS 2019, Jul 2019, Berkeley, United
States. �hal-02352095�

https://hal.science/hal-02352095
https://hal.archives-ouvertes.fr

Schedule Earth Observation satellites with Deep Reinforcement
Learning

Adrien Hadj-Salah1,2, Rémi Verdier1, Clément Caron1,2, Mathieu Picard1,2, Mikaël Capelle1

1IRT Saint-Exupéry 2Airbus Defence & Space
{adrien.hadj-salah, remi.verdier, clement.caron, mathieu.picard, mikael.capelle}@irt-saintexupery.com

Abstract

Optical Earth observation satellites acquire im-
ages world-wide, covering up to several million
square kilometers every day. The complexity of
scheduling acquisitions for such systems increases
exponentially when considering the interoperabil-
ity of several satellite constellations together with
the uncertainties from weather forecasts. In or-
der to deliver valid images to customers as fast
as possible, it is crucial to acquire cloud-free im-
ages. Depending on weather forecasts, up to 50%
of images acquired by operational satellites can
be trashed due to excessive cloud covers, show-
ing there is room for improvement. We propose
an acquisition scheduling approach based on Deep
Reinforcement Learning and experiment on a sim-
plified environment. We find that it challenges
classical methods relying on human-expert heuris-
tic.

1 Introduction
Earth Observation (EO) systems acquire cloud-free im-
ages and deliver them to customers worldwide on a
daily basis. Requests come in a variety of size and con-
straints, from the urgent monitoring of small areas to
large area coverage. In this work we are particularly in-
terested in the latter case, with requests covering whole
countries or even continents. Depending on weather
conditions, such requests may take several months to
complete, even with multiple satellites.

In order to shorten the time required to fulfill re-
quests, the mission orchestrator shall schedule acqui-
sitions with both a short and a long-term strategy.
Determining a strategy robust to an uncertain envi-
ronment is a complex task, this is why current solu-
tions mainly consist of heuristics configured by human-
experts. This paper demonstrates that Reinforcement
Learning (RL) might be well-suited for such a challenge.
RL has proven to be of great value since these algo-
rithms have mastered several games such as Pong on
Atari 2600 (Mnih et al. 2013), Go with AlphaGo (Silver
et al. 2017) and more recently Starcraft (Arulkumaran,
Cully, and Togelius 2019).

c© 2019 All rights reserved.

2 Scheduling acquisitions for Earth
observation systems

2.1 Single satellite acquisition scheduling

EO satellites carry optical instruments which are able
to take acquisitions with a specific width, called swath,
and a maximum length depending on the satellite
models. The capacity of the satellites to take multi-
ple images along their orbit track is related to their
agility (Lemâıtre et al. 2002).

Due to limited swath and acquisition length, a large
area must be split into tiles called meshes. For instance,
considering the Pleiades satellites, covering France re-
quires thousands of meshes. A satellite overflying an
area is able to acquire a sub-part of those meshes due
to its limited agility. With sun-synchronous orbit, re-
visit of a ground point takes days which explains the
importance of mesh selection (Gleyzes, Perret, and Ku-
bik 2012).

The satellite schedule is computed on ground by the
Mission Planning Facility (MPF), where an optimiza-
tion algorithm selects the top-ranked acquisitions and
ensures the kinematic feasibility of the attitude maneu-
vers.

2.2 Interoperable EO systems scheduling
for large-area coverage

The trend of EO systems is toward large constellations
of heterogeneous satellites. For instance, Airbus Intel-
ligence, operating the well-known SPOT and Pleaides
satellites, will soon manage a new system of 4 satel-
lites (Pleaides NEO). Dealing with multiple EO systems
needs both human expertise and algorithms to dispatch
requests over the satellites and to deliver end customers
on time.

We approach the constellation scheduling by having
an orchestrator responsible for request ranking towards
each MPF. The orchestrator analyzes a large-scope of
data (e.g., forecasts, access opportunities) to optimize
the global schedule, while each MPF has a narrowed
and short term vision of their single (or dual) satel-
lite scheduling. Additionally, we focus in this paper
on requests consisting in a large area (countries, conti-
nents). Such requests usually contain several hundreds

of meshes to acquire over long periods (up to several
months).

The two main contributors to the overall uncertainty
on the time to completion are: firstly the weather con-
ditions at the time of acquisition, which can only be
forecasted, and secondly the presence of other requests
within the systems, arriving at an unknown rate.

This explains our focus on RL algorithms which have
the capacity to learn new strategies, robust to uncer-
tainties, while challenging traditional approaches.

3 Reinforcement Learning approach
In Reinforcement Learning, an agent learns how to be-
have through trial-and-error interactions with a dy-
namic environment. The actions the agent takes are
decided by a policy, which can be seen as a function
mapping information from the environment to actions.
The goal of reinforcement learning algorithms is to find
an optimal policy, i.e., a policy that maximizes the re-
ward of the agent over the long-term.

Recently, deep neural networks have proven to be
efficient for finding policies. Several deep-RL algo-
rithms are actively studied to solve complex sequen-
tial decision-making problems. Among the best-known
methods, one can cite value-based algorithms such as
DQN, Rainbow (Hessel et al. 2018), policy-based algo-
rithms such as REINFORCE (Sutton et al. 2000) or
actor-critic methods such as A2C (Mnih et al. 2016) or
PPO (Schulman et al. 2017).

3.1 Problem simplification

In order to evaluate the benefits of Reinforcement
Learning, we propose a simplified environment.

We consider that all satellites have the same swath,
thus the tessellation (i.e., the meshes) of the area is
the same for all satellites. We also assume that each
satellite can acquire at most one mesh per pass over the
considered area. A satellite pass occurs when it overflies
the large-area request on a given orbit. The planned
mesh is validated or rejected depending on actual cloud
cover observations at the time of acquisition. We do not
consider uncertainties related to the load of our system,
i.e., satellites are always fully available.

The area of interest (AOI) is enclosed in a rectangular
box – considering a Mercator projection – containing
Nlat×Nlon meshes. Since some meshes of this grid mesh
may not belong to the AOI, we defineM = {mk : 1 ≤
k ≤ K}, the set of meshes to acquire.

For each pass t ∈ N, we denote by Mt ⊆ M the
subset of meshes in the AOI that can be acquired by
the corresponding satellite knowing its orbit and agility.

We denote by cat (m) and cft (m) the actual and fore-
cast cloud cover above mesh m during pass t.

3.2 Problem formulation

The given problem can be formalized as a Markov De-
cision Process (MDP) which is an intuitive and fun-
damental formulation for RL (Bensana et al. 1999).

An agent interacts with the environment by taking
actions from a legal set of actions. The agent purpose
is to acquireM as quickly as possible. For each step t,
only one mesh can be selected. The chosen mesh is then
validated or rejected depending on weather conditions.

The state space S, the discrete action space A ⊂ N,
the stochastic discrete-time transition function P and
the reward function R define the underlying MDP:
M =< S,A, P ,R >.

The horizon is considered finite. Therefore, there is a
finite number of discrete time steps t during an episode.
Each episode comprises a maximum of T ∈ N∗ steps.
The state space S is defined as:

S = Sstatus × Stime × Spasses
where Sstatus = {0, 1}Nlat×Nlon characterizes the sta-
tus of each mesh (i.e., already validated or to acquire),
Stime ⊂ R encodes the date of the current satellite pass
t and Spasses ⊂ Rd describes all pass dates, accessible
meshes Mt and related weather forecasts.

The goal is to find a policy π : S → A that maximizes
the expected discounted reward over the finite horizon:

T∑
t=0

γtR(st, π(st), st+1) (1)

where 0 ≤ γ < 1 is the discount factor and s ∈ S.

3.3 Action space
At each discrete step t, the learning agent takes an ac-
tion. A step corresponds to a satellite pass over the
AOI and the action is to pick up a single mesh to ac-
quire during this pass.

A = {0, 1, . . . , K}
We denote ak the action selecting the mesh mk. Note
that |A| = K+1 because there is one more “do nothing”
action available for the agent.

3.4 Observation space
At a given step, the agent perceives only useful and
available information about the environment. The
problem is generalized to a Partially Observable Markov
Decision Problem (POMDP).

The observation space O provides information about
the mesh status and their validation probability for the
following Npass passes, including the current pass for
which the agent shall select a mesh. The validation
probability of a mesh depends on weather forecast ac-
curacy, as detailed in Section 3.6. Thus, an observation
is a tensor with a shape (Nlat, Nlon, Npass + 1).

The observation can be seen as a stack of Nlat×Nlon

matrices. Each frame (i.e., 2D matrix) encodes infor-
mation for all tiles of the grid mesh. This representa-
tion preserves spatial information and enables the use
of Convolutional Neural Networks.

The validation frame encodes the status of each mesh:
validated (0) or to be validated (1). We denote the
validation frame space Ostatus = Sstatus.

The validation probability frames belong to the space
Op = [0, 1]Nlat×Nlon×Npass . They encode the probabil-
ity pt to acquire and validate each mesh for each pass in
chronological order from time step t. For a given mesh
m and a given pass n ∈ {1, . . . , Npass} at the step t:

pt(m,n) =

{
0 if m /∈Mt

P(catn(m) ≤ cmax | cftn(m)) otherwise

with cmax the total cloud cover validation threshold.
tn = t+n− 1 is the time related to the pass n knowing
that the current time step is t.

We can now define O = Op ×Ostatus

3.5 Reward

A reward is given to the agent at each step. The value
of the reward depends on the status of the chosen mesh
before and after this step. R : S × A × S → R gives
rewards for particular transitions between states.

R(st, ak, st+1) =

{
1 if mk is newly validated
0 otherwise

This dense reward encourages the agent to reduce the
completion time with a discount factor γ < 1 (1).

3.6 Transition function

P : S ×A×S → [0, 1] denotes the transition function.

P (st, a, st+1) = P(st+1|st, a)

For each transition, the current state is updated.
stime ∈ Stime takes the value of the next pass date
in the chronological order. spasses ∈ Spasses remains
the same during the whole episode. sstatus ∈ Sstatus is
updated if the selected mesh is validated:

P(sstatust+1 (mk) = 0 | sstatust (mk) = 1, ak) = pt(mk, n)

where sstatust (mk) is the status of mk at t.
This probability is computed considering the following
weather model:

cat (m) = cft (m) + χ(m)

with χ(m) ∼ N (cft (m), σ(cft (m))2)
and σ(x) = u× x+ v

σ is a linear function computing a representative devi-
ation between forecast and observed data.

4 Experiments
Based on the hypotheses from Section 3.1, we imple-
ment a simulator using the OpenAI Gym framework.

4.1 Scenario

To evaluate the agents, we choose mainland France as
our area of interest. It is an interesting case to study
because one mesh selection can have an important im-
pact on the mission length due to the territory climate
variability.

We consider 4 satellites with a common 60 km swath,
implying K = 122 meshes for our tesselation. Each
scenario begins at a random date.

We use the ERA-Interim dataset (Dee et al. 2011)
which provides total cloud cover observations on a
0.5◦ × 0.5◦ grid to compute the observation space. In
the weather model, u is fixed to 0.1 and v to 0.2. cmax

is set to 20% for all scenarios.

4.2 Reference algorithms

In order to benchmark the performances of our agent,
we define a random agent and a heuristic that selects
one mesh among Mt for each time step t:

• Random that selects the mesh randomly among ac-
cessible meshes at each pass.

• Heuristic that selects the mesh with the highest
trade-off score between short-term and long-term
probabilities pt:

pt(m, 1) + α

1− 1

Npass − 1

Npass∑
n=2

βnpt(m,n)

where α is the weight on future passes and β the
discount factor that favors near future passes. The
best performances are reached with (α = 1, β = 0.99)
for Npass = 20.

4.3 Train and test methodology

To avoid overfitting, we use a train and test split
methodology on the weather data. Training is done
using data from the years 2013 and 2014, while testing
is done with data from 2015.

We concentrate our experiments on the A2C algo-
rithm which gives the best results. We train A2C agents
using two observation spaces: one with a short-term vi-
sion (Npass = 1) and one with a long-term vision
(Npass = 20). Those A2C agents are respectively
named A2C-1 and A2C-20. We use the A2C implemen-
tation from the OpenAI baselines framework (Dhariwal
et al. 2017) and train agents during 3 × 107 steps us-
ing 16 parallel environments (∼ 30 hours using a K80
GPU and 8 vCPUs). Other hyper-parameters are set
to default values.

We use a neural network architecture made of a con-
volution block followed by a dense block with two heads:
one to estimate the state value and one to estimate
the policy distribution. The convolution block contains
three convolutional layers with decreasing kernel sizes
(7 × 7, 3 × 3, 1 × 1), 128 filters per layer and ReLU
activation functions. The value and policy heads are
only made of a dense layer with respectively one unit
and K + 1 units.

Figure 1 shows the mean length of the last 100
episodes as a function of the number of network weight
updates for A2C-1 and A2C-20. In our environment,
the length of an episode directly relates to the com-
pletion time of the area. We set a maximum number
of 10 ×K time steps before resetting the environment

0 1 2 3

·105

250

400

650

1,000

Updates

E
p
is
o
d
e
le
n
g
th

A2C-1
A2C-20
Random
Heuristic

Figure 1: Episode mean length for the last 100 episodes
of each training phase.

Agent Mean Median Std

Random 568.8 572 110.5
Heuristic 292.7 298 56.0

A2C-1 299.3 304 58.2
A2C-20 278.5 281 55.8

Table 1: Mean, median, standard deviation of the
episode lengths for the different agents.

to avoid too long episodes when the policy does not
perform well. The performances of the trained agents
converge close to the heuristic one. Best results are
achieved with A2C-20.

During testing phase, we select days from 2015 as
starting dates. For each date we assess the perfor-
mances of the models and the reference algorithms. We
repeat the operation using 3 different weather seeds
(3 × 365 runs in total). Table 1 presents statistics on
the episode length for the different agents. We find that
for both agents the transfer on the new weather data
went well.

A2C-20 still provides the best results winning the
heuristic in almost 80% of the cases. It confirms the
intuition that a long term strategy is necessary to opti-
mize time-to-completion.

5 Conclusion

This paper demonstrates how Reinforcement Learning
can be used in Earth Observation satellites scheduling
in order to reduce the time-to-completion of large-area
requests. The computed network has been trained to
rank the requests and dispatch them to the satellites. In
a series of simulation-based experiments, the proposed
method challenges the state-of-the-art heuristics.

In future research, we aim to improve the simulation
representativeness in order to pave the way for a poten-
tial industrial transfer.

References
Arulkumaran, K.; Cully, A.; and Togelius, J. 2019.
Alphastar: An evolutionary computation perspective.
arXiv preprint arXiv:1902.01724.

Bensana, E.; Verfaillie, G.; Michelon-Edery, C.; and
Bataille, N. 1999. Dealing with uncertainty when man-
aging an earth observation satellite. In Proc. 5th Inter-
national Symposium on Artificial Intelligence, Robotic
and Automation in Space (ESA SP-440), 205–207.

Dee, D. P.; Uppala, S. M.; Simmons, A. J.; et al. 2011.
The ERA-Interim reanalysis: Configuration and perfor-
mance of the data assimilation system. Quarterly Jour-
nal of the Royal Meteorological Society 137(656):553–
597.

Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plap-
pert, M.; Radford, A.; Schulman, J.; Sidor, S.; Wu,
Y.; and Zhokhov, P. 2017. Openai baselines. https:
//github.com/openai/baselines.

Gleyzes, A.; Perret, L.; and Kubik, P. 2012. Pleiades
system architecture and main performances. Interna-
tional Archives of the Photogrammetry, Remote Sensing
and Spatial Information Science XXXIX-B1.

Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.;
Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar,
M.; and Silver, D. 2018. Rainbow: Combining improve-
ments in deep reinforcement learning. In Proc. of the
32nd AAAI Conference on Artificial Intelligence.

Lemâıtre, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.-
M.; and Bataille, N. 2002. Selecting and scheduling
observations of agile satellites. Aerospace Science and
Technology 6(5):367–381.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing atari with deep reinforcement learning. In NIPS
Deep Learning Workshop.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lill-
icrap, T. P.; Harley, T.; Silver, D.; and Kavukcuoglu,
K. 2016. Asynchronous methods for deep reinforcement
learning. In Proc. of the 33rd International Conference
on Machine Learning (JMLR: W&CP vol. 48).

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.;
and Klimov, O. 2017. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou,
I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A.; et al. 2017. Mastering the game of go
without human knowledge. Nature 550(7676):354.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and
Mansour, Y. 2000. Policy gradient methods for rein-
forcement learning with function approximation. In Ad-
vances in neural information processing systems, 1057–
1063.

