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Summary 

 

Background Generalized epilepsy with genetic etiology (GGE) is the most common type of 

inherited epilepsy characterized by absence, myoclonic and generalized tonic-clonic seizures 

typically occurring with generalized spike-and-wave discharges on electroencephalography. 

Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still 

largely unknown.  

 

Methods Individuals included in the study were clinically evaluated for GGE. Whole-exome 

sequencing (WES) was performed for the discovery case cohort, the first replication case cohort 

and for two independent control cohorts. A second replication case cohort underwent targeted 

next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and 

was compared to the respective GABAA receptor variants of a third independent control cohort. 

Functional investigations were performed using automated two-microelectrode voltage clamping 

in Xenopus oocytes. 

 

Findings Statistical comparison of 152 familial index cases with GGE in the discovery cohort to 

549 ethnically matched controls suggested an enrichment of rare missense variants in the ensemble 

of GABAA receptor encoding genes in cases. The enrichment for these genes could be replicated 

in a second WES cohort of 357 sporadic and familial GGE cases and 1485 independent controls. 

Comparison of these genes in a second independent replication cohort of 635 familial and sporadic 

GGE index cases, based on candidate-gene panel sequencing, to a third independent control cohort 

confirmed the overall enrichment of rare missense variants in cases. Functional studies for two 

selected genes (GABRB2, GABRA5) showed significant loss-of-function effects with reduced 

current amplitudes in five of seven tested variants compared to wild-type receptors.  

 

Interpretation Our results suggest that functionally relevant variants in GABAA receptor subunit 

encoding genes constitute a significant risk factor for GGE. This conclusion is based on an 

enrichment of rare variants in those genes in three independent case-control datasets and 

physiological studies revealing a loss of function for tested variants which are supposed to favor a 

neuronal disinhibition which is a well-known mechanism in epilepsy.    

 

Funding The study was supported by different national funding agencies in the frame of 

EuroEPINOMICS (a project of the European Science Foundation), by Epicure and EpiPGX 

(funded by the FP6 and FP7 programs of the European Commission), by Research Unit FOR2715 

(funded by the DFG and the FNR), and by a couple of smaller grants from different bodies. More 

detailed information on the funding sources is given in the acknowledgements. 

 

 



 

 

Research in context 

 

Evidence before this study 

It is commonly accepted that generalized epilepsies with genetic etiology (GGE) are a group of 

diseases with a complex inheritance, meaning that probably many common and rare genetic factors 

are involved in the etiology of the disease, the genetic background of which is still largely 

unknown. We searched the Pubmed database with the search terms “Exome sequencing ion 

channels OR exome sequencing genetic generalized epilepsy OR exome sequencing idiopathic 

generalized epilepsy”. At the time we conducted this study, there were only two studies which had 

performed targeted or whole-exome sequencing in smaller cohorts of subjects with GGE not 

finding significant differences in the burden of genetic variants in cases vs. controls. One study 

used a targeted Sanger sequencing approach in 237 ion channel genes in 152 cases vs. 139 normal 

controls. In the other study, whole exome sequencing was performed in 118 subjects with juvenile 

myoclonic epilepsy and absence epilepsy, two of the main sub-phenotypes of GGE, and 242 

controls. In parallel with our study, the Epi4K and EP/GP consortia sequenced whole exomes of 

640 subjects with GGE and 3877 controls which showed that the rate of ultra-rare deleterious 

variants in a group of established epilepsy genes was significantly increased; no single gene 

showed a mutational burden in GGE.  

 

Added value of this study 

Compared to these studies, we found a difference between cases and controls in missense variants 

in a specific group of genes encoding all known GABAA receptors. We were able to reproduce our 

findings in two independent cohorts of cases in comparison to two independent control cohorts. 

We also demonstrate the functional relevance of some of the detected variants in two GABAA 

receptor subunit genes that were so far not known to be associated with GGE or epilepsy. Our 

study therefore provides strong evidence that variation in GABAA receptor encoding genes confers 

a genetic burden in GGE. 

 

Implications of all the available evidence 

The study by the Epi4K and EPGP consortia and our findings present the first evidence that there 

is a significant genetic burden in GGE compared to controls in ultra-rare variants in previously 

identified epilepsy genes or in the specific gene group of the most important inhibitory receptors 

in the mammalian brain.  

 

Introduction 

In the recent past, gene discovery in monogenetic diseases, including familial and severe epilepsy 

syndromes, has been boosted by next generation sequencing yielding a steadily increasing number 

of disease-causing genetic defects. Unraveling the genetic origin of complex inherited disorders 



 

 

has, however, been more difficult. GGE comprises common epilepsies with generalized absence, 

myoclonic and tonic-clonic seizures1. It has a high heritability, as has been shown in twin studies2 

and represents a kind of ‘prototype’ of genetic epilepsy with complex inheritance.  

A few single nucleotide polymorphisms in genome-wide association studies and altered copy 

number variations have been the major common risk factors identified so far in GGE. These, 

however, only explain a small part of the high heritability. Single gene defects in larger families 

with autosomal dominantly inherited GGE have been identified as disease-causing, e.g. in 

GABRA1 or GABRG2 encoding subunits of GABAA receptors3–5, or in SLC2A1 encoding the 

glucose transporter type 16,7. Larger candidate-gene or whole-exome sequencing (WES) studies 

have not revealed a significant burden of mutations in single genes or groups of genes thus far8,9. 

Only recently, a study running in parallel to this study demonstrated mutational burdens of ultra-

rare variants in gene-sets related to epilepsy10. 

 

We set out to investigate the burden of genetic mutations in mainly familial GGE by first testing 

all genes in a hypothesis-free approach, and second hypothesis-driven sets of genes related to the 

disease and disease-relevant pathways. Subsequent steps were to replicate the findings in 

additional cohorts and to perform functional studies for selected variants. Our results suggest the 

presence of such a genetic burden in a gene set encoding the main inhibitory receptors in the 

mammalian brain in cases, replicate the finding in two independent GGE cohorts and prove the 

functional significance of some variants in two GABAA receptor genes by physiological 

investigations. 

 

Methods 

Participants 

The discovery GGE exome sequencing case cohort included 152 subjects (after quality control 

(QC) of the exome sequencing data) with GGE from multiplex families which were collected by 

the Epicure and the EuroEPINOMICS-CoGIE consortia. All subjects were of European descent 

(Italian n=69, German n=51, Dutch n=11, Danish n=8, British n=6, Finnish n=4, Swedish n=2, 

Greek n=1). The cohort included 88 females (58%). The primary GGE-diagnoses were childhood 

absence epilepsy (CAE, n=68), juvenile absence epilepsy (JAE, n=16), juvenile myoclonic 

epilepsy (JME, n=37), GGE with generalized tonic-clonic seizures alone (EGTC, n=24), early-

onset absence epilepsy (EOAE, defined as beginning below 3 years of age, n=4), epilepsy with 

myoclonic absences (EMA, n=1) and unclassified GGE (n=2) (see appendix table S1). The age of 

epilepsy onset ranged from 1.5 to 38 years with a median of 10 years and all subjects had a normal 

development without obvious developmental delay or intellectual disability, although most were 

not formally tested. We included the few cases with EOAE, EMA and unclassified GGE since 

these entities in our view are close to classical GGE. For EOAE it has been recently suggested by 



 

 

a large study that it is likely genetically similar to classical CAE11, EMA may also have genetic 

overlaps with GGE12 and we often find in family studies both well classified and unclassified GGE 

cases in the same pedigrees. The majority of cases (n=143, 94%) derived from multiplex families 

with at least two affected family members, thereof 76 families with three or more affected 

members. All cases had EEG changes consistent with GGE (see appendix, table S1). 

The replication case cohort 1 consisted of 357 GGE cases (after QC) that were collected in six 

European countries (Belgium n=5, Germany n=174, Ireland n=22, Italy n=23, Netherlands n=61, 

and UK n=72) by the EpiPGX consortium. The cohort included 225 females (63%) and 132 males 

(37%). GGE diagnosis included CAE (n=55), JAE (n=28), JME (n=157), EGTC (n=19), and 

unclassified GGE (n=98). 92 cases (26%) derived from multiplex families with at least two 

affected members. 131 cases were sporadic, for the remaining 134 cases, familial history was not 

known. Age of epilepsy onset ranged from 0 to 49 years with a median of 13 years. All cases had 

EEG changes consistent with GGE (appendix, table S2).  

Two independent control cohorts for the case discovery and the replication cohort 1 were obtained 

from two independently sequenced cohorts from the Rotterdam study13,14 which were matched for 

ethnicity and sex (see appendix). All the control samples were at least 55 years old or older and 

were checked for several neurological conditions at baseline. As GGE is a disease with typical 

onset from childhood to adolescence, it is unlikely that people from this older control cohort could 

still develop GGE. 

  

For the GABAA receptor panel cohort (replication cohort 2), individuals were collected by referral 

from neurologists or paediatricians in Quebec, Canada, and in Europe by Epicure or CoGIE 

partners. The replication cohort 2 consisted of 631 subjects (after QC) with GGE that were 

collected from Canada (n=290) and five European countries (Germany n=153, Denmark n=58, 

Belgium n=71, Netherlands n=58, and Finland n=1). They included 390 females (62%) and 241 

males (38%). Subjects were diagnosed with CAE (n=109), JAE (n=92), JME (n=189), EGTC 

(n=104), or unclassified absence epilepsy (n=137) not otherwise specified according to ILAE 

definitions1 (appendix table S3). 154 cases were familial with at least 2 affected family members, 

for 51 there was a positive family history of epilepsy but only one affected member was available, 

and the remaining 426 cases were sporadic. All cases had EEG changes consistent with GGE. A 

third independent set of controls was obtained from the UK10K project consortium15. A full list 

of the investigators who contributed to the generation of the UK10K data is available from 

www.UK10K.org. Funding for UK10K was provided by the Wellcome Trust under award 

WT091310 (EGAS00001000101,129,130,131,242,306). Data transfer agreements were made 

between the CRCHUM and the appropriate instances. A total of 639 ethnically matched 

individuals were selected from the exome control cohort (324 females and 315 males). 



 

 

The diagnosis of GGE in all case cohorts was based on detailed clinical interview, a full 

neurological examination and respective EEGs. Written informed consent was obtained from all 

subjects or their respective relatives and the study was approved by the local Ethical Committees. 

One affected individual of each family was selected for sequencing.  

Procedures 

For the discovery stage, paired-end whole-exome sequencing (WES) of cases and controls was 

performed with the Illumina HiSeq 2000 using the EZ Human Exome Library v2.0 kit 

(NimbleGen, Madison, WI). Cases and controls were sequenced at different locations, cases at the 

Cologne Center for Genomics, the controls in Rotterdam13. Sequencing adapters were trimmed 

and samples with <30X mean depth or <70% total exome coverage at 20X mean depth of coverage 

were excluded from further analysis. Variant calling was performed by using the GATK16 best 

practices pipeline with the GRCh37 human reference genome (see appendix). 

The replication case cohort 1 was paired-end whole-exome sequenced at deCODE genetics 

(Iceland) on the Illumina HiSeq 2500 using the Nextera Rapid Capture Expanded Exome kit 

(Illumina). A second set of Rotterdam control samples was sequenced again in Rotterdam14 using 

the EZ Human Exome Library kit (NimbleGen, Madison, WI). 

For all WES samples, we applied standard procedures for assessing potential population 

stratification for the European population as well as a relatedness check (appendix and figures S1-

3). To exclude low quality variants, we performed an additional filtering based on quality metrics 

of individual genotypes, using read depth and genotype quality as the filtering criteria. We 

excluded any variant position with mean depth of <10 in either cases or controls. For all WES 

samples the same exome regions file from the EZ Human Exome Library v2.0 kit was used. For 

the WES analysis, only samples with more than 30X mean coverage or more than 70% of the 

exome intervals covered by at least 20x mean coverage were included for the analysis (appendix).  

For replication case cohort 2, a total of 19 genes encoding for all known subunits of GABAA 

receptors were selected for deep sequencing (GABRA1, GABRA2, GABRA3, GABRA4, GABRA5, 

GABRA6, GABRB1, GABRB2, GABRB3, GABRD, GABRE, GABRG1, GABRG2, GABRG3, 

GABRP, GABRQ, GABRR1, GABRR2, GABRR3, altogether referred to as GABRX herein). Exon 

targets were generated based on RefSeq, representing 184 exons from 19 genes. Primer design was 

made using the Primer3 oligonucleotide design tool and in silico PCR tool for validating the 

specificity of each amplicon. Target regions were enriched by PCR using the 48.48 Access Array 

Integrated Fluidic Circuit (IFC) (Fluidigm, San Francisco, CA). In the final assay, 185 amplicons 

targeted the protein-coding sequence of 19 GABRX genes with an overhang at exon boundaries in 

order to capture splice site variants. GABRX exon-specific primers with Fluidigm tags were tested 

along with materials and reagents as recommended in the Access Array System User Guide 



 

 

(Fluidigm, South San Francisco, CA). Finally, GABRR3 had to be dropped because of QC reasons 

having not enough good quality reads covering this gene. After quality trimming the reads were 

mapped against the GRCh37 human reference genome using the GATK161514 suite and the 

MUGQIC pipelines (https://bitbucket.org/mugqic/mugqic_pipelines). Data from the control 

cohort were processed using the same pipelines. Coverage comparisons were made to keep bases 

covered in at least 95% of the subjects as well as the control cohort.  

RefSeq gene annotation information was used for the classification into missense and synonymous 

variants and to filter for rare (allele frequency smaller than 0.5%) variants using the ExAC 

database17 (for details see appendix).  

Population stratification 

We applied principal-components analysis (PCA) to assess potential population substructure 

separately for each case-control cohort, using the implementation in Eigenstrat18. Population 

outliers were defined as SD of >3 based on the first 10 PC and excluded from further analysis 

(appendix).  

Statistical analysis 

Due to the limited sample size, single-gene collapsing analysis for the discovery stage was 

performed using Combined and Multivariate Collapsing19(CMC) method for collapsing and  

combining rare variants together with a two-sided Fisher's exact test, as implemented in the Exact 

CMC method in rvtests20 (appendix). P-values for single-gene collapsing tests were corrected for 

multiple testing by use of the Bonferroni method (as implemented in the R function p.adjust) for 

18,668 protein-coding genes. For all three stages, gene-set collapsing tests were performed using 

the regression-based two-sided SKAT-O test method21, as implemented in rvtests20. For the two 

WES cohorts, SKAT-O was used and we included sex and the first 10 PC from the Eigenstrat 

analysis as covariates to account for possible gender and population substructure effects. Gene-set 

collapsing tests were applied separately to missense and to synonymous variants of specific sets 

of candidate genes. Seven different disease- and process-specific gene sets were constructed based 

on their relation to GGE together with a control gene set not related to GGE. A description of the 

gene-set construction is given in the appendix and the gene sets are given in the appendix in table 

S5. In order to control the family-wise error rate, we applied Holm’s correction for multiple testing 

14 hypotheses, namely seven gene sets combined with two sets of variant type (missense and 

synonymous), in the discovery cohort, while correction was done for only two hypotheses in each 

of the two replication cohorts, since only the GABAA receptor gene set was carried forward the 

replication (appendix). The odds ratio (OR) for a given gene-set was determined by comparing the 

presence of qualifying rare (nonsynonymous or synonymous) variants in all genes within each 

gene-set between cases and controls. 



 

 

 

Functional analysis 

Functional experiments were performed using automated two-microelectrode voltage clamping in 

Xenopus oocytes. All methods for functional studies have been described previously21,22 (see 

appendix).  

Role of the funding source  

The funders of the study had no role in the study design, data collection, data analysis, data 

interpretation or writing of the report. The authors had full access to the data in the study and had 

final responsibility for the decision to submit for publication. 

Results 

We first performed WES in a cohort of 238 independent, mainly familial cases of classical forms 

of GGE, i.e. childhood or juvenile absence epilepsy (CAE/JAE), juvenile myoclonic epilepsy 

(JME) and epilepsy with generalized tonic-clonic seizures on awakening (EGTCA), collected by 

the Epicure and EuroEPINOMICS-CoGIE consortia. As controls, we used ethnically and sex 

matched (appendix figure S1) population control individuals from the Rotterdam Study13, that 

underwent WES using the same enrichment and sequencing procedures, albeit with a somewhat 

lower coverage than in the GGE cohort. After quality control (QC) and population outlier removal, 

the final dataset consisted of 152 unrelated GGE and 549 unrelated control samples. To adjust for 

the different coverage between case and control samples, we considered only variants with an 

average read depth of >10 both in case and in control samples (see appendix, figure S2). From the 

total of 701 samples, 204,023 exonic and splice site variants were called. The mean exonic 

transition/transversion ratio equaled 3.46, indicating good data quality. Rare variants 

(MAF<0.005) were classified as missense (Nonsyn) and silent (Syn) variants. 93,893 Nonsyn and 

55,170 Syn variants constituted the analysis data set (see appendix, table S4). First, we tested 

hypothesis-free all individual RefSeq genes separately for association but could not identify any 

single gene enriched for any variant type (appendix). Therefore, we next applied an independent 

hypothesis-driven analysis by testing the enrichment of rare variants in seven gene sets related to 

epilepsy and its underlying molecular processes. These gene sets represented (i) all voltage-gated 

cation channels, (ii) all excitatory postsynaptic receptors, (iii) all GABAA receptors as the main 

inhibitory postsynaptic receptors, (iv) more broadly the GABAergic pathway (since such genes 

have been associated specifically with generalized epilepsies), and genes associated (v) with 

generalized epilepsies, (vi) with epileptic encephalopathies, (vii) with focal epilepsies (appendix 

table S4). We tested separately for each variant type; silent variants were expected to show no 

difference between cases and controls. We found an enrichment for missense variants in a set of 

GABAA receptor genes which was significant when correcting for multiple comparisons in the 



 

 

seven gene sets for both nonsyn and syn (so 14 altogether) by use of the two-sided SKAT-O test 

(19 genes, pNonsyn=0.019, OR=2.40, 95% CI=[1.41,4.10]) (figure 1). However, the GABA gene set 

did not reach study-wide significance when also correcting for all single genes tested. None of the 

other gene sets showed a significantly increased burden of rare variants. Synonymous variants, 

used as a negative control, did not show a significant enrichment in any of the gene sets (appendix, 

tables S8 and S9). 

 

To replicate the finding for the GABAA receptor encoding genes, we first used the replication case 

cohort 1 collected by the EpiPGX consortium, consisting of 724 individuals with GGE from six 

European countries. They were mainly sporadic (n=268) or of unknown familial history (n=265) 

and diagnosed with classical forms of GGE (appendix, table S2). For the analysis of this cohort, 

an independent matched subset of control samples from the Rotterdam Study12 was used. After 

applying the same QC steps as applied to the discovery cohort, the final dataset consisted of 357 

unrelated GGE and 1485 unrelated control samples14. We confirmed the significant enrichment of 

rare missense variants in GABAA receptor genes in cases compared to controls after multiple-

testing correction for two sets of variants (nonsyn and syn; pNonsyn=0.016, OR=1.46, 95% 

CI=[1.05,2.03]) by use of the SKAT-O test (appendix table S8 and S9). Synonymous variants 

showed again no significant enrichment. 

 

For a second replication cohort, we designed a targeted enrichment panel comprising all 19 

GABAA receptor genes. All genes were sequenced in an independent cohort of 631 cases with 

familial or sporadic GGE (appendix, table S3). GABRR3 was excluded for QC reasons. We 

obtained control samples from the UK10K project (https://www.uk10k.org/) and selected 639 

gender matched individuals after sample QC. Additional variant QC reduced the number of 

individuals to 583 cases and 635 controls in the final sample set. We found a significant enrichment 

of rare missense variants for the GABAA receptor genes in cases compared to controls 

(pNonsyn=0.027, OR=1.46, 95% CI=[1.02,2.08]) by use of a SKAT-O test and after correction for 

two sets of variants (Nonysn, Syn). No significant enrichment was observed for synonymous 

variants. Thus, we can conclude that enrichment of rare missense variants in GABAA receptor 

genes is reproducibly present in individuals with GGE when compared to controls. All detected 

case-only variants are given in the appendix, tables S8 and S9. Case-only rare missense variants 

were found in all GABAA receptor genes except in GABRR3 (table S9).  

 

The combination of two α1-, two 2- and one γ2-subunit (genes GABRA1, GABRB2, GABRG2) 

represents the most common form of a functional GABAA receptor in the brain24, and variants in 

GABRA1 and GABRG2 have been shown to play an important role in familial GGE, febrile seizures 

and EE4,5,22,23,25–27. It is important to note that the enrichment of missense variants in in GABAA 

receptor genes was not driven by variants in those known epilepsy genes. The signal was no longer 

significant when reducing the analysis only to those two genes (table S9). Instead, the qualifying 



 

 

variants were evenly distributed over all GABAA receptor encoding genes. The α5 subunit (gene 

GABRA5) is supposed to mediate extrasynaptic tonic inhibition28, and tonic inhibition has been 

described to be altered in genetic mouse models of epilepsy29,30. GABRB2 and GABRA5 have not 

previously been associated with GGE, although GABRB2 mutations were described recently in 

patients with intellectual disability and epilepsy31–33. 

  

For functional studies, we selected seven missense variants in GABRB2 and GABRA5 (appendix, 

table S10) for electrophysiological studies in Xenopus oocytes (appendix). Those were selected 

early during the course of the study, before the final QC steps were performed, so that two of these 

variants do not belong to the final set of variants yielding a significant burden compared to controls 

(table S10). Five of these variants were selected since they co-segregated with the phenotype of 

available members in nuclear families. Another variant (p.R3S) was found in three different 

French-Canadian pedigrees, so we hypothesized whether this could be a more common causal 

variant in a specific population (figures 2a and 3a). The last variant, p.P453L, did not co-segregate, 

but was selected as another variant in GABRA5 which is localized in a different protein region (the 

C-terminus) than the other variants. All missense variants were predicted to be deleterious by at 

least three out of seven missense prediction tools and were highly conserved (table S10). Three of 

these variants were consistently of ultra-low frequency in the European population in different 

public databases (dbGAP, 1000G, ExAC; appendix, table S10). The localization of the variants in 

the GABAA subunits is shown in figures 2b and 3b. After application of 1 mM GABA, we observed 

a significant reduction in current amplitudes of GABAA receptors containing either p.K221R or 

p.V316I variants in the β2-subunit, and p.M1I, p.S238N, or p.E243K in the α5-subunit, in 

comparison to respective compositions of WT receptors. No significant reductions were observed 

for p.R3S in the β2- and for p.P453L in the α5-subunit (figures 2c, 2d, 3c, 3d). The GABA 

sensitivity was studied by applying different GABA concentrations with no significant changes 

observed for receptors containing any of the studied variants (figures 2e, 3e). Thus, five out of 

seven variants suggest a loss of receptor function predicting postsynaptic or extrasynaptic neuronal 

disinhibition.  

 

All variants showing significantly reduced current amplitudes co-segregated with the disease 

phenotype in family members that were available for testing (figures 2a, 3a), corroborating their 

contribution to the disease phenotypes. In two families, we observed co-segregating variants in 

two different GABAA receptor subunits: p.V316I in the β2- and p.M1I in the α5-subunit co-

occurred in the same nuclear family, and p.E243K in the α5-subunit was accompanied by a 

deleterious frameshift mutation in GABRG2 in another family (figures 2a, 3a). Variants with 

altered receptor function were all located in the N-terminus containing GABA binding sites or in 

the pore region. p.M1I suppresses the start codon such that translation starts six amino acids later, 

which shortens the signalling peptide consisting of the first 20 amino acids. While the peptide is 

removed and not part of the mature GABAA receptor in the plasma membrane, this alteration could 



 

 

still affect the protein biogenesis and lead to reduced expression of functional receptors. p.R3S, 

which also affects the signalling peptide, and p.P453L, located in the functionally less relevant C-

terminus, did not lead to a significant change in receptor function. p.R3S recurred in three French-

Canadian families and p.P453L was detected in only one of several affected members of a larger 

family indicating that they might represent benign polymorphisms. 

 

Discussion 

Our results show an excess of rare missense variants in GABAA receptor subunit encoding genes 

in three independent cohorts of altogether >1000 familial and sporadic GGE index cases. Five 

selected variants in two genes, GABRB2 and GABRA5, previously not associated with GGE (i) 

clearly changed receptor function and (ii) co-segregated in nuclear families, suggesting an 

important contribution to the disease phenotype and inheritance in those pedigrees. Previous 

studies in smaller cohorts failed to show a significant excess of variants in cases versus controls 

either in a test for the set of all ion channel encoding genes8 or in single-gene collapsing tests based 

on whole exomes9. Our findings indicate that the enrichment of rare genetic variants in a set of 

inhibitory GABA receptors does play a significant role in the pathogenesis of GGE. The difference 

between these previous studies and ours could be explained by (i) a larger sample size in our study 

across all cohorts and (ii) by testing different gene-sets that had not been considered before. In a 

parallel study10, a similar effect could be shown for ultra-rare deleterious variants in gene-sets 

comprising known epilepsy genes or genes associated with epileptic encephalopathies. Due to our 

smaller sample size and the associated low number of ultra-rare variants, we here chose a different 

approach considering all variants with a MAF<0.005, which proved to yield significant results in 

other studies34–36. Both studies (i.e. Epi4k and ours) failed to identify single genes with a genome-

wide significant burden of rare variants in individuals with GGE. It will be interesting in future 

studies to combine different cohorts to increase sample size and power for such analyses to shed 

further light on the complex genetic architecture of GGE. 

 

One limitation of the current study is that the cohorts, due to funding restrictions of the individual 

projects, were sequenced at different locations using different technologies. Combining and 

analysing such data in an unbiased way is still a major challenge in large genetic sequencing 

projects. An a priori selection bias for the targeted genes yielding a false significance can also not 

be completely ruled out. The careful choice of gene sets was based on purely biological and 

published evidence and did not change the selection afterwards. This approach should minimize 

any potential selection bias and associated false-positive findings. We further addressed these 

issues by using a stringent QC and consistent processing of all datasets (appendix), and by using 

two different GGE cohorts to replicate our data in independent case and control datasets.  

 

One of the variants detected and functionally examined in our study (p.V316I in GABRB2) has 

been described in the meantime as a de novo mutation in a different dataset of cases with severe 



 

 

developmental and epileptic encephalopathies, in which whole genome sequencing of parent-

patient trios was used32. This finding clearly corroborates the pathogenicity of this variant. The 

association of genetic variants with different phenotypes is well-known as the phenomenon of 

pleiotropy, and has also been described in other GABAA receptor encoding genes3,24 including 

large phenotypic variability within one extended pedigree3.  

 

We have also recently characterized the variant p.T336M in GABRA3 – which was detected in our 

discovery cohort (table S9) – as part of another study in which we identified GABRA3 as a new 

epilepsy gene associated with highly heterogeneous epileptic phenotypes including asymptomatic 

variant carriers37. This variant also causes a severe loss-of-function effect but does not co-

segregate in the respective pedigree, so that other factors must contribute to the GGE at least in 

two family members. While co-segregation is a strong indicator for the pathogenicity of genetic 

variants, we have to be aware that GGE is a common disease with complex inheritance. Variants 

in GABAA receptor encoding genes could therefore still contribute to the disease in the carriers, 

whereas other family members not carrying the respective variants must have other genetic causes 

of their epilepsy. Similarly, copy number variations often do not co-segregate within nuclear 

families but have been replicated several times as a significant risk factor for GGE38–41. Given the 

reproducibility of our results in three independent datasets together with co-segregation and 

functional evidence for GABAA receptor dysfunction, many but not all of the detected variants 

may contribute to the etiology of GGE in our three cohorts. This disease-relevant contribution may 

range from a major gene effect – as observed in ‘monogenic’ Mendelian epilepsies – to relatively 

small effect sizes in the variant carriers, depending on the amount of the electrophysiological 

dysfunction and other unknown factors, such as the genetic background. Overall, we therefore 

consider the detected increase in GABAA receptor variants in cases vs. controls as a significant 

risk factor to develop GGE.  

 

Lastly, our results indicate a genetic overlap among rare and common forms of epilepsy, since 

there is increasing evidence that de novo variants in GABAA receptor encoding genes cause severe 

forms of epileptic encephalopathies22–26,37,42 and they re-iterate a central role of GABAergic 

mechanisms in generalized epilepsies3–5,23–25,27–31,43,44. 
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Figure 1: Rare variant gene-set odds ratios and burden enrichment for rare variants in the 

whole-exome sequencing GGE discovery cohort 

Cases from the CoGIE discovery cohort, matched with controls from the Rotterdam study. Gene-

set collapsing analysis by use of a SKAT-O test was performed on seven epilepsy-related gene 

sets for missense (NONSYN) and synonymous (SYN) variants. The gene sets are described in 

the appendix. The star denotes the enriched gene-set collapsing p-value after Holm correction. 



 

 

 

 

 

 

Figure 2: Characterization of GABRB2 missense variants associated with GGE  

GABRB2 mutations associated with GGE. (a) Pedigree of the families. (b) Schematic 

representation of the 2 subunit of the GABAAR and predicted positions of the R3S and K221R 

mutations located in the N-terminal domain and V316I located in the transmembrane domain 3. 

(c) Examples of GABA-induced currents after 1 mM GABA application for WT, R3S, K221R and 

V316I mutations. (d) Current responses normalized to 1 mM GABA application for WT (n=30), 

R3S (n=24), K221R (n=21) and V316I (n = 16); ***p<0.001, Kruskal Wallis test, with Dunn´s 

comparison test. (e) Dose-response curve for 122s WT (n=30), R3S (n=14), K221R (n=10), 

V316I (n=7) obtained using application of different GABA concentrations and normalization to 

the maximal GABA response for each cell.  



 

 

 

 

Figure 3: Characterization of GABRA5 missense variants associated with GGE 

(a) Pedigree of the families. (b) Schematic representation of the 5 subunit of the GABAAR and 

predicted positions of the M1I, S238N and E243K mutations located in the N-terminal domain 

and P453L located in the C-terminal domain. (c) Examples of GABA-induced currents after 

application of 1 mM GABA for WT, M1I, S238N, E243K and P453L mutations. (d) Normalized 

current responses to 1 mM GABA application for WT (n=43), M1I (n=10), S238N (n=13), 

E243K (n=14) and P453L (n=11); *<p0.05, ***p<0.0001, Kruskal Wallis test, with Dunn´s 

comparison test. (e) Dose-response curve for 122s WT (n=37), M1I (n=15), S238N (n=11), 

E243K (n=8) and P453L (n=8) obtained after application of different GABA concentrations and 

normalization to the maximal GABA response for each cell.  

 


