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The Rust programming language supports safe systems programming by means of a strong ownership-tracking
type system. In their prior work on RustBelt, Jung et al. began the task of setting Rust’s safety claims on a
more rigorous formal foundation. Specifically, they used Iris, a Coq-based separation logic framework, to
build a machine-checked proof of semantic soundness for a λ-calculus model of Rust, as well as for a number
of widely-used Rust libraries that internally employ unsafe language features. However, they also made the
significant simplifying assumption that the language is sequentially consistent. In this paper, we adapt RustBelt
to account for the relaxed-memory operations that concurrent Rust libraries actually use, in the process
uncovering a data race in the Arc library. We focus on the most interesting technical problem: how to reason
about resource reclamation under relaxed memory, using a logical construction we call synchronized ghost state.
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1 INTRODUCTION
Rust [Klabnik and Nichols 2018] is a young and evolving programming language—sponsored by
Mozilla and developed actively over the past decade by a diverse community of contributors—that
aims to bring safety to the world of systems programming. Specifically, Rust provides low-level
control over data layout and resource management à la modern C++, while at the same time offering
strong high-level guarantees (such as type and memory safety) that are traditionally associated with
safe languages like Java. In fact, Rust takes a step further, statically preventing more insidious forms
of anomalous behavior, such as data races and iterator invalidation, that safe languages typically fail
to rule out. Rust strikes its delicate balance between safety and control using a substructural type
system, in which types not only classify data but also represent ownership of resources, such as the
right to read, write, or reclaim a piece of memory. By tracking ownership in the types, Rust is able
to prohibit dangerous combinations of mutation and aliasing, a well-known source of programming
pitfalls and security vulnerabilities in C/C++ and Java.
Only recently has Rust begun to receive attention from the programming languages research

community. Notably, the RustBelt project [Dreyer 2016] has sought to set the safety claims of Rust
on a more rigorous formal foundation. The initial work on RustBelt by Jung et al. [2018a] made
two main contributions. First, Jung et al. proposed a formal definition of a core typed calculus
called λRust, which encapsulates the central features of the Rust language. Second, they used the
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Coq proof assistant to verify formally that Rust’s aforementioned safety guarantees do in fact hold,
both for the core λRust calculus and for a number of widely-used Rust libraries.

However, the initial work on RustBelt also made a significant simplifying assumption: it assumed
a sequentially consistent (SC) model for concurrent memory accesses. On the one hand, sequential
consistency [Lamport 1979]—i.e., an interleaving semantics in which threads take turns accessing the
global state, and all threads share the same view of that state—has long been the standard memory
model assumed by research on concurrency verification. On the other hand, this assumption does
not match the reality of modern multicore programming languages, Rust included.

In reality, following C/C++11 (hereafter, C11), Rust provides a relaxed memory model (hereafter,
RMM), supporting a variety of different consistency levels for shared-memory accesses [Batty et al.
2011]. For programmers who demand strong synchronization, SC accesses are available, but this
strength comes at the cost of disabling standard compiler optimizations and inserting expensive
memory fences into the compiled code. The weaker consistency levels of release/acquire and relaxed
allow one to trade off synchronization strength in return for more efficient compiled code. Rust
employs a variety of these different consistency levels in several of its widely-used concurrency
libraries, such as Arc, Mutex, and RwLock. But in the initial RustBelt verification effort, all atomic
(i.e., potentially racy) memory accesses were treated as having the strongest consistency level, SC.

In this paper, we present RustBelt Relaxed (or RBrlx, for short), the first formal validation of
the soundness of Rust under relaxed memory. Although based closely on the original RustBelt,
RBrlx takes a significant step forward by accounting for the safety of the more weakly consistent
memory operations that real concurrent Rust libraries actually use. For the most part, we were able
to verify Rust’s uses of relaxed-memory operations as is. Only in the implementation of one Rust
library (Arc) did we need to strengthen the consistency level of two memory reads (from relaxed
to acquire) in order to make our verification go through. And in one of these cases, our attempt to
verify the original (more relaxed) access led us to expose it as the source of a previously undetected
data race in the library. Our fix for this race has since been merged into the Rust codebase [Jourdan
2018].

1.1 Relaxing RustBelt: Overview and Key Challenge
The overarching challenge in developing RBrlx is that the logical foundation on which the original
RustBelt is built is unsound for relaxed memory. To understand why, let us first review a bit about
Rust and the structure of the RustBelt verification.

Background on Rust and RustBelt. At the heart of Rust is an ownership-based type system,
which rules out bad combinations of mutation and aliasing, yet is expressive enough to typecheck
many common systems programming idioms. Nonetheless, certain kinds of functionality (e.g., some
pointer-based data structures, synchronization abstractions, garbage collection mechanisms) cannot
be implemented within the strictures of Rust’s type system. Rust provides these abstractions instead
via libraries whose implementations internally utilize unsafe features (e.g., unchecked type casts,
array accesses without bounds checks, or accesses of “raw” pointers whose aliasing is untracked by
the type system). These libraries are claimed to be safe extensions to Rust because they encapsulate
their uses of unsafe features in “safe APIs”. However, given that the set of such extensions is far
from fixed—new and surprising “safe APIs” are being developed all the time—there is a pressing
need to understand what property an internally-unsafe library ought to satisfy to be deemed a safe
extension to Rust.
To formalize Rust’s “extensible” notion of safety, RustBelt follows prior work on Foundational

Proof-Carrying Code [Ahmed et al. 2010] by employing a semantic soundness proof. First, it defines
a semantic model of Rust types: a mapping from types T to logical predicates on terms Φ(e), which
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asserts what it means for the term e to behave safely at type T (even if internally e uses unsafe
features). Then, the RustBelt proof breaks into two main parts:
(1) Safety of libraries that use unsafe features: For any library that makes use of unsafe features,

the implementation of the library is proven to satisfy the semantic model of its API, thus
establishing that it is safe for clients to make use of the library. RustBelt proved safety for a
number of widely-used Rust libraries, including Arc, Rc, Cell, RefCell, Mutex, and RwLock.

(2) Safety of the λRust type system: The syntactic typing rules of λRust are proven to respect the
semantic model, thus establishing that code written in the “safe” fragment of Rust is in fact
observably safe—i.e., its behavior is well-defined.

Put together, these imply that if a program P is well-typed, and its only uses of unsafe features
appear within the libraries that have been verified safe (in part 1), then P is observably safe.
In carrying out their semantic soundness proof for RustBelt, Jung et al. relied on separation

logic [Reynolds 2002]. Separation logic is a good fit for modeling Rust because it is designed around
the same notion of ownership as Rust’s type system, and thus provides built-in support for ownership-
based reasoning. More specifically, RustBelt was formalized in a higher-order concurrent separation
logic framework called Iris [Jung et al. 2018b]. One benefit of using Iris is that it was designed to
support the derivation of new separation logics with domain-specific reasoning principles. Jung et
al. exploited this facility to derive a new logic called the lifetime logic, which they used extensively
in their proofs in order to reason about Rust’s “lifetimes” and “borrowing” mechanisms at a higher
level of abstraction [Klabnik and Nichols 2018, §4.2, §10.3]. A second benefit of using Iris is that it
comes with tactical support for developing machine-checked proofs interactively in Coq [Krebbers
et al. 2017]; this support made it possible for RustBelt to be fully mechanized in Coq.

Separation logic for relaxed memory. So why do we say that the logical foundation of RustBelt is
unsound for relaxed memory? The reason is as follows. The Iris framework (on which RustBelt
is built) is parameterized by an operational semantics for the language under consideration, and
depending on how this parameter is instantiated, Iris can be used to derive proof rules of varying
strength. In the case of RustBelt, Iris was instantiated with a sequentially consistent (SC) semantics
for λRust. This SC instantiation of Iris (call it “Iris-SC”) provides a variety of proof rules that are valid
only under SC semantics and not under relaxed-memory semantics. In particular, Iris-SC enables
one to establish general invariants governing arbitrary regions of shared memory. Unfortunately,
under relaxed memory, different threads can observe writes to different locations in different orders,
so one cannot in general maintain an invariant on multiple locations simultaneously.

To adapt RustBelt to relaxed memory, we must therefore rebuild it using a logic that is suitably
restricted so as to be sound under relaxed memory, yet still supports machine-checked proofs as
Iris does. A promising path forward was charted by Kaiser et al. [2017], who showed how Iris
could be used to derive a relaxed-memory separation logic called iGPS, targeting RA+NA (the
fragment of C11 comprising release/acquire and non-atomic accesses). Following prior work on
relaxed-memory separation logics [Vafeaidis and Narayan 2013; Turon et al. 2014], iGPS accounts
for weak memory consistency by weakening the power of invariants: the user of iGPS may only
establish single-location invariants (i.e., invariants that govern a single shared memory location),
the soundness of which is guaranteed by the coherence (or “SC per location”) property of C11.

In this paper, drawing inspiration from FSL [Doko and Vafeiadis 2016, 2017], we will extend iGPS
further to account for the additional features of the C11 memory model that Rust libraries make
use of—specifically, relaxed accesses and release/acquire fences. We call this extended logic iRC11.
To a first approximation, we would therefore like to “port” RustBelt so that it is built on top of

iRC11 rather than Iris-SC. Following the structure of RustBelt, this porting effort breaks down into
two major tasks:
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SC-CInv-Acc
{I ∗ P } e {v . I ∗Q} atomic(e)
τ I ⊢ {[τ ]q ∗ P } e {v . [τ ]q ∗Q}

SC-CInv-Tok
[τ ]q+q′ ⇔ [τ ]q ∗ [τ ]q′

SC-CInv-Cancel
τ I ⊢ [τ ]1 I

Fig. 1. Key rules for cancellable invariants in Iris-SC.

Task 1: Re-prove the safety of the Rust libraries considered by RustBelt, this time verifying their
real, relaxed-memory implementations in iRC11.

Task 2: Re-prove the safety of the λRust type system, this time relying only on proof rules that are
sound in iRC11.

Key challenge. As it turns out, both of these tasks require us to overcome a technical challenge
that is relevant not just to Rust but to relaxed-memory verification in general: namely, that existing
work on separation logic does not provide an adequate foundation for reasoning about
resource reclamation under relaxedmemory. We will first explain this challenge in the context
of Task 1, before briefly describing how it also informs Task 2.

Task 1: Re-prove the safety of Rust libraries under relaxed memory. One of the main motivations
for using a “systems programming” language like Rust or C/C++ (as opposed to a garbage-collected
language like Java) is to have more precise control over limited resources such as memory. In
particular, the Rust programmer can be assured that when an object goes out of scope, the destructor
(drop method) associated with its type will be invoked and any resources it owns will be reclaimed.
Yet the safety of destructors is often quite subtle because objects can contain references to resources
that are shared with other objects. For example, objects of type Arc<T> are simply aliases to a
shared struct containing an object of type T along with a reference counter, which keeps track of
the current number of active aliases to the object. Consequently, the destructor for Arc<T> cannot
simply reclaim the shared struct that it points to: rather, it decrements the shared reference
counter, and only if it observes that it was the last remaining alias can it safely reclaim the memory
for the reference counter and invoke the destructor for the object of type T.

RustBelt showed how to put this subtle kind of resource reclamation on a sound formal footing
using Iris-SC’s mechanism of cancellable invariants (Fig. 1), a generalization of Gotsman et al. [2007]
and Hobor et al. [2008]’s storable locks. A cancellable invariant τ I is an invariant governing a
shared resource (described by proposition I ) which is only “active” for a certain period of time, after
which point it is “cancelled”. To access the shared resource during an atomic step of computation
(SC-CInv-Acc), a thread must prove that the invariant is still active by exhibiting ownership of an
invariant token [τ ]q , where q is a fraction in (0,1]. This is an instance of the well-known concept of
fractional permissions [Boyland 2003], and correspondingly, ownership of invariant tokens can be
split or combined through fractional arithmetic (SC-CInv-Tok). If a thread π can assert ownership
of [τ ]1 (i.e., the “full” τ token), it knows that no other thread can assert that the invariant is active;
thus it is safe for π to cancel the invariant and reclaim full ownership of I (SC-CInv-Cancel), after
which it can free the memory governed by I if it wants to. In RustBelt, cancellable invariants played
a crucial role in verifying the safety of destructors such as Arc’s.
However, adapting cancellable invariants to the relaxed-memory setting turns out to be quite

tricky—tricky enough that no existing relaxed-memory separation logic supports them.1 Even if,
following iGPS and its predecessors, we restrict invariants to govern a single location, a problem
arises in how to model the cancellable invariant tokens. Under SC, one can simply model invariant

1iGPS supports a related notion of “fractional protocol”, but as we explain in §6, it is not nearly as powerful as cancellable
invariants and is thus not general enough to account for resource reclamation in Rust.
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tokens as a form of ghost state, i.e., purely logical state that is manipulated by the proof but does
not appear in the physical program. But in existing relaxed-memory separation logics, ghost state
is unsynchronized, meaning that ownership of it can be transferred between threads without the
need for any physical synchronization. On the one hand (see §3.3), unsynchronized ghost state is
indispensable for representing globally consistent state, such as (in the case of Arc) the number of
Arc aliases currently in existence. On the other hand (see §4.1), if invariant tokens are modeled
naively as unsynchronized ghost state, the logic of cancellable invariants becomes unsound!

Our solution is to instead model invariant tokens using a novel notion of synchronized ghost state:
ghost state that implicitly tracks the subjective view of the thread that owns it, and that therefore can
only be transferred between threads using physical synchronization. Using synchronized ghost
state, iRC11 offers the first general account of resource reclamation in relaxed-memory
separation logic. We demonstrate its effectiveness on a number of real Rust libraries.

Task 2: Re-prove the safety of the λRust type system under relaxed memory. In contrast to RustBelt’s
proofs of safety for libraries, its proof of safety for the λRust type system did not rely directly on
cancellable invariants or any other SC-specific features of Iris-SC. Rather, as mentioned above, the
safety proof for the type system made essential use of a Rust-oriented logic called the lifetime logic,
which was a domain-specific logic derived within Iris-SC. Thus, if we are able to show that the
lifetime logic remains sound under relaxed memory—by instead deriving its soundness in iRC11—
then RBrlx can inherit RustBelt’s safety proof for the λRust type system without modification!

Synchronized ghost state is the key to making this modular porting strategy possible. Specifically,
the lifetime logic is centered around a mechanism called borrow propositions, describing resources
that are borrowed for the duration of a Rust “lifetime” and that can be reclaimed once the lifetime is
over. Borrow propositions are similar in many ways to cancellable invariants, but also more flexible
and more complex in terms of the protocols they support for sharing and reclamation of resources.
Just as synchronized ghost state enables us to adapt cancellable invariants to relaxed memory, it
plays an analogously central role in adapting borrow propositions to relaxed memory as well.

1.2 Contributions
In this paper, we present RBrlx, an adaptation of RustBelt to a relaxed memory model (or RMM),
which (like its predecessor) is mechanized in Coq. The adaptation involves many components
whose full technical explanation is beyond the scope of this paper. Instead, we focus on the key
points of difference between RustBelt and RBrlx, and on the key technical innovations that make
the adaptation feasible, most importantly our development of synchronized ghost state.
In summary, our contributions are as follows:
• We define ORC11, a new operational-semantics-based characterization of a large fragment
of C11, including release/acquire/relaxed/non-atomic accesses and release/acquire fences.2
Developing such an operational semantics for C11 is a necessary prerequisite for instantiating
the Iris framework. Since the C11 model is known to be flawed [Boehm and Demsky 2014],
we instead design ORC11 to match the semantics of RC11 (Repaired C11) [Lahav et al. 2017],
and in the appendix [Dang et al. 2019] we sketch a proof of correspondence between them.

• We develop iRC11, a logic for ORC11 derived within Iris, which combines elements of iGPS
and FSL, and moreover supports resource reclamation via cancellable invariants in a manner
that is sound for relaxed memory. The soundness of iRC11 relies crucially on our novel
construction of synchronized ghost state.

2Caveat: ORC11 omits SC accesses and fences because (1) they are not used by any of the libraries verified in RustBelt,
and (2) it is still an open question how to develop a separation logic for reasoning about SC accesses in a relaxed-memory
setting. See §6 for further details.
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X := 0;Y := 0;

π

1: X :=rlx 42;
2: Y :=rlx 1;

ρ

1: if ∗rlxY != 0 then
2: ∗rlxX ;

// 0 or 42

(a) MP with rlx accesses.

X := 0;Y := 0;

π

1: X :=rlx 42;
2: fencerel;
3: Y :=rlx 1;

ρ

1: if ∗rlxY != 0 then
2: fenceacq;
3: ∗rlxX ;

// 42

(b) MP with rlx accesses and fences.

Fig. 2. Message-Passing example in RMM.

• We use iRC11 to port RustBelt from SC to relaxed memory. In particular, the major com-
ponents that required re-verification were the library proofs (since we are now verifying
implementations with relaxed-memory operations in them) and the proof of soundness of
RustBelt’s lifetime logic. The proof of safety of λRust’s type system, by virtue of being built
atop the lifetime logic, did not need to be changed at all.

The rest of the paper is structured as follows. In §2, we briefly review the basics of relaxed-memory
programming under the C11 memory model, as well as the basic idea (drawn from previous work)
of how one can characterize such a memory model operationally. In §3, we present a representative
fragment of iRC11, focusing on how it supports resource reclamation via cancellable invariants. In
§4, we discuss how to prove soundness of iRC11: we motivate the need for synchronized ghost
state in building a model for iRC11, and describe in some detail how the model works. In §5, we
give further details about ORC11 (§5.1) and iRC11 (§5.2), about verifying and finding a bug in the
Arc library (§5.3), and about porting the lifetime logic (§5.4). In §6, we conclude with a discussion
of related work.

2 BACKGROUND: RELAXED-MEMORY OPERATIONAL SEMANTICS
We briefly review the C11 memory model in §2.1 and ORC11—the operational version of C11 that
we use as the memory model for RBrlx—in §2.2.

2.1 C11, Intuitively
The C11 memory model offers several different modes of memory accesses, including non-atomic
(na), relaxed (rlx), release (rel), acquire (acq), and sequentially consistent (sc). Non-atomic accesses
are “normal” data accesses, meaning that it is the programmer’s responsibility to ensure that they
are properly synchronized through other means. (If they are not properly synchronized—i.e., there
is a data race involving non-atomics—then C11 says the whole program has undefined behavior.)
The remaining modes, collectively called atomic accesses, are allowed to be racy and are indeed
used to establish synchronization among non-atomic accesses.

To explain what synchronization actually means, we explore the examples in Fig. 2. In Example 2a,
we initialize two locations X and Y to 0, then spawn two threads π (on the left) and ρ (on the right).
Thread π intends to pass a “message” to ρ. The message, 42, is stored in X . Thread π then sets the
boolean flag Y to 1, to signal to ρ that the message is ready to be received. Once ρ sees the flag set,
it attempts to read the message from X . However, both the intended value of 42 as well as the initial
value of 0 could be read. That is, even though ρ has read 1 from Y , it is not guaranteed to read 42
from X . This is because the relaxed accesses of Y are not enough to establish synchronization.
In the C11 memory model, threads are not synchronized by default: they each have their own

perspective on the values in shared memory, and thus may observe memory events in different
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RustBelt Meets Relaxed Memory 7

order. However, certain ways of performing accesses, as defined in C11, allow all threads to agree
that one event happens-before another, and to “establish synchronization” is to somehow guarantee
that two memory events of interest will be in the happens-before relation. Relaxed accesses are the
weakest atomic accesses in C11 and do not guarantee happens-before. Thus, in Example 2a, the
relaxed accesses on Y do not establish synchronization between the accesses on X .
In order to synchronize, we complement relaxed accesses with fences.3 In Example 2b, thread

π performs a release fence after the write to X , and then writes to Y . Meanwhile, ρ performs an
acquire fence once it reads 1 from Y . Now, when ρ reads from X the result will be 42.
π successfully passes the message to ρ because C11 guarantees happens-before through chains of

the form “release fence→ relaxed write→ relaxed read→ acquire fence”. That is, synchronization
is guaranteed between the events before the release fence and the events after the acquire fence if
the two fences are connected by the relaxed write and read. As a result, we know that π ’s write of
42 to X happens before ρ’s read of X—or in other words, that ρ’s read of X is synchronized with π ’s
write to it. Since the write of 42 is the most recent write to X , we know that thread ρ must read 42.

Data races. Note that for Example 2a, where we do not have sufficient synchronization between
the accesses to X , the worst thing can happen is that ρ would read unwanted values. However, if
we were to replace the rlx accesses of X with non-atomic accesses (na), it would constitute a data
race and the program would exhibit undefined behavior.

2.2 High-Level Overview of ORC11 (Operational RC11)
ORC11 is the operational version of C11 that we use for RBrlx. Its expression language, closely
following that of λRust [Jung et al. 2018a], is a standard lambda calculus with recursive functions,
fork-based concurrency, and references extended with relaxed consistency access modes:

AccessMode ∋ o ::= na | rlx | acq | rel

Expression ∋ e ::= . . . | rec f (x) := e | fork { e } | alloc(e) | free(e1, e2) |

. . . | ∗oe | e1 :=o e2 | CASof ,or ,ow (e0, e1, e2) | FAAor ,ow (e1, e2) | fenceo | . . .

The syntax includes standard types of memory accesses, including reads, writes, compare-and-
set (CAS), and fetch-and-add (FAA), which atomically increments the contents of a location by a
given integer. All memory accesses and fences are annotated with access modes o. As a shorthand
notation, we use ∗ℓ and ℓ := v for na reads and writes (omitting the o).

alloc(e) allocates a fresh block of memory with size determined by e . free(e1, e2) deallocates a
block of memory starting at e1 with size e2 (we will often elide the size argument for simplicity). C11
only specifies that the lifetime of an object is from its allocation to deallocation, but does not specify
a synchronization condition or possible races between allocation/deallocation and normal accesses.
To fill this gap, we employ the following conditions that are widely thought to be reasonable.

The allocation of a block must happen-before all accesses to it. (Alloc-Safe)
The deallocation of a block must happen-after all accesses to it. (Free-Safe)

We consider violations of these conditions data races and, thus, undefined behavior. To implement
them, we treat the semantics of allocations and deallocations as that of non-atomic writes with
special values.

We follow the reduction semantics of λRust except where interaction with memory is concerned,
where we base the reduction rules on C11. As mentioned in the introduction, we cannot directly use

3We could instead use a pair of release write and acquire read accesses. We use fences for the sake of exposition.
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C11 because (1) its semantics is flawed in several ways, and (2) it is formalized in an axiomatic (event-
graph) style, whereas for the purpose of instantiating Iris, we require an operational semantics
that relates the programs state before and after an execution step. To address (1), we instead target
RC11 [Lahav et al. 2017], which fixes the major flaws in C11. To address (2), we take inspiration
from the approaches of Kaiser et al. [2017] and Kang et al. [2017], developingORC11, an operational
version of RC11. We give some more details about ORC11 in §5.1. In this section, we focus on the
high-level aspects of ORC11 that are relevant for understanding the main body of this paper.
The key concept of the ORC11 semantics is that of views. A thread’s view records the memory

events (reads and writes) that the thread has observed so far—i.e., the events that happen-before the
current step in the thread’s execution. To account for C11’s notion of synchronization, we define a
partial view inclusion order on views: V1 ⊑ V2 holds if and only if all events in V1 are also present
in V2, in which case we sometimes say that V2 has “seen” all the events in V1. Correspondingly,
views also come with a join operator ⊔ that performs the role of synchronizing with another view:
V1 ⊔V2 corresponds to the union of events in V1 and V2. When a thread updates its view from V1 to
V1 ⊔V2, we will say that the thread is synchronizing with V2.

Every thread π actually maintains three views, which together form the thread-local view V:
(1) the current view V .cur contains all the events that π has observed,
(2) the release view V .rel contains events that π had observed at its last release fence, and
(3) the acquire view V .acq contains events that π will have observed by its next acquire fence.

Since a thread’s views only grow over time, it is always the case that V .rel ⊑ V .cur ⊑ V .acq.
The global state consists of two parts (M,VRace). First,M is themessage pool that tracks all write

events for all locations. It is modeled as a finite partial function from locations and timestamps to
messages. Timestamps are used to encode a location’s modification order (“mo”)—a C11 relation
that totally orders all writes to a single location. (The details of timestamps are largely inherited
from Kaiser et al. [2017] and Kang et al. [2017]—for most of the paper, we will keep the discussion
at the more abstract level of views and view inclusion.) Messages are records that contain (1) the
valuem.(val) written, and (2) a viewm.(view) called the message view. The message view is used
to communicate the observations from one thread’s write to another thread’s read, establishing
synchronization (see below). The second component of the global state, VRace, is called the race
detector view, because (unsurprisingly) it gets used by ORC11’s race detector, as we describe in
§5.1.

ORC11 is defined with a standard threadpool step relation, lifted from a per-thread step relation
(M,VRace) | (e,V) −→ (M ′,V ′

Race) | (e ′,V ′), where the scheduled thread π is executing its
expression e with its thread-local view V and the shared global state (M,VRace).

We refer the reader to our appendix and Coq development [Dang et al. 2019] for the full seman-
tics. Below, we give a high-level description for the semantics of the atomic operations used in
Example 2b.
Step-Rlx-Write A relaxed write adds a messagem, whose message view is the thread’s release

viewV .rel extended by the write itself, to the message poolM. Only the current
viewV .cur and acquire viewV .acq, but not V .rel, are updated to include the
relaxed write event itself.

Step-Rel-Fence A release fence joins the thread’s current view V .cur into its release view V .rel.
Step-Rlx-Read A relaxed read that reads the write encoded bym will join the message view

m.(view) into the thread’s acquire view V .acq.
Step-Acq-Fence An acquire fence joins the acquire view V .acq into the current view V .cur.

In Example 2b, in line π1, the relaxed write of 42 to X is recorded in π ’s current view, but not its
release view. In line π2, the release fence synchronizes π ’s release view with its current view. In
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line π3, the relaxed write to Y creates a messagem with π ’s release view—including the write of 42
to X . In line ρ1, if reading 1, the relaxed read joinsm.(view) into ρ’s acquire view. In line ρ2, the
acquire fence joins ρ’s acquire view into its current view, which now includes the write of 42 to X .
In line ρ3, the relaxed read selects a message to read from that is no older than ρ’s most recent
observed write to X . With ρ having observed π ’s write of 42 to X , it must then read 42. In this way,
the ORC11 view semantics implements the release/acquire synchronization chain described above.

3 RESOURCE RECLAMATION UNDER RELAXED MEMORYWITH IRC11
iRC11 is a relaxed-memory separation logic for ORC11. Following iGPS [Kaiser et al. 2017], ORC11
is an instantiation of the Iris framework [Jung et al. 2018b]. Its soundness is derived within Iris, and it
inherits its features both from the general Iris framework and from previous RMM logics. We begin
in §3.1 by reviewing a small but representative set of features of iRC11 that come from previous
RMM logics. In §3.2, we present the most notable novelty of iRC11: cancellable single-location
invariants. In §3.3, we review the verification of the core of the Arc data type to demonstrate a
crucially powerful property of the primitive ghost state assertions in RMM logics, namely that
they are unsynchronized. (As explained in §1.1, we will need to develop a new form of synchronized
ghost state when we model cancellation in §4.)

3.1 iRC11: The Old
Here, we review several core features of iRC11 that are inherited from prior RMM logics, including
single-location invariants, fence modalities, and user-defined ghost state. A selection of rules
concerning these features is displayed in Fig. 3. For now, please ignore all shaded parts, as these
are new iRC11 additions pertaining to cancellable invariants, and we will discuss them in §3.2.
More specifically, please ignore any parts concerning τ , as well as the two rules iRC11-CInv-Tok
and iRC11-CInv-Cancel.4

Hoare triples and fancy updates. In these rules, we write {P } e @ π {v .Q} for Hoare triples with
pre-condition P , expression e , thread id π (sometimes omitted), and post-condition Q where Q may
mentionv , i.e., the result of evaluating e . The thread id π is needed for fence modality assertions, as
we explain below. A number of proof rules also make use of Iris’s fancy updates, written P Q .
Fancy updates are essentially a more flexible form of logical implication that also includes the
ability to update ghost state—e.g., see Count-Ghost-Update in §3.3—among other things.

Assertions as view predicates. First of all, assertions in RMM logics, iRC11 included, need to
represent not just ownership of some resources, but ownership of some resources with respect to

the local perspective of the thread owning those resources. Assertions thus become predicates
not only on resources but also on views. The reason for this may be illustrated by the points-to
assertion of separation logic. If a thread owns ℓ 7→ v , it should be guaranteed (among other things)
that a read from ℓ will return v . In RMM, ownership of ℓ 7→ v must therefore say something about
the current local view V of the thread asserting it: V should contain the latest write to ℓ, and it
should have value v . Otherwise, reading from ℓ could yield an older value and thus render at least
one guarantee of the points-to assertion invalid.

The assertions in Fig. 3 are thus to be interpreted at some view. In the case of Hoare triples and
assertions owned by a thread, the view used to interpret them is, by default, the thread’s current
4Note: Throughout this paper, to simplify the presentation, we elide certain “administrative” details of proof rules concerning
invariant namespaces and the “later” (▷) modality. Invariant namespaces are present to ensure that we do not attempt to
access invariants twice in a nested fashion. The ▷ modality is necessary to ensure soundness in the presence of impredicative
invariants. We elide these details because they are completely standard in Iris developments, and do not interact interestingly
with the RMM features. We refer the reader to Jung et al. [2018b] for details.
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NA-Write
{ℓ 7→ −} ℓ :=na v {ℓ 7→ v}

NA-Read
{ℓ 7→ v} ∗naℓ {v . ℓ 7→ v}

Dealloc
{ℓ 7→ −} free(ℓ) {True}

Rel-fence
{P } fencerel @ π {∆π P }

Acq-fence
{∇π P } fenceacq @ π {P }

Ghost-Mod
a

γ
⇔ ∆π a

γ
⇔ ∇π a

γ

iRC11-CInv-New
ℓ 7→ v ∗ I(v) ∃τ . [τ ]1 ∗ τ ℓ I

iRC11-CInv-FAA-Rlx
∀v . P ∗ I(v) I(v + n) ∗Q(v)

τ ℓ I ⊢ { [τ ]q ∗ ∆π P } FAArlx(ℓ,n) @ π {v . [τ ]q ∗ ∇π Q(v)}

iRC11-CInv-Tok
[τ ]q+q′ ⇔ [τ ]q ∗ [τ ]q′

iRC11-CInv-Cancel
τ ℓ I ⊢ [τ ]1 ∃v . ℓ 7→ v ∗ I(v)

Fig. 3. Selected iRC11 rules (new additions for cancellable invariants are shaded ). Note that fractions are

always assumed to be well-formed, i.e., q ∈ (0, 1].

view. The view picked to interpret assertions, however, is not always necessarily some thread’s
current view. To allow transferring resources through writes, we also want to attach resources
to write messages. In that case, the resources attached to a messagem will be interpreted at the
message viewm.(view). Furthermore, as explained in §2.2, we have the fine-grained notion of a
thread’s local view V with its current view V .cur, release view V .rel, and acquire view V .acq.
This leads to more choices (and more obligations) in picking which view to use when interpreting
an assertion. As we will see below, the release and acquire views come into play when interpreting
assertions concerning relaxed accesses and fences.

Points-to assertions. A familiar feature in separation logics is the points-to assertion. In iRC11, the
points-to assertion ℓ 7→ v represents the full ownership of the location ℓ as well as the knowledge
that ℓ has the current value v . The assertion ℓ 7→ − simply ignores this knowledge about the value:
ℓ 7→ − ::= ∃v . ℓ 7→ v . With full ownership, one can perform any operation on ℓ, including non-
atomic operations (NA-Write, NA-Read), atomic operations, and deallocation (Dealloc). Following
prior RMM logics, iRC11 also supports fractional points-to assertions (not shown here) so that the
permission to non-atomically read a location can be split up between concurrent threads.
Consider a variant of the Message-Passing example in Fig. 4a. Here, after allocation, we can

initialize two locations X and Y to 0 with NA-Write because we own their points-to assertions.
After spawning two threads, since we give thread π1 (on the left) the points-to X 7→ 0, it can write
non-atomically to X again with NA-Write. In thread π2 (on the right), if somehow after the acquire
fence we receive the “message” X 7→ − from thread π1, then we can use Dealloc to free X . To
complete the proof of this example, we need single-location invariants for Y .

Single-location invariants. All RMM logics have a notion of single-location invariants. This feature
comes from the observation that, although general invariants are unsound in RMM because threads
may have different views on a region of multiple locations, invariants that only govern a single
location are sound because threads do agree on the order of writes to any single location. Prior
RMM logics support a range of somewhat different single-location invariant mechanisms, including
some that let the user establish “protocols” on how a location’s value can evolve over time. iRC11
inherits such a protocol mechanism from iGPS, but for the purpose of this paper we focus on a
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{X 7→ − ∗ Y 7→ −}X := 0;Y := 0;
{X 7→ 0 ∗ Y 7→ 0}

{
X 7→ 0 ∗ Y IY

}{
X 7→ 0 ∗ Y IY

}
X := 42;
{X 7→ 42}
fencerel; @ π1{
∆π1 X 7→ 42

}
FAArlx(Y , 1); {True}

{
Y IY

}
if FAArlx(Y , 2) == 1{

∇π2 X 7→ 42
}

fenceacq; @ π2
{X 7→ −}

free(X ); {True}

(a) With basic invariants.

{X 7→ − ∗ Y 7→ −}X := 0;Y := 0;
{X 7→ 0 ∗ Y 7→ 0}

{
[τ ]1 ∗

τ X ⊤ ∗ Y IY
}{

[τ ]1/2 ∗
τ X ⊤ ∗ Y IY

}
FAArlx(X , 42);{
[τ ]1/2

}
fencerel; @ π1{
∆π1 [τ ]1/2

}
FAArlx(Y , 1); {True}

{
[τ ]1/2 ∗

τ X ⊤ ∗ Y IY
}

if FAArlx(Y , 2) == 1{
[τ ]1/2 ∗ ∇π2 [τ ]1/2

}
fenceacq; @ π2
{[τ ]1}{X 7→ −}

free(X ); {True}

(b) With cancellable invariants.

Fig. 4. iRC11 demonstrated with Message-Passing example verifications.

simplified version that ignores the extra functionality of protocols, as that is orthogonal to the
issue of resource reclamation.
The invariant assertion ℓ I asserts the knowledge that an invariant I governs ℓ. As an

invariant represents knowledge, not exclusive ownership, it is a duplicable assertion that can be
passed on to multiple concurrent threads. With iRC11-CInv-New we can initialize an invariant
for ℓ if we have the full ownership ℓ 7→ v and the resource I(v). The predicate I, also called
the interpretation, is a user-defined predicate on values: I(v) describes the invariant over shared
resources that must hold in order for ℓ to have the value v . I(v) is a requirement that every write
of value v to ℓ must provide. Intuitively, the resource I(v) is attached to the messagem created
by the write of v to ℓ. When a read of value v from ℓ finds the messagem, it can use I(v) for its
reasoning. As such, the interpretation encodes resources to be transferred from writes to reads.
This is demonstrated in the premise of the fetch-and-add (FAA) access rule iRC11-CInv-FAA-Rlx

for an invariant ℓ I . A FAA is a read-modify-write (RMW) operation that has the atomic effect of
both a read and a write. (Note that we are focusing on FAA here, rather than plain relaxed writes
and reads, merely because the proof rules for FAA are a bit simpler and they suffice for the purpose
of our story in this paper. In iRC11, we of course also support rules for reads, writes, and CAS.) As
the FAA is a write, we must establish the interpretation I(v + n) for the value v + n that the FAA is
going to write. But we can also use the interpretation I(v) for the valuev that the FAA read and our
local resource P to establish I(v + n). If there is any remaining resource Q(v), we can take it out
as our local resource afterwards. This is the standard way in RMM logics to model the ownership
transfer that is achievable with RMW operations like FAA.
In Fig. 4a, we want to transfer X 7→ − through the communication from thread 1’s FAA to

thread π2 s FAA on Y . To do so, we set up an invariant IY for Y :

IY (v) ::= v ≥ 0 ∧ ifv = 1 thenX 7→ − else True

That is, the invariant owns X 7→ − if the value of Y is currently 1. With Y 7→ 0, we can initialize
the invariant for Y with iRC11-CInv-New where IY (0) is trivial. We then pass knowledge of the
invariant Y IY to both threads. When thread π1 writes 1 (FAA from 0 to 1) to Y , it uses iRC11-
CInv-FAA-Rlx with P ::= X 7→ − to transfer the ownership of X into I(1) (and with Q ::= True to
take nothing out). When thread π2 reads 1 (FAA from 1 to 3) from thread π1’s write, it also uses
iRC11-CInv-FAA-Rlx with Q ::= X 7→ − to take the ownership out of IY (1) (and with P ::= True

because it does not need anything to establish the trivial IY (3)). The transfer, however, is not
completed yet, because there are caveats in using the rlx access mode, which we explain next.
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Fence modalities. To model the effects of relaxed accesses and fences, iRC11 inherits two modal-
ities from FSL [Doko and Vafeiadis 2016, 2017]—the release modality ∆ and the acquire modal-
ity ∇—which allow us to talk about ownership of resources at a thread’s release or acquire views.
The assertion ∆π P represents ownership of P at thread π ’s release view, while the assertion ∇π P
represents ownership of P at thread π ’s acquire view.

The motivation for these modalities as follows. We have some resource described by the proposi-
tion P that we want to transfer from one thread to another through a pair of a relaxed write and a
relaxed read (or in our example, a pair of relaxed FAA’s), communicating through a single-location
invariant (in our example, IY ). However, when the “producer” thread π1 performs its relaxed write,
the message view of that write is drawn from π1’s release view, not its current view. Hence, we
need a way of insisting (in the precondition of the relaxed write) that the P that π1 is sending holds
under its release view—that is what is denoted by ∆π1 P . Dually, when the “consumer” thread π2
performs its relaxed read, the message view it reads will only be joined into its acquire view, not its
current view. Hence, we need a way of insisting (in the postcondition of the relaxed read) that π2
only receives ownership of P under its acquire view—that is what is denoted by ∇π2 P . Since FAA
combines a read and a write, the FAA rule (iRC11-CInv-FAA-Rlx) combines both of these reasoning
principles into one.

Of course, we now need a way of actually introducing ∆π1 P and eliminating ∇π2 P . These steps
are achieved by rules Rel-fence and Acq-fence, which allow one to transfer any proposition into

the release modality at the point of a rel fence, or out of the acquire modality at the point of an acq
fence, because those are the points where the current and release/acquire views get synchronized.

In Fig. 4a, because we are using relaxed FAA’s, we have to provide ∆π1 X 7→ − in thread π1, and we
receive ∇π2 X 7→ − in thread π2. In thread π1, with a release fence, we use Rel-fence to put X 7→ −

under the release modality and then perform the FAA. In thread π2, with an acquire fence, we use
Acq-fence to regain X 7→ −. Then the transfer is completed and thread π2 can safely deallocate X .

3.2 iRC11: The New – Cancellable Invariants
The problem with standard single-location invariants from previous logics is that they cannot
be reclaimed. Consider the example in Fig. 4b, which is identical to Fig. 4a except that X is used
atomically instead of non-atomically. To use X atomically, we need to govern it with invariants.
But in prior logics, any invariant placed on X would govern it forever, making it non-reclaimable.
One key novelty of iRC11 is the ability to cancel its single-location invariants, so that atomic

locations can be reclaimed fully. To make single-location invariants cancellable, iRC11 takes a page
from Iris-SC cancellable invariants (Fig. 1) where the invariant is guarded by a token τ (see the
shaded part in Fig. 3). As seen in iRC11-CInv-FAA-Rlx, only those who own a fraction [τ ]q of τ
can access the invariant. Similar to SC cancellable invariants, the ownership [τ ]q guarantees that
the invariant τ ℓ I has not been cancelled and is still accessible.

After initializing the invariant with iRC11-CInv-New, we obtain the full token [τ ]1 which can be
split and rejoined with iRC11-CInv-Tok so that multiple threads can access the invariant concurrently.
Once all threads are done using the location through the invariant, the thread π owning the full
token [τ ]1 can cancel the invariant with the rule iRC11-CInv-Cancel. The thread π then reclaims
the points-to ℓ 7→ v for some value v , which guarantees that π has synchronized with all other
accesses to ℓ, and thus π can safely deallocate ℓ or use ℓ non-atomically. The thread also reclaims
I(v), the interpretation at the last write before the cancellation. I(v) can be useful, for example,
when ℓ is a lock andv is the “unlocked” state. In that case, the lock-protected content is still in I(v)
and we can reclaim it. This feature is thus important in verifying locks, of which Rust’s Mutex<T>
library is an example.
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To verify Fig. 4b, we create a cancellable invariant forX , guarded by τ , with a trivial interpretation
IX ::= True (written ⊤ in the proof outline) because we only want to access X concurrently,
not to transfer any resource through it. We still use a non-cancellable invariant for Y since we
do not care about reclaiming Y here. But we do use a slightly different interpretation for Y :
IY (v) ::= v ≥ 0 ∧ ifv = 1 then [τ ]1/2 else True. Here, instead of transferring X 7→ − (which
allows non-atomic accesses to X ) through the invariant of Y , we transfer [τ ]1/2 (which allows
atomic accesses to X ). We use the invariant IY only to transfer half of the token ([τ ]1/2) from
thread π1 to thread π2, because we also want to give the other half to thread π2 (when spawning
π2) so that it can access X concurrently with thread π1 (not shown in the example). After the
acquire fence, thread π2 will then regain the full token [τ ]1 (instead of X 7→ −); then it can use
iRC11-CInv-Cancel to cancel the invariant and reclaim X 7→ −, after which it can safely free X .

3.3 User-Defined Ghost State in Relaxed Memory
We turn our attention now to an essential feature of the more recent RMM logics—user-defined
ghost state—which iRC11 inherits directly from Iris. Ghost state is logical state that is used to
track additional information in the verification, but is not part of physical state. In Iris, the user
of the framework is free to define the particular structure of ghost state—in the form of a partial
commutative monoid (PCM)—that is appropriate for their proof. More specifically, the user can
define their own PCM M and Iris will give them a new class of ghost assertions of the form a

γ ,
which asserts the ownership of some ghost element a (a member ofM) stored at a ghost location γ .
Iris also provides a few basic proof rules for reasoning about these ghost assertions, with which the
user can derive a “ghost theory” (a logical API) applicable to their PCM [Jung et al. 2018b].

User-defined ghost state is useful in deriving domain-specific logics. For example, the points-to
assertions, single-location invariants, and fence modalities are all derived by iRC11 in Iris, each
with the help of a specialized PCM. Furthermore, iRC11 also exposes this facility to its users, so
that they can employ it for their own verifications of RMM algorithms. And, indeed, ghost state has
proven indispensable for verifying intricate concurrent data structures in both traditional SC and
RMM separation logics. In the setting of RMM, however, ghost state enjoys an additional property
that is encoded in the Ghost-Mod rule (Fig. 3).

Ghost-Mod states that the ghost assertion a
γ can move freely in and out of the fence modalities.

This is because ghost state belongs to the class of unsynchronized assertions, in the sense that
their ownership is not tied to the physical, subjective view of the thread asserting them. Recall that
∆π P and ∇π P assert that P holds at π ’s release view and acquire view, respectively. Since a

γ is
unsynchronized and thus does not care at which view it is interpreted, it is equivalent to ∆π a

γ or
∇π a

γ . As a result, a γ can be transferred from one thread to another without the need for physical
synchronization—in particular, without the need for release/acquire fences. (For more details, please
see the model of fence modalities and unsynchronized ghost state in §5.2.)
To help the reader appreciate the importance of Ghost-Mod, we now quickly review the verifi-

cation of Core Arc, a simplified version of Rust’s Arc library. (See §5.3 for more details about our
verification of the full Arc.) Core Arc has been verified previously in FSL++ [Doko and Vafeiadis
2017], but their proof did not account for the reclamation of Arc’s reference count field. In RBrlx,
we improve on their proof by fully verifying Arc’s destructor using iRC11 cancellable invariants.

3.3.1 Core Arc Library. Arc<T>, short for Atomically Reference Counted, is used to share atomically
an object of type T, whose mutation is disabled by default. To mutate T, one needs T to support
thread-safe mutability, for example with T being an atomic type, or with T wrapped inside a lock
(e.g., Mutex<T>). The following Rust example instantiates Arc with an atomic integer AtomicUsize
and demonstrates how Arc is typically used:
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new(v) := let a = alloc(2) in

a.counter := 1;
a.data := v;
a

deref(a) := ∗naa.data

drop(a) := if FAArel(a.counter,−1) == 1
fenceacq;
free(a, 2)

clone(a) := FAArlx(a.counter, 1);
a

Fig. 5. Implementation of Core Arc.

1 let arc1 = Arc::new(AtomicUsize ::new (5)); // create the first Arc pointer

2 let arc2 = Arc::clone(&arc1); // clone for the second pointer

3 thread :: spawn(move || { // give arc2 to child thread

4 println !("child: {:?}", arc2.fetch_add(1, Ordering :: Relaxed )); // drop(arc2);

5 });

6 println !("main: {:?}", arc1.fetch_add(2, Ordering :: Relaxed )); // drop(arc1);

In line 1 in the main thread, a new Arc pointer arc1 is created to govern an atomic integer
allocated in shared memory, and arc1’s internal counter field for the number of references to
the content is set to 1. An Arc pointer acts almost like its underlying content, so in line 6 we
can call fetch_add on arc1 as if on the atomic integer itself. To share the content with the child
thread, we create another arc2 by clone-ing arc1 (line 2), which has the effect of incrementing
the counter field to 2: there are now 2 Arc objects sharing the atomic integer. Unsurprisingly, to
allow concurrent clone-ing, the counter field is itself implemented with an atomic integer, too.

When the Arc pointers go out of scope (after lines 4 and 6), their destructor—the dropmethod—is
called, and the counter field is decremented accordingly. The last call of drop will deallocate both
the data and counter fields.
The implementation of Core Arc is given in Fig. 5. The new method allocates a region of two

locations for the counter and data fields, then initializes them. The deref method provides access
to the data field, effectively allowing an Arc<T> to behave like its content T. The clone method
does a rlx FAA by 1 to increment counter and then returns a copy of a.
Finally, the drop method does a rel FAA by −1 to decrement counter. If the value of counter

was 1 before the decrement—i.e., this is the last drop—drop additionally does an acquire (acq) fence
before deallocating both the counter and data fields. With that acquire fence, the deallocation of
the region a in the last drop is guaranteed to be synchronized with all previous calls to drop. This,
in turn, guarantees that the deallocation is synchronized with all concurrent accesses by other
pointers to the region a—i.e., there is no data race between the deallocation and the accesses.

3.3.2 Core Arc’s Invariant. Core Arc has the following simple specification:

{True} new(v) {a. ∃ τ ,γ .ARCγ (a,v, τ ,I)} (ARC-New)
{ARC

γ (a,v, τ ,I)} clone(a) {ARCγ (a,v, τ ,I) ∗ ARCγ (a,v, τ ,I)} (ARC-Clone)
{ARC

γ (a,v, τ ,I)} deref(a) {x . x = v ∗ ARCγ (a,v, τ ,I)} (ARC-Deref)
{ARC

γ (a,v, τ ,I)} drop(a) {True} (ARC-Drop)

Here, ARC is an abstract predicate that represents the logical ownership of an Arc object and
gives one permission to invoke methods on the Arc object a, and I is a single-location invariant
governing the shared location a.counter, which enables threads to access a.counter atomically.
The two main challenges of the verification are (1) cloning the ARC permission (in ARC-Clone) even
though clone only uses a relaxed FAA and (2) safely deallocating the region at the last invocation
of drop (ARC-Drop).
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The definitions of ARC and I are given as follows. We explain them piecemeal below, beginning
with the unshaded parts, which are essentially the same as in the proof of Doko and Vafeiadis
[2017].

ARC
γ (a,v, τ ,I) ::= ∃q. a.data

q
7−→ v ∗ [τ ]q ∗ τ a.counter Iγ ,v ∗ Count(q)

γ (ARC-Own)

Iγ ,v (n) ::=


False n < 0

TotalCount(0, 0) γ
n = 0

∃qin,qout ∈ (0, 1). a.data
qin
7−−→ v ∗ [τ ]qin

∗ qin + qout = 1 ∗ TotalCount(n,qout)
γ n > 0

(ARC-Inv)

Each ARC permission has several components. First, it has a fractional points-to assertion for
a.data. This fractional assertion is essential for verifying ARC-Deref, since the derefmethod relies
on the ARC permission to justify a non-atomic read of a.data. In the verification of ARC-Clone,

this fractional permission is split into two half permissions (a.data
q/2
7−−→ v), which are then used

to satisfy the two ARC predicates in the postcondition. Second, ARC stipulates the knowledge
that a.counter is governed by the single-location invariant I. This invariant, in turn, owns the
remainder of a.data: the fraction of a.data—namely, qin—that is not owned by any ARC. Third,
ARC owns a ghost element Count(q)

γ . We now explain in detail what purpose this ghost element
serves, and how it interacts with the invariant I.

3.3.3 Unsynchronized Ghost State for Core Arc. The invariant I needs to maintain that the total
number of ARC permissions currently in existence is equal to the current physical value n of
a.counter. It does so using a “ghost theory” of counting permissions [Bornat et al. 2005]. This
ghost theory involves two ghost assertions:

• the single count assertion, Count(q) γ , which represents the contribution of a single ARC
predicate to the total number of ARC permissions currently in existence, as well as the fact
that that ARC predicate owns a q fraction of a.data, and

• the total count assertion, TotalCount(n,qout)
γ , which stipulates that currently there are n

ARC permissions in existence, and that the sum of all their fractions of a.data equals qout.
The invariant I then enforces that the n in TotalCount(n,qout)

γ matches the current physical
value of a.counter, and that the remainder fraction (qin) of a.data owned by I is precisely 1−qout.

Formally, these ghost assertions are built from Iris’sAuth PCM [Jung et al. 2018b]: Count(q) γ ::=
◦ (1,q) γ and TotalCount(n,q)

γ ::= • (n,q)
γ . The details of this construction are not important

for the present discussion; the important point is that it establishes the soundness of various rules
for manipulating these assertions, such as the following ghost update rule:

TotalCount(n,qout)
γ
∗ Count(q)

γ
TotalCount(n + 1,qout)

γ
∗ (Count-Ghost-Update)

Count(q/2) γ
∗ Count(q/2) γ

This rule allows us to split a single count into two by increasing the total count by 1, without
changing the total fraction qout. It is needed in the proof of clone: there, we need to produce
two single counts Count(q/2) γ , for the two new ARC permissions, from the one single count
Count(q)

γ of the original ARC permission, and this requires accessing the TotalCount predicate
in I and applying Count-Ghost-Update.
However, there is a problem. Since clone uses a relaxed FAA, we will be using rule iRC11-CInv-

FAA-Rlx to access the invariant I, but if we instantiate that rule with P ::= Count(q)
γ and
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Q ::= Count(q/2) γ
∗ Count(q/2) γ , what we obtain is:

{∆π ( Count(q)
γ
)} FAArlx(a.counter, 1) @ π {∇π ( Count(q/2) γ

∗ Count(q/2) γ
)}

But what we really need is:

{ Count(q)
γ
} FAArlx(a.counter, 1) @ π { Count(q/2) γ

∗ Count(q/2) γ
}

This is where Ghost-Mod saves the day! We can immediately derive the latter Hoare triple from
the former from the fact that both the pre and post are unsynchronized ghost state assertions.

In general, unsynchronized ghost state is useful for encoding objective, view-agnostic information
about globally consistent properties of a data structure, such as (in the case of Arc) the total number
of Arc permissions currently in existence. Fully relaxed (rlx) accesses suffice to update such view-
agnostic state consistently, and the Ghost-Mod rule lets us exploit that. We hasten to add that this
is not a novel observation—as Doko and Vafeiadis [2017] have already noted: “The most important
feature of ghost state from the perspective of the verification of Arc is [the] ability to transfer
ownership of ghosts without the need for synchronization. This is achieved by having the ghost
state be agnostic with respect to the ∆ and ∇ modalities.”

3.3.4 Core Arc Fully Reclaimed. The FSL++ verification of Core Arc can only reclaim the data field,
but not the counter field. In the proof of the last drop, Doko and Vafeiadis [2017] can only reclaim
a.data 7→ −, because a.counter is governed by a permanent invariant. Using iRC11 cancellable
invariants, however, we can verify what Rust’s Arc really does, which is to reclaim both fields.
Specifically, we create a cancellable invariant for a.counter, guarded by τ , and then treat [τ ]q

analogously to a.data
q
7−→ v: wherever we use a.data

q
7−→ v to represent shared ownership of

a.data, we mirror that with the use of [τ ]q for the exact same q to represent shared ownership of
a.counter. This proof extension is shaded in the definition of ARC (ARC-Own) and I (ARC-Inv).
Therefore, when the last drop regains the full ownership of a.data 7→ −, it also regains the full
token [τ ]1, enough to invoke iRC11-CInv-Cancel and reclaim ownership of a.counter 7→ −. The
whole region can then be safely deallocated. This example demonstrates that the changes needed for
adapting uses of ordinary invariants to uses of cancellable invariants are modular and manageable.

4 MODELING CANCELLABLE INVARIANTS WITH SYNCHRONIZED GHOST STATE
In the previous section, we saw how iRC11’s support for both cancellable invariants and user-
defined ghost state played a crucial role in verifying data structures like Rust’s Arc. As it turns out,
ghost state also plays an important role in building a model for cancellable invariants—in particular,
in defining the semantics of invariant tokens. However, in the relaxed-memory setting, it is unsound
to model invariant tokens using the unsynchronized ghost state we have seen so far. In this section,
we show how to soundly model iRC11 cancellable invariants instead using a novel construction of
synchronized ghost state.

4.1 Deriving Unsoundness in a Naive Model with Unsynchronized Ghost State
Let us begin by showing why a naive model of iRC11’s cancellable invariant tokens using unsyn-
chronized ghost state cannot possibly work.
Suppose that it did—that is, suppose that invariant tokens were modeled purely as some form

of unsynchronized ghost state assertion. If that were possible, it would mean that, according to
Ghost-Mod, token assertions would be agnostic to the fence modalities: [τ ]q ⇔ ∆π [τ ]q ⇔ ∇π [τ ]q .
We will show that this in turn would enable us to spuriously verify the example given in Fig. 6.
This example is exactly the same as Fig. 4b, except that there are no fences, and thus there is no
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{X 7→ − ∗ Y 7→ −}X := 0;Y := 0; {X 7→ 0 ∗ Y 7→ 0}
{
[τ ]1 ∗

τ X True ∗ Y IY
}{

[τ ]1/2 ∗
τ X True ∗ Y IY

}
FAArlx(X , 42);{
[τ ]1/2

} {
∆π1 [τ ]1/2

}
Unsound!

FAArlx(Y , 1); {True}

{
[τ ]1/2 ∗

τ X True ∗ Y IY
}

if FAArlx(Y , 2) == 1{
[τ ]1/2 ∗ ∇π2 [τ ]1/2

}
{[τ ]1}Unsound!

{X 7→ −}free(X ); {True}

Fig. 6. Buggy example verified where [τ ]q is modeled with unsynchronized ghost state.

Raw-CInv-New
I ∃τ . [τ ]1 ∗

τ I
Raw-CInv-Tok
[τ ]q+q′ ⇔ [τ ]q ∗ [τ ]q′

Raw-CInv-Acc
∀Vi . {⌊I⌋⊔Vi ∗ P } e @ π {v . ⌊I⌋⊔Vi ∗Q} atomic(e)

τ I ⊢ {[τ ]q ∗ P } e @ π {v . [τ ]q ∗Q}

Raw-CInv-Cancel
τ I ⊢ [τ ]1 I

Fig. 7. Selected rules for RMM-sound raw cancellable invariants.

synchronization between thread 2’s deallocation of X and the FAA on X performed by thread 1. As
a violation of Free-Safe (see §2.2), this constitutes a data race and thus undefined behavior.

To spuriously verify this example, we use the exact same proof as Fig. 4b, except that instead of
using the fence rules, we simply use Ghost-Mod to move the token [τ ]q across the fence modalities.
Note that this proof step is only possible because we assume the tokens are modeled with unsynchronized

ghost state. Then, when thread 2 regains the full token [τ ]1, it uses iRC11-CInv-Cancel to obtain
X 7→ −. This, in turn, licenses the subsequent racy deallocation of X .

As we can see from this scenario, any model for cancellable invariant tokens based purely on
unsynchronized ghost state violates a key safety guarantee:

An invariant’s cancellation must happen-after all accesses to it. (Cancel-Safe)

4.2 Raw Cancellable Invariants
It is obvious that the invariant tokens need to be made view-dependent, so that Ghost-Mod does not
apply to them and the example in Fig. 6 is not verifiable. It is less obvious, though, what a sound
model of invariant tokens (guaranteeing Cancel-Safe) should look like.

Before we can answer that question, it is helpful to first simplify the problem. In this subsection,
we present an important intermediate mechanismwe call raw cancellable invariants. Raw cancellable
invariants are sound for RMM but support a much simpler set of proof rules than iRC11 cancellable
invariants do. In §4.3, we will then show how to construct a model of raw invariant tokens using
synchronized ghost state. Finally, in §4.4, we will use raw cancellable invariants as the key stepping
stone for building a model for the single-location cancellable invariants of iRC11.
Selected rules of raw cancellable invariants are given in Fig. 7. Like the previous forms of

cancellable invariants we have seen, a raw cancellable invariant τ I describes an invariant protected
by an invariant token τ . However, the rules for raw cancellable invariants are much closer to those
for Iris-SC’s cancellable invariants than iRC11’s. In particular, raw cancellable invariants are general
invariants that are not restricted to a single location: they can contain arbitrary resources, and yet
they are still sound in RMM. The invariant can be created with Raw-CInv-New if we can provide
the initial invariant content I , and can be cancelled with Raw-CInv-Cancel if we have the full token
[τ ]1, after which we reclaim ownership of the content I . These rules are exactly the same as those
of SC-sound cancellable invariants (Fig. 1).
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The only rule that differs from Iris-SC’s cancellable invariants is the access rule Raw-CInv-Acc.
Recall that the access rule allows any thread to access and update the invariant content I during
a single, atomic physical step (thus the side-condition atomic(e)).5 The rule for accessing raw
invariants is, however, significantly weakened from its SC counterpart (SC-CInv-Acc)—this is in
order to keep raw invariants sound in RMM. Recall that in iRC11, assertions are to be thought of
as view predicates. If the SC access rule SC-CInv-Acc were sound for raw cancellable invariants, it
would mean that at any instant a thread π could assume that the shared resource backing up the
invariant satisfied I at π ’s local view Vπ , and it could also update the resource to one satisfying I at
Vπ . But clearly, since in RMM different threads have different views of memory, such reasoning is
unsound. (It is only sound under SC because under SC all threads share the same view of memory.)
Since the content view Vi—i.e., the view at which I is justified—can be constantly changed by

different threads accessing the invariant, there is in general no relationship between threads’ current
local views and the content view Vi . Therefore, the access rule Raw-CInv-Acc cannot equate the
view at which the content is provided with the current local view of the thread. The rule can only
provide I protected by a new modality we call the view-join modality. To explain this modality, we
must first review some basics of how assertions are modeled in iRC11.

Basics of modeling iRC11 assertions. To understand the model J·K of iRC11 assertions in Iris, recall
that J·K is of type vProp → View → iProp, where vProp is the type of iRC11 assertions and iProp is
the type of Iris assertions. The model J·K interprets iRC11 assertions as view predicates in Iris, i.e.,
for P ∈ vProp, JPK ∈ View → iProp.
Furthermore, it is crucial that these predicates be view-monotone, i.e., that iRC11 assertions

remain valid when the thread witnesses additional memory events. Formally, monotonicity means
that ifV1 ⊑ V2, then JPK(V1) implies JPK(V2). This requirement stems from separation logic’s “frame
rule”. Intuitively, a thread owning (X 7→ v) ∗ P must be able to frame P around accesses to X—i.e.,
retaining ownership of P throughout—even though such accesses will grow the thread’s local view.
For this, the validity of P must be monotone in the thread’s local view and, in general, be monotone
with respect to any view.

In the following, we use blue font-face to distinguish Iris assertions against iRC11 assertions,
which are in black font-face.

View-join modality. If P ∈ vProp and Vb ∈ View, then the semantics of the view-join modality

⌊P⌋⊔Vb is defined by J⌊P⌋⊔Vb K(V ) ::= JPK(V ⊔ Vb ), which means that P holds at the join of the
thread’s current view V and Vb .
The rule Raw-CInv-Acc uses this view-join modality to restore soundness of the access rule

under RMM. Notice that the appearances of the invariant content I in the premise occur under the
view-join modality ⌊I⌋⊔Vi . This means that, when we use Raw-CInv-Acc to open a raw cancellable
invariant τ I , we only gain access to I at an arbitrarily larger view V ⊔Vi , where Vi represents the
view at which the invariant content is currently justified. During the access to I , the instruction e
can update π ’s current view to a larger view V ′, so long as it returns the invariant content at the
view V ′ ⊔Vi . To explain why this weakened access rule is sound, we now delve into the details of
synchronized ghost state and the model of raw invariants.

5In Iris parlance, atomic instructions are expressions that evaluate in just one step. This is not to be confused with the
notion of relaxed-memory atomic accesses, even though atomic accesses are indeed atomic instructions.
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4.3 The Model of Raw Cancellable Invariants
The model of invariant tokens and raw cancellable invariants is as follows.

J[τ ]qK(V ) ::= ∃Vtok. PartialV(q,Vtok)
τ
∗Vtok ⊑ V (Raw-CInv-Model-Tok)

Jτ I K(V ) ::= ∃Vi . PartialV(1,Vi )
τ
∨ (JIK(Vi ) ∗ FullV(Vi )

τ
) (Raw-CInv-Model)

Invariant tokens. First of all, invariant tokens [τ ]q are view-dependent assertions: even though
owning a token [τ ]q means owning only the ghost element PartialV(q,Vtok)

τ , this ghost ownership
is tied to the view V at which the assertion is interpreted through the token view Vtok. In particular,
the ghost element PartialV(q,Vtok)

τ records both the fraction q, which represents howmuch of the
invariant this token owns, and the token viewVtok, which represents what this particular fractional
token has observed, i.e., what invariant accesses this fractional token has participated in. The model
requires that V—the view at which the token is interpreted—has also at least observed what [τ ]q
has observed: Vtok ⊑ V . Being view-dependent, [τ ]q therefore no longer enjoys Ghost-Mod, so the
spurious verification in §4.1 is excluded.

Invariant assertions. The model of invariant assertions τ I simply encodes the two possible
states of the invariant: “active” or “cancelled”. Thus it is an Iris invariant of a disjunction (see
Raw-CInv-Model). The right-hand side of the disjunction encodes the active state, where the content
I is still available in the invariant at some content view Vi . In the active state the Iris invariant also
owns a ghost element FullV(Vi )

τ that records the view Vi in the ghost state. The left-hand side of
the disjunction encodes the cancelled state, which asserts ownership of the full fractional element
PartialV(1,Vi )

τ . Note that the invariant assertion τ I itself is view-agnostic: it ignores the view
V at which it is asserted. The relation between the content view Vi and the token views Vtok’s is
managed entirely by the ghost elements FullV(Vi )

τ and PartialV(q,Vtok)
τ .

Synchronized ghost state. These view-dependent ghost elements are members of a “synchronized
ghost state” instance that we build to model raw invariants. This ghost construction has two kinds of
elements: (1) a unique element FullV(Vf )

τ that is used to record the full view Vf , and (2) fractional
elements PartialV(q,Vp )

τ that are used to associate some partial view Vp with some fraction q.
The ghost construction is built to maintain the following property:

The join of all partial views (the Vp ’s from all PartialV(q,Vp )
τ
’s) is

always equal to the full view Vf in FullV(Vf )
τ
.

(Sync-Ghost)

This property guarantees that the partial viewVp of the full fractional element PartialV(1,Vp )
τ

is actually equal to the full view Vf of FullV(Vf )
τ : Vp = Vf . The Sync-Ghost property is what we

require for view-dependent ghost state to be synchronized ghost state. By synchronized ghost state we
mean any ghost construction that is built on the notion of fractional observations. That is, the ghost
state has fractional elements that track the subjective observations of the threads the elements
are tied to, and, most importantly, the full fractional element is guaranteed to have tracked all
observations.
In the case of raw cancellable invariants, the observations are the views around which threads

access and update the invariant content I . Intuitively, we record the viewVi of the invariant content
I as the full view in FullV(Vi )

τ . The token view Vtok in the ghost ownership PartialV(q,Vtok)
τ

of some token [τ ]q tracks the changes to I made by each access that [τ ]q participated in. By Sync-
Ghost, the full token view Vtok_full of the full token [τ ]1 will thus be equal to the content view Vi .
Consequently a thread owning [τ ]1 must have observed all changes to the invariant content I .
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Raw-CInv-Model-Sync
FullV(Vi )

τ
∗ PartialV(q,Vtok)

τ
⇒ Vtok ⊑ Vi ∧ (q = 1 ⇒ Vtok = Vi )

Raw-CInv-Model-Update
FullV(Vi )

τ
∗ PartialV(q,Vtok)

τ
FullV(V ′ ⊔Vi )

τ
∗ PartialV(q,V ′ ⊔Vtok)

τ

Raw-CInv-Model-Join
PartialV(q,V )

τ
∗ PartialV(q′,V ′)

τ
⇒ PartialV(q + q′,V ⊔V ′)

τ
∗ q + q′ ≤ 1

Fig. 8. Selected properties (at Iris level) of the ghost construction for raw cancellable invariants.

To maintain Sync-Ghost, the ghost construction for PartialV(q,Vtok)
τ and FullV(Vi )

τ admits
the rules in Fig. 8. (We omit the details of how they are encoded, but for Iris enthusiasts the resource
algebra from which they are drawn is Auth (Option (Frac × View⊔)).) Raw-CInv-Model-Sync
says that any token view Vtok is included in the content view Vi , and the full token view Vtok_full
of [τ ]1 is exactly Vi . Raw-CInv-Model-Join requires that the fractions consistently cannot sum up
to more than 1, and also allows us to join together partial token views of the fractions when we
are recollecting them. Raw-CInv-Model-Update formalizes a restriction on how the ghost state can
grow: We can update a token view Vtok by extending it with some V ′

only if we simultaneously
update the content view Vi in the same way. This makes sure that every change in the full view Vi
is accounted for by some token view Vtok, and thus Sync-Ghost is maintained.

Proving cancellation. To understand how the model works, we briefly present the proof of the
cancellation rule Raw-CInv-Cancel. To prove a rule sound in the model, we first interpret the
rule at the current view V of the thread π that applies the rule and then prove it in Iris. For
Raw-CInv-Cancel, we need to prove the following in Iris:

Jτ I K(V ) ∗ J[τ ]1K(V ) JIK(V )

The user of this rule provides us—the prover of the rule—with the full token [τ ]1 at V , and we need
to give the user back I at the sameV . Looking at the interpretation of tokens, we effectively have the
full fractional PartialV(1,Vtok_full)

τ with a token viewVtok_full ⊑ V . We then open the Iris invariant
and find a content view Vi and the two possibilities for the invariant state (see Raw-CInv-Model). If
the invariant were in the cancelled state, we would have two full fractional PartialV(1,−) τ and
Raw-CInv-Model-Join would give us contradiction from 1+ 1 ≤ 1. Thus the Iris invariant must be in
the active state. By owning the full fraction, with Raw-CInv-Model-Sync we know that the thread’s
current view V must have observed all changes to the invariant content: V ⊒ Vtok_full = Vi . With
that, we now can take the content JIK(Vi ) out of the invariant and upgrade it to JIK(V ) for the user,
because I is view-monotone. To finish the proof, we use PartialV(1,Vtok_full)

τ to switch the Iris
invariant to the cancelled state and re-establish it. □

Proving access. The proof outline of the access rule Raw-CInv-Acc is shown in Figure 9. The proof
is an application of standard Iris proof rules. As in cancellation, we first open the invariant and
deduce that it must be in the active state. Then, we apply the rule of consequence which leaves us
with two side goals that we discuss below. Finally, we use framing to arrive at our premise.

As indicated in the outline, we have two goals to prove for the application of the rule of conse-
quence: (1) prove that from the pre-condition of the conclusion we can obtain the pre-condition of
the premise and (2) from the post-condition of the premise, we can obtain the post-condition of
the conclusion. In task (1), our goal is JIK(V ) J⌊I⌋⊔Vi K(V ), i.e., JIK(V ) JIK(V ⊔Vi ), which
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1⃝

{J ⌊I ⌋⊔Vi K(V ) ∗ JPK(V )} e @ π {v ,V ′ ⊒ V . J ⌊I ⌋⊔Vi K(V
′) ∗ JQK(V ′)}

Assumption

{ J ⌊I ⌋⊔Vi K(V ) ∗ FullV(Vi )
τ
∗

PartialV(q,Vtok)
τ
∗Vtok ⊑ V ∗ JPK(V )} e @ π {v ,V ′ ⊒ V .

J ⌊I ⌋⊔Vi K(V
′) ∗ FullV(Vi )

τ
∗

PartialV(q,Vtok)
τ
∗Vtok ⊑ V ∗ JQK(V ′)}

Frame

{ JI K(Vi ) ∗ FullV(Vi )
τ
∗

PartialV(q,Vtok)
τ
∗Vtok ⊑ V ∗ JPK(V )} e @ π {v ,V ′ ⊒ V .

JI K(V ′ ⊔Vi ) ∗ FullV(V ′ ⊔Vi )
τ
∗

PartialV(q,V ′)
τ
∗ JQK(V ′) }

2⃝

τ I ⊢ {J[τ ]qK(V ) ∗ JPK(V )} e @ π {v ,V ′ ⊒ V . J[τ ]qK(V ′) ∗ JQK(V ′)}
Inv

Fig. 9. Proof outline of Raw-CInv-Acc (at Iris level).

follows from view monotonicity. In task (2), our goal is

FullV(Vi )
τ
∗ PartialV(q,Vtok)

τ
∗ Vtok ⊑ V FullV(V ′ ⊔Vi )

τ
∗ PartialV(q,V ′)

τ

This proof step amounts to an application of Raw-CInv-Model-Update where we make use of the
fact that V ′ ⊔Vtok = V

′. This follows from Vtok ⊑ V ⊑ V ′. □

4.4 The Model of iRC11 Single-Location Cancellable Invariants
The access rule for raw cancellable invariants, Raw-CInv-Acc, may seem overly restrictive: due to
the use of the view-join modality in the premise, the invariant content is only made accessible at an
arbitrarily large viewV ⊔Vi , whereV is the thread’s local view andVi is unknown. How, the reader
may wonder, can that be useful? To illustrate how this apparent limitation is not really a problem
at all, we now give a high-level explanation of how raw cancellable invariants can be used to model
iRC11 single-location cancellable invariants. (For purposes of presentation, we abstract away here
from certain gory details of the construction—largely inherited from Kaiser et al. [2017]—that are
orthogonal to the goal of supporting safe cancellation.)

JATOM(ℓ,I)K(Vi ) ::= ∃h.History(ℓ,h) ∗ (∀m ∈ h.m.view ⊑ Vi ) ∗∗
m∈Frontier(h)

(
JI(m.val)K(m.view)

)
∗ . . .

τ ℓ I ::= τ
ATOM(ℓ,I)

(iRC11-CInv-Model)
The iRC11 cancellable invariant assertion τ ℓ I is nothingmore than a raw cancellable invariant

(guarded by τ ) whose invariant content is ATOM(ℓ,I), an Iris view-predicate with three parts:
(1) The first component of ATOM—History(ℓ,h)—asserts ownership of the entire history h of

writes to ℓ. This makes it the owner of location ℓ and enforces that all accesses to ℓ will need
to go through the raw cancellable invariant.

(2) The second component of ATOM is the knowledge that the view Vi at which the invariant
is interpreted contains all message views in ℓ’s history. (This means in particular that Vi is
synchronized with all writes to ℓ.)

(3) The third component ofATOM is the invariant content JI(m.val)K(m.view) for every message
m in Frontier(h), i.e., every message corresponding to a write to ℓ that has not been read
from by an RMW operation (like FAA). (For messages not in the frontier, ownership of the
invariant content may have been transferred away from ATOM by an RMW operation.)

Crucially, the ATOM predicate uses the view Vi (at which it is interpreted) exclusively as an
upper bound on the message views for the writes to ℓ, a property that is crucial for safe cancellation.
The remaining parts of ATOM are either view-agnostic (in the case of History) or they hold at
views that end up synchronizing with some component of the thread’s local view when a physical
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memory operation is performed. This allows us to all but ignore Vi when accessing the invariant,
thus avoiding the apparent problem of how to reason about the view-join modality in Raw-CInv-Acc.

Proving cancellation. Let us now see how to prove iRC11-CInv-Cancel. Suppose we invoke the rule
for thread π whose current view isVπ . Since we own [τ ]1, we can immediately use Raw-CInv-Cancel
to cancel the underlying raw invariant, thus reclaiming ownership of JATOM(ℓ,I)K(Vπ ). By the
definition of ATOM, we now own the history of writes to ℓ, and we know thatVπ has seen all writes
to ℓ—including the most recent write of value v with messagem—so we can assert ℓ 7→ v at thread
π ’s current view Vπ . Furthermore, we now also own the invariant interpretation JI(v)K(m.view),
because certainlym is in the frontier of ℓ’s history. Since we know thatm.view is contained in the
thread view Vπ , we can assert I(v) holds at Vπ as well. □

Proving access. We now turn to the proof of iRC11-CInv-FAA-Rlx, the iRC11 rule for relaxed FAA
operations. Consider an execution of FAA(ℓ,n) in thread π with local views V before and V ′ after
the instruction, reading messagemr (with value v) and writing messagemw (with value v + n). In
the proof of iRC11-CInv-FAA-Rlx, we access the raw invariant τ ATOM(ℓ,I) using Raw-CInv-Acc.
This gives us J⌊ATOM(ℓ,I)⌋⊔Vi K(V .cur)—i.e., JATOM(ℓ,I)K(V .cur ⊔Vi ), for some unknown Vi .

As suggested above, the fact that Vi is unknown is not actually a problem: as we now explain,
the proof of the ownership transfer at the heart of iRC11-CInv-FAA-Rlx does not care about Vi at
all—it only cares about specific messages and their interpretations.

We start out with JPK(V .rel) from our precondition and JI(v)K(mr .view) from ATOM (sincemr
is in the frontier—it must be so because we are reading from it, which means it could not have been
read from by an RMWbefore). By viewmonotonicity, we therefore have JP ∗I(v)K(V .rel⊔mr .view).
Applying the premise of iRC11-CInv-FAA-Rlx to this, we obtain JI(v +n) ∗Q(v)K(V .rel⊔mr .view).
From that we need to establish (1) JI(v+n)K(mw .view) to close the invariant and (2) JQ(v)K(V ′.acq)
for the postcondition. To justify these steps, it suffices to observe that (i)mw ’s message view is
preciselyV .rel ⊔mr .view extended to include the new write to ℓ, and (ii) after executing the FAA
operation, π ’s updated acquire view (V ′.acq) includes both its original release view (V .rel) and the
view of the read message (mr .view). We thus obtain (1) and (2) immediately by view monotonicity.

Notice how the unknown Vi did not come up even once in the last paragraph! Indeed, Vi is
only relevant to the final step where we have to re-establish ATOM atV ′.cur ⊔Vi which we call
V ′
i . The crucial part here lies in showing V ′

i ⊒mw .view, i.e., making sure that V ′
i is synchronized

with the view of the new write message. It is easy to check that V ′
i containsmr .view (through

mr .view ⊑ Vi ) and V .rel (through V .rel ⊑ V .cur ⊑ V ′.cur). This leaves the write itself. As an
RMW operation, FAA records the new write in the updated view, V ′.cur. Hence, V ′

i ⊒ mw .view
and we can re-establish ATOM at V ′

i . □

5 OTHER CONTRIBUTIONS
In this paper, we have focused on our central technical contribution of synchronized ghost state.
However, RBrlx encompasses a number of other contributions, a few of which we highlight in this
section: ORC11’s race detector (§5.1), a model of fence modalities (§5.2), the verification of Arc and
the bug we found in its implementation (§5.3), and, finally, the adaptation of RustBelt’s lifetime
logic to RMM (§5.4).

5.1 Data Race Detection in ORC11
ORC11 is the first operational semantics that incorporates a race detector for non-atomic accesses
into a language with release-acquire accesses, relaxed accesses, and fences. ORC11’s race detector
extends the race detector Kaiser et al. [2017] developed for iGPS, in order to address the extra effects
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of relaxed accesses. To explain the necessity of this extension, we first discuss why the approach of
Kaiser et al. [2017] does not scale to relaxed accesses.
The iGPS race detector, introduced by Kaiser et al. [2017] for the release-acquire/non-atomic

fragment of C11, is somewhat unusual in that it does not in fact detect all races in every execution.
(Recall that, by C11, two accesses to the same location are racy if one of them is non-atomic,
one is a write, and there is no happens-before relation between them.) Instead, although iGPS
forbids write-before-read races—that is, races where a write is interleaved before a racing read—it
allows read-before-write races—where a read is interleaved before a racing write. To illustrate this
asymmetry, consider the following example code:

X := 0;
∗X | | X := 37

In this program there are two possible interleavings, both of which are considered racy by C11.
The iGPS race detector detects a race in the interleaving where the read from X is executed after
the write to X , but it does not detect a race in the interleaving where X is read first.

The upside of iGPS’s approach is that reads do not need to be tracked by the race detector, which
reduces the amount of state in the operational semantics. The downside, of course, is that some
races are not detected—a seemingly rather severe problem for a race detector! The reason this is not
a problem in iGPS is that Hoare triples imply absence of races for all executions of a program. In
order to be able to claim that the iGPS logic ensures absence of data races according to C11, it thus
suffices for the race detector in the operational semantics to detect a race on some execution of every
program that is racy according to C11. And indeed it does: for programs with only release-acquire
and non-atomic accesses (the domain of iGPS), for any execution with a read-before-write race,
there is always a differently interleaved execution with a write-before-read race, which iGPS’s race
detector will detect.
In the presence of relaxed accesses, however, the iGPS race detector is no longer sufficient,

because the property mentioned above is no longer true. That is, it is possible to construct programs
that have executions in which the read-before-write races happen, but there is no interleaving
where the write will be executed before the read. For example, consider the following program:

X := 0;Y := 0;
∗X ;Y :=rlx 1 | | while (∗rlxY == 0);X := 37

Here, the non-atomic read in the left thread is guaranteed to be executed before the non-atomic
write to X in the right thread, and there is no interleaving where the reverse can happen. The iGPS
race detector would not declare this program racy, but the two accesses to X are not related by
happens-before and are thus considered a race by C11.
To account for such programs, we extend iGPS’s race detector, which already tracked non-

atomic writes, to track all access events, including atomic writes, and atomic and non-atomic
reads in threads’ local views. These events will then be sent across threads when they perform
synchronization. The race detector view VRace of the global state (§2.2) then records, for every
location, the latest non-atomic write, a global set of atomic writes, a global set of atomic reads, and
a global set of non-atomic reads. When a thread π is performing an access a, depending on the
kind of access a, the ORC11 race detector will then require that the thread π must have observed
certain events in the global race detector view VRace.
In the example above, the non-atomic read of X by the left thread, when executed, will add a

fresh read event εna into VRace’s set of non-atomic reads for X . The non-atomic write of X by the
right thread is guaranteed to be executed after the read by the left thread. However, when the
write is executed, the race detector requires that the right thread must have observed in its local
view all read events, including εna, in order to be deemed non-racy. Since the right thread did not
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synchronize with the left thread to obtain εna in its local view, its write to X will be declared racy
by the ORC11 race detector.
To show a formal correspondence between ORC11 and RC11 [Lahav et al. 2017], we exploit

the fact that ORC11 is very close to the “promise-free” fragment of Kang et al. [2017] extended
with non-atomics and a race detector. Kang et al. [2017] already proved a formal correspondence
between their promise-free fragment and C11. Building on their result, we show (on paper) that
any racy execution in RC11 can be replayed as a racy execution in ORC11 [Dang et al. 2019]. The
proof is relatively straightforward since ORC11 explicitly tracks read and write events.

5.2 The Model of Fence Modalities
In §3.3, we argue that the Ghost-Mod rule is sound without actually giving the model of unsyn-
chronized ghost state nor the fence modalities. While the model of unsynchronized ghost state can
be easily given as

J a γ K(V ) ::= a
γ (USGS-Model)

it is rather technically tricky to get a simple and clean model of the fence modalities. In this section
we briefly discuss how the model of fence modalities works.

In iGPS, a thread’s subjective view is a simple view of type View, and consequently an iGPS
assertion is interpreted as a function of type View → iProp. In iRC11, even though a thread’s
subjective view is a triple of three views, we still managed keep the interpretation J·K of an iRC11

assertion as simply a function of type View → iProp. That may seem rather suspicious, for as we
mentioned in §3.1, the release and acquire views of a thread π are needed to model the release
∆π and acquire ∇π modalities, respectively. If J·K is only a function of type View → iProp, then,
assuming that by default the viewV supplied to J·K(V ) is the thread’s current view, how can J·K get
access to the release or acquire view that it needs in order to interpret the fence modalities?

To model the fence modalities, we exploit extra ghost state that enables the interpretation J·K to
gain indirect access to the thread π ’s physical release view and acquire view:

J∆π PK(V ) ::= ∃Vrel. RelV(Vrel)
π
∗ JPK(Vrel) (RelMod-Model)

J∇π PK(V ) ::= ∃Vacq. AcqV(Vacq)
π
∗ JPK(Vacq) (AcqMod-Model)

Here, RelV(Vrel)
π and AcqV(Vacq)

π are elements of a view-dependent ghost state instance
for the thread π . These are governed by a global invariant, which enforces that they always record
snapshots of π ’s release and acquire views, i.e., Vrel ⊑ V .rel and Vacq ⊑ V .acq, where V is π ’s
local view. (For Iris enthusiasts, these are the snapshot elements in the Master-Snapshot monoid.)
Thus, J∆π PK(V ) (respectively, J∇π PK(V )), ignoring the view V at which it is being interpreted,
states that P holds at some Vrel ⊑ V .rel (Vacq ⊑ V .acq). By view-monotonicity this means also
that P holds atV .rel—the release view of π (respectively, V .acq—the acquire view of π ).

Soundness of Ghost-Mod. With these definitions, it is now clear how Ghost-Mod is sound. For
example, the direction “∆π a

γ
⇒ a

γ ” is trivial after unfolding the model of the release modality.
The direction “ a γ

⇒ ∆π a
γ ” is also essentially trivial because it is always possible to create a

snapshot RelV(V .rel)
π of the thread’s release view V .rel. □

5.3 Verification of Relaxed-Memory Libraries
Adapting RustBelt to ORC11 required us to re-verify all the internally unsafe libraries considered
by RustBelt, i.e., to show that these libraries still properly encapsulate their unsafe behaviors within
safe interfaces when we consider their real relaxed-memory implementations. RBrlx has ported
all verifications done in RustBelt, including the following concurrency libraries: thread::spawn,
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is_unique(a) := if CASacq(a.weak, 1,−1) then

let uniq = (∗acqa.strong == 1) in

a.weak :=rel 1;
uniq

else false

get_mut(a) := if is_unique(a) then

Some (a.data)

elseNone

Fig. 10. The implementation of Arc::get_mut.

rayon::join, Mutex, RwLock, and Arc. (The sequential libraries—Rc, Cell, RefCell—remain largely
unchanged from RustBelt.) We briefly discuss the most challenging verification effort in RBrlx: the
full Arc library (as opposed to the Core Arc discussed in §3.3).

Arc<T> and Weak<T>. Arc<T> has a sibling library Weak<T> which is also an atomic reference
counter. The Weak type, being very similar to Arc, counts how many Weak pointers are in existence,
and also comes with its own clone and drop functions. However, while owning an Arc guarantees
access to the underlying object of type T, owning a Weak does not prevent the underlying object from
being reclaimed. In order to access the object with a Weak pointer, one first calls Weak::upgrade to
upgrade the Weak pointer to an Arc pointer. Weak::upgrade can fail when the object has already
been reclaimed, that is, when there is no Arc pointer left. A Weak pointer is typically created by
calling Arc::downgrade on a shared reference of Arc.

The challenge in verifying Arc and Weak in RMM is that they are implemented together by two
tightly coupled atomic locations—one for each counter, and reasoning about the relation between
multiple locations in RMM is known to be complicated [Turon et al. 2014]. The interplay of the two
counters is further complicated by the library’s support for temporarily reclaiming full ownership
of the underlying content when the thread knows it owns the last unique Arc and Weak pointers.
The functions Arc::get_mut (see Figure 10) and Arc::make_mut provide these capabilities: they
return a mutable reference &mut T to the underlying content. The reclamation is temporary because
when the reference goes out of scope (when the lifetime of the mutable reference ends), the content
is returned and the original Arc pointer can be used again.
In RBrlx, we need to use two separate iRC11 cancellable invariants for each counter. At the

same time, we employ both unsynchronized and synchronized ghost state to maintain the intricate
relation between the two counters (see the appendix [Dang et al. 2019] for more details).

Insufficient Synchronization in Arc<T>::get_mut. Unfortunately, our proof setup was not strong
enough to verify Arc and Weak without change (although at least partly for good reason!). The
read of the Arc counter a.strong in is_unique (used by get_mut, Fig. 10), as well as another
read implemented in make_mut for the similar role, were rlx in the original code and we had to
strengthen them both to acq in order to make the verification go through. The reason is that, while
we managed to temporarily get the full resources out by a read, the rlx reads do not give us those
resources at the thread’s current view (they are under a ∇ modality). We conjecture that the rlx
read in make_mut is in fact sufficient, but the rlx read in get_mut turned out to be insufficient. The
bug has been reported and fixed in the Rust codebase [Jourdan 2018].
Fig. 11 shows an example where a data race (according to C11) can arise when using get_mut

in otherwise safe code. Here, there are two na operations: the read of the underlying integer in
line 3 (child thread) and the write to the same integer in line 6 (parent thread). The read should be
safe because the child thread owns arc2 and the underlying integer is shared and immutable. The
write should be safe because a successful get_mut gives the parent (who owns arc1) temporary
full non-atomic access to the integer. This can only happen after the child thread finishes and arc2
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1 let mut arc1 = Arc::new (0);

2 let arc2 = Arc::clone(&arc1);

3 thread :: spawn( move || { let u : u32 = *arc2; ... /* drop(arc2); */ } );

4 loop { match Arc:: get_mut (&mut arc1) {

5 None => {}

6 Some(m) => { *m = 1u32; return; }}}

Fig. 11. Example demonstrating the bug we found in Arc.

has been drop-ed. However, the two na operations constitute a data race according to C11 because
neither one happens-before the other. More specifically, in the child thread, when arc2 goes out
of scope it will be destructed by Arc::drop (line 3), which uses a release (rel) FAA (see the code
in Fig. 5). This release FAA will be read by get_mut (in the second check of is_unique, Fig. 10) in
the parent thread (line 4). If this read had been acq, then there would have been a release-acquire
synchronization between drop and get_mut, and the na read of the child thread would have been
guaranteed to happen-before the na write of the parent thread. However, the read was rlx, and
thus no synchronization can be established between the two na operations.

5.4 Adapting the Lifetime Logic to Relaxed Memory
RustBelt’s semantic soundness proof for the Rust type system depends on the lifetime logic. The
lifetime logic provides so-called borrow propositions, a family of mechanisms similar to raw can-
cellable invariants (see §4.2) that are instrumental in handling various features required by Rust’s
type system and by the verification of Rust libraries.

Borrow propositions improve on raw cancellable invariants in multiple ways, the most important
being that they decouple the assertions used to access the underlying resource from the assertions
used to reclaim it. This is achieved by offering three kinds of assertions: borrow propositions (of which
there are several different kinds), lifetime tokens (similar to invariant tokens), and an inheritance

assertion. Borrow propositions and (fractions of) lifetime tokens are used together to gain temporary
access to the underlying resource. Separately, the inheritance assertion can be used together with
the full lifetime token to reclaim the contents of the borrow.

These assertions can be owned by different threads and if we were to model them using unsyn-
chronized ghost state we would run into the same problems as in §4.1. (A full counterexample is
presented in Section 4 of Dang et al. [2019].) Thus, we make essential use of synchronized ghost
state in the model of lifetime tokens, just as we did for cancellable invariant tokens.
Fortunately, despite this change to the model of the logic, the lifetime logic’s proof rules are

almost entirely sound in ORC11. The only feature that required changes is atomic borrows (see
below). However, atomic borrows are only used in the verification of concurrent libraries and not

in the soundness proof of the type system because Rust’s type system does not know anything
about concurrency. The proof of safety of the λRust type system thus did not need to be changed.

Atomic borrows. The lifetime logic offers several kinds of borrow propositions, which represent
different ways of managing ownership of resources. Only one of them, atomic borrows, allows
shared atomic access to the underlying resource.

SC-LftL-at-Acc
{P ∗Q1} e {v . P ∗Q2} atomic(e)
&κ
at P ⊢ {[κ]q ∗Q1} e {v . [κ]q ∗Q2}

Rlx-LftL-at-Acc
∀Vb . {⌊P⌋⊔Vb ∗Q1} e {v . ⌊P⌋⊔Vb ∗Q2} atomic(e)

&κ
at P ⊢ {[κ]q ∗Q1} e {v . [κ]q ∗Q2}

, Vol. 1, No. 1, Article . Publication date: November .



RustBelt Meets Relaxed Memory 27

Under SC, accesses to atomic borrows were automatically synchronized. This is no longer true in
RMM. Consequently, we apply the same technique used for raw cancellable invariants to weaken
the access rule, providing access to the underlying resource P only under the view-join modality.

Other borrows. The proof rules for other kinds of borrows did not need changing because these
borrows always ensure proper synchronization between accesses. As an example, consider full
borrows. Full borrows can only ever be owned by one thread and whichever thread owns the full
borrow assertion is the only one that can access the underlying resource.
Owing to this exclusiveness, full borrows enjoy a particularly strong access rule shown below.

Concretely, LftL-full-acc states that the full borrow assertion &κ
full P can be exchanged for the

underlying resource P at the thread’s view together with a return predicate Ret(κ, P,q), which can
then be used to return P in exchange for &κ

full P . Note that access to P is not restricted to an atomic
step of execution. Instead, P can be returned at any later point by applying LftL-full-ret.

LftL-full-acc
&κ
full P ∗ [κ]q P ∗ Ret(κ, P,q)

LftL-full-ret
P ∗ Ret(κ, P,q) &κ

full P ∗ [κ]q

To establish the soundness of these proof rules, we require an additional instance of synchronized
ghost state on top of the synchronized ghost state used for lifetime tokens. The purpose of this extra
ghost state is to maintain that that all accesses to the borrowed content P are fully synchronized.
In particular, under the hood, P is held in an invariant at a content view Vi together with a piece of
ghost state that recordsVi . The borrow assertion &κ

full P carries its own synchronized ghost state as
well, satisfying the invariant that the view V of the thread that owns &κ

full P must include the view
Vi of the borrowed content. This allows us to deduce that it is safe for the thread that owns &κ

full P
to gain access to P at its own local view, as required to prove soundness of LftL-full-acc.

6 RELATED AND FUTUREWORK
Program logics and verifications. He et al. [2018] present GPS+, a extension to GPS that supports

relaxed accesses and release/acquire fences. However, their logic lacks support for relaxed CAS/FAA
operations which Arc uses. Additionally, their logic is based on the axiomatic semantics of C11
which cannot be used together with Iris and thus would not allow us to extend the existing RustBelt
development. GPS+ also does not support mechanized verification of programs.

iGPS [Kaiser et al. 2017] supports a mechanism called fractional protocols, which is closely related
to cancellable invariants. However, iGPS’s fractional protocols are not as powerful as iRC11’s
cancellable invariants in that they cannot reclaim the resources governed by the protocol at the
thread’s local view. This is because the protocol tokens they use are modeled with unsynchronized
ghost state. By using synchronized ghost state, we can support full reclamation of all resources
governed by either iRC11 cancellable invariants or borrow propositions.
[Tassarotti et al. 2015] use GPS to verify an implementation of the Read-Copy-Update (RCU)

technique. With GPS, they are able verify the reclamation of clients’ non-atomic locations, but not
RCU’s internal atomic locations because they are governed by GPS’s non-cancellable protocols.
[Kaiser et al. 2017] fixed this problem by re-verifying RCU in iGPS with their fractional protocols.
However, as mentioned above, fractional procotols are not a general solution.
Gotsman et al. [2007] provide an SC-based logic where ownership of a location can be turned

into a lock with fractional permissions for shared accesses, and later when the full permission of
the lock is collected, the ownership of the location can be reclaimed. Hobor et al. [2008] provide a
similar mechanism that additionally allows attaching “invariant resources” to locks. Our cancellable
invariants are more general than these mechanisms in that our cancellable invariants are not
specifically tied to locks and are proven sound with respect to a much weaker memory model.
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Doko and Vafeiadis [2017] verify a subset of the Arc library with FSL++. We improve on their
results by (1) enlarging the scope of the verification to include important parts of the API such
as the make_mut and get_mut functions (the latter of which we found to contain a data race) as
well as the Weak reference type, (2) allowing full resource reclamation of both the contents and the
reference-count fields of the Arc data structure, and (3) embedding our verification effort in the
RustBelt framework, so that we can establish the soundness of Arc when linked with unknown
well-typed λRust code.

Operational semantics for relaxed memory. Podkopaev et al. [2016] develop an operational account
of a subset of C11 that includes relaxed accesses and non-atomics. However, it lacks support for
fences and thus could not be used as is (to build a logic) to verify Arc. Their semantics also does
not forbid the data race in Section 5.1.

Doherty et al. [2019] develop an operational semantics based on event graphs for the release/ac-
quire/relaxed fragment of RC11. They also develop an invariant-based logic geared towards auto-
mated verification for programs in that fragment. As their operational semantics supports neither
non-atomics nor fences, it is not expressive enough to handle the Rust libraries targeted by RBrlx.

Kang et al.’s promising semantics [Kang et al. 2017] is a proposal for fixing C11’s out-of-thin-air
problem without prohibiting load-store reordering on relaxed accesses (as RC11 and ORC11 do).
Svendsen et al. [2018] introduce the first program logic for the promising semantics. Their logic is
based on RSL [Vafeaidis and Narayan 2013] and supports relaxed accesses but not fences. Moreover,
unlike FSL, it disallows the transfer of ownership through relaxed accesses, among other reasoning
principles that have proven useful in RBrlx. Extending RBrlx to account for promises is a very
interesting avenue for future work.
Finally, it is worth re-iterating that ORC11 and iRC11 currently do not support SC accesses

and SC fences. In fact, we are not aware of any existing RMM separation logic that does.6 Adding
support for SC would enable us to verify some interesting and challenging fine-grained concurrent
algorithms, such as the work-stealing queue by Chase and Lev [2005], as well as epoch-based
resource reclamation schemes such as that implemented by Rust’s crossbeam library [Turon 2016].
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