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Abstract

(1) Problem definition : We consider a revenue-generating call center with inbound and outbound

calls, where service and sales activities are blended. For maximizing the call center’s revenue, the call

center manager exercises two levels of control; agent reservation for inbound calls and call outsourcing.

Given the influence of waits on purchase probability, we investigate the strategy of outsourcing customers

who have waited already, as opposed to outsourcing customers directly at arrival.

(2) Academic / Practical relevance: The main novelty of this article arises from the use of a single

framework to investigate combining agent reservation with outsourcing decisions, and a waiting time-based

outsourcing strategy. The existing literature only considers these two strategies in isolation and is restricted

to quantity-based decisions. From a practical viewpoint, our results aim to provide decision support tools

that are directly implementable in a call center’s routing software.

(3) Methodology : We apply a Markov decision process approach to optimize the manager’s decisions.

The particularity of our approach is that we use the experienced waiting time as a decision variable.

(4) Results: We prove that the optimal policy for reservation and outsourcing is of threshold type. Our

main conclusion is that outsourcing customers after letting them wait in-house generates higher revenue

than outsourcing calls at arrival. However, it is also detrimental to service quality. In addition, we identify

contexts where the difference between the two outsourcing strategies is significant.

(5) Managerial implications: Contrary to standard call center practices, which either consist of

specialized teams for one type of call, or only exercising one specific level of decision-making (reservation

or outsourcing), we demonstrate the potential of partial outsourcing with partial reservation. Our study

shows that small congested call centers are those where the benefits of implementing our results are the

greatest.

Keywords: Call centers; Markov decision process; outsourcing; agent reservation; service and sales activ-

ities.

1 Introduction

Services and sales activities. Call centers are generally a firm’s primary channel of interaction with its

customers. Historically, call centers were mainly considered as a service delivery channel with inbound calls

only. In computer hardware companies, for example, customers would contact the call center to obtain support

for their installation. However, from a marketing perspective, a call center also has the potential to become



an ideal sales environment. Agents are not only considered as a passive workforce that responds to demand

but are increasingly encouraged to look for new customers or new sales. In banks, for instance, agents might

contact their customers to propose a new insurance policy or a new financial product. To illustrate this,

Lerzan and Akşin (2010) note that 25% of bank transactions are projected to take place in call centers and

that 80% of the bank’s growth comes from selling additional products to existing customers. Consequently,

inbound call centers introduced revenue generation as a strategic priority.

In this context, an inbound caller requesting a service can also become a potential source of revenue for

the call center. Thus, standard performance measures such as waiting time no longer simply represent a poor

level of service, but also may impact customer’s reaction to sales offers. Given that a long wait is frustrating

and reduces the trust given by customers to the company, the chance that a customer in need of assistance

accepts an unexpected sales offer may decrease with the wait. This negative relation between the wait and

the purchase probability is given the most consideration in this article. However, Ulku et al. (2017) may

contradict this assumption by showing that a long wait is an incentive to consume more when customers have

consumption as a primary objective. This case is also examined in this paper. In both cases, it is important

for call center managers to control the system’s congestion, especially if having fewer customers would result

in more customers with greater buying potential.

Outsourcing. One strategy investigated to reduce the flow of inbound calls involves outsourcing some of

them. Outsourcing is implemented as a way to provide a sufficient service quality for most customers and

to reduce costs. The alternative to outsourcing is to hire more staff. For small call centers, it is however an

expensive option as it takes time to train and manage new employees. Larger call centers are usually better

structured to monitor them. Moreover, existing models for staffing in the call center literature are known to

be more effective for large call centers (Harrison and Zeevi, 2005; Bassamboo et al., 2006; Whitt, 2006). This

means that mistakes in staffing levels are often encountered in small call centers. Consequently, small call

centers often face situations of high congestion. Finally, even with an appropriate staffing level, the server

utilization and the risk of having long waits are worse in smaller call centers. For these reasons, small call

centers are particularly concerned by outsourcing strategies.

The outsourcing decision is complex when sales activities are blended with service ones. An outsourced

customer in need of a service no longer represents a sales opportunity. This means it may not be efficient to

outsource too many calls, especially those which have a high purchase probability. Moreover, since the waiting

time may influence the purchase probability, it should be taken into account in the outsourcing decision. The

traditional solution used in practice and in existing models in the academic literature is to outsource an inbound

call upon arrival (Akşin et al., 2008; Ren and Zhou, 2008; Koçağa and Ward, 2010; Schrieck et al., 2014). The

decision to outsource a newly arrived call is based on the system’s state, i.e., on its expected waiting time.

This is referred to as a priori outsourcing. However, it is only one way of outsourcing. Another possibility,

proposed here, is to accept the new call in the queue, but to allow it to be outsourced later according to its

experienced waiting time. This is referred to as a posteriori outsourcing. Intuitively, both types of outsourcing

(a priori and a posteriori) have advantages and disadvantages. The advantage of a priori outsourcing is that
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it avoids any useless in-house waiting for outsourced customers, thereby reducing customer dissatisfaction due

to excessive waiting. On the other hand, it can lead to a customer being outsourced who in fact could have

begun a service within a reasonable time given the variability in service times. With a posteriori outsourcing,

a decision is taken based on actual waiting time. This provides better control of outsourcing and possibly

better sales potential. Despite the potential of a posteriori outsourcing policies, to the best of our knowledge,

they have not previously been addressed in the call center literature.

A priori and a posteriori policies are also implemented in contexts without outsourcing. Because of capacity

shortage, call centers commonly employ call rejection, either on arrival (a priori rejection) or after a certain

waiting period (a posteriori rejection). A posteriori rejection may or may not be followed by an automatic

message. For instance, Amazon employs a posteriori rejection without a message (simple disconnection of

the call), while Dior plays a voice message after a 2-minute wait. Different types of messages exist, such as

an invitation to call back later, to leave a message to be called back, or an invitation to use other resources

such as chats or email. Our partner, Interactiv Group, offers CTI (Computer Telephony Integration) software

which can reject calls after a certain waiting threshold. The threshold value is adjusted by the customers (the

call centers) depending on their business requirements. For instance, it is 6 minutes for the energy company

Primagaz, 5 minutes for the pharmaceutical company Sanofi, 3 minutes for the telecom operator Keyyo’s sales

call center, and 15 minutes for its technical hotline.

Blending. Outsourcing may therefore allow the call center to better serve and sell to customers. However,

due to the variability in arrivals, we may encounter situations where agents are idling. It could then also be

appropriate to let some agents initiate calls to propose sales offers so as to generate extra revenue for the

call center. The operational value of outbound calls is that they can be initiated at a chosen time. This

helps prevent idle overcapacity, and limits the need for extremely accurate forecasts. While the benefits of

combining inbound and outbound calls in call centers seem clear, the implementation comes with significant

operational challenges. Since the amount of work could be considerable, agents may be continually occupied,

either answering inbound calls or initiating outbound ones. Unless staffing levels are adjusted, pushing agents

to work in such conditions could lead to a degradation in service level in terms of the waiting time experienced

by inbound customers. The delay probability would be close to one, for instance. Initiating outbound calls

should therefore be limited in order to ensure the adequate service quality of inbound ones. One routing

solution proposed in the literature for this type of problem is to develop a reservation strategy (Bhulai and

Koole, 2003; Gans and Zhou, 2003). The idea is to keep a certain amount of idleness in the agents’ team by

not allowing agents to initiate outbound calls at all time.

Research question and contributions. We consider a call center with inbound and outbound calls in

which the service can generate revenue. Inbound calls initially request a service but can also represent a sales

opportunity. The willingness of inbound callers to buy is often related to their waiting experience. To avoid

excessive congestion, an outsourcer is contractually engaged to receive a given quantity of calls from the call

center per time unit. Therefore, an important challenge for the call center manager is to determine when

an agent should initiate an outbound call, and which inbound calls should be outsourced, primarily with a
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revenue maximizer perspective and, secondarily, with a consideration for the quality of the service provided.

Our main aim is to evaluate the potential of letting customers wait before being outsourced as compared to

outsourcing at arrival.

On the methodological level, we employ a Markov decision process approach to prove the threshold form

of the optimal routing policy for agent reservation and call outsourcing. The particularity of our approach

with a posteriori outsourcing is that we model the waiting time of the first customer in line as a decision

variable. This helps us to identify new structural properties of the value function which differ from the

classical convexity/concavity shown in a value iteration step approach. We also derive the call center’s expected

revenue and service quality, and prove their monotonicity properties in the control parameters. This allows us

to determine the constraints that the reservation and outsourcing thresholds should satisfy. We then explicitly

compute the relative value function under the optimal policy and prove that the optimal outsourcing threshold

can be computed after a finite number of iterations. This allows us to construct an efficient algorithm to derive

the optimal policy.

Next, we compare the two policy classes for outsourcing. The main proven result of the comparison is that

a posteriori outsourcing outperforms a priori outsourcing in a revenue maximizer perspective but not in the

quality of service one. In particular, the added value of a posteriori outsourcing is to ensure shorter waits for

customers who are served in-house detrimentally to outsourced customers. As expected, the difference between

the two outsourcing policies is shown to increase with the system congestion. Our numerical investigations

also show that the difference between the two policy classes is mostly significant for call centers with less

than 50 agents. For medium to large call centers, the two policies are virtually the same with less than 1%

difference in generated revenue and almost no wait. This means that the results of our study are applicable to

small call centers as in the Business-to-Business sector (Chevalier and Van den Schrieck, 2008) or larger call

centers organized in small independent teams (Jouini et al., 2008).

Different extensions to the initial model are investigated. We consider (i) the abandonment feature, (ii)

the possibility of the wait having a positive effect on purchase behavior, and (iii) the effect of having different

service rates between inbound and outbound calls. These model extensions do not contradict our main finding

but allow us to determine contexts where differences between the two policy classes are most significant.

With abandonment, assuming a threshold policy for outsourcing and reservation, we show that the algorithm

for computing optimal thresholds remains applicable. Extreme reservation/outsourcing strategies tend to

be optimal when customers are highly impatient. This reduces the relative benefits of implementing an a

posteriori outsourcing policy. When the wait has a positive effect, with or without abandonment, we prove

that extreme choices should be made for the outsourcing threshold. For the call center manager, this means

deciding either to outsource all inbound callers and become a specialized outbound contact center or serving

all inbound calls in-house. Therefore, it does not make sense to have a contract where only a given proportion

of inbound calls is outsourced. The effect of having different service rates between inbound and outbound

calls is less significant. We show, however, that the difference between the two policy classes is highest when

the service rates of inbound and outbound calls are close and when the arrival rate is sufficiently high.
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Structure of the article. The rest of the paper is organized as follows. The first section ends with

a literature review. Section 2 defines the model and the optimization problem. Section 3 identifies the

optimal policies for reservation and outsourcing while Section 4 compares a priori outsourcing with a posteriori

outsourcing. Section 5 investigates different model extensions. Finally, Section 6 concludes the paper and

highlights avenues for future research. All proofs are given in the online supplement.

Literature review. We distinguish five streams of literature related to this paper. The first deals with

the analysis of cross-selling opportunities in a queueing setting. The second is devoted to understanding

outsourcing strategies. The third analyzes multi-channel call center queueing models with reservation policies.

The fourth explores the nature and the impact of customer’s abandonment. The last considers queueing

models where decisions are based on customers’ waiting experience.

The combination of sales and services activities is referred to as cross-selling and is widely used in retail

banking call centers, for example. The empirical study by Aksin and Harker (1999) shows that although cross-

selling may significantly improve a firm’s revenue, it can have a detrimental effect on customer service due to the

additional load it creates on the system. To tackle this congestion problem, different studies have focused on the

development of optimal policies. The idea is to determine when cross-selling opportunities can be exercised

in a way that will maximize expected profit. To this end, Byers and So (2007) developed a mathematical

model which incorporates queueing congestion and customer profiles in order to determine the optimal control

policy to maximize revenue, showing the usefulness of real-time information for control decisions in a cross-

selling context. Güneş and Akşin (2004) investigated the different value-generation potential of customers and

determined a market segmentation scheme which divides customers into two groups (high and low). Looking

at various forms of customer segmentation, Gurvich et al. (2009) examined decisions on operational staffing,

call routing, and cross-selling to define near optimal policies. Another approach developed by Lerzan and

Akşin (2010) involved analyzing cross-selling issues as a dynamic service rate control problem, while Armony

and Gurvich (2010) described asymptotically optimal control and staffing schemes implemented as the system

load grows larger. Finally, Güneş et al. (2010) developed a model to show the negative impact a failed sales

attempt can have on a customer’s future behavior. This led to a new policy which took the customer’s history

into account. The policies developed in the aforementioned studies suggest that cross-selling opportunities

should only be exercised below a given number of customers in the system. In our paper, we also develop a

threshold type of control system. Our particularity is that a control on the customers’ experienced wait can

be exercised alternatively to a control on the queue length. Moreover, customers with a low purchase potential

can be outsourced.

There is a large body of literature on outsourcing strategies in call centers. Some articles focus on helping

firms to draw up the contract with an outsourcer (e.g., see Hasija et al. (2008) and Akşin et al. (2008)). In our

paper, the definition the contract corresponds to the volume-based contract developed in Akşin et al. (2008).

Outsourcing is often seen as a strategy to solve the problem of excessive demand. Therefore, the question

is to determine whether it is costlier to employ an extra agent or to outsource a larger quantity of inbound

calls. Ren and Zhou (2008) show that although a call center can coordinate staffing levels and outsourcing

5



decisions, the resulting service quality is frequently below its optimal level. To address this issue, they show

the value of contracts where considerable attention is devoted to service quality. Koçağa et al. (2015) develop

a joint policy for staffing and call outsourcing that minimizes the long-run average cost by solving a two-stage

stochastic program. Schrieck et al. (2014) consider staffing issues in a setting where short-term variability and

correlations in time-for-call-arrivals are taken into account. Their study leads to an extension of the square root

staffing rule and another staffing method which makes use of the Hayward approximation principles. Other

studies consider routing decisions and performance evaluation. For instance, Gans and Zhou (2007) consider

a call center with high and low value calls, and evaluate routing schemes for outsourcing some of the low

values calls. Gurvich and Perry (2012) consider a service network operated under a threshold-type overflow

mechanism. If the waiting room is full, the call is overflowed to an outsourcer. The a priori outsourcing

considered in our article follows a similar routing scheme as theirs.

A third stream of literature related to this paper analyzes reservation strategy. In most studies, reservation

strategies are considered when two different job types, namely, inbound and outbound calls, have to be handled

by a unique group of agents, involving an analysis of call blended policies. Some papers focus on performance

evaluation, while others address analysis of blending policies or staffing decisions. Deslauriers et al. (2007)

developed various continuous Markov chain models for a call center with inbound and outbound calls. The

authors considered a threshold policy and characterized the rate of outbounds and the waiting time distribution

of inbounds. Gans and Zhou (2003) and Bhulai and Koole (2003) prove that a threshold policy on the number

of idle agents is optimal to maximize the outbound throughput under a service level constraint on inbound

waiting time, when inbound and outbound calls have the same service rate. Pang and Perry (2014) consider

a large call blending model and propose a logarithmic safety staffing rule, combined with a threshold control

policy to ensure that agents’ utilization is always close to one with idle agents always present. The common

point between most studies on reservation strategy is the use of a reservation threshold policy. In our paper,

we prove that such a policy is optimal when outsourcing decisions can be taken together with reservation

decisions. Combining these strategies extends the range of options for improving the system’s performance.

Our study shows that employing a unique reservation or outsourcing strategy is optimal only in extreme

workload situations.

In this article, we include the abandonment feature as an extension to our initial model. Queues with

abandonment have often been studied in order to evaluate the performance of a service system (Zeltyn and

Mandelbaum, 2005; Yao, 2016), or to make staffing and routing decisions (Mandelbaum and Zeltyn, 2007, 2009;

Koçağa and Ward, 2010). However, in practice, queueing models without abandonment like the M/M/s queue

(Erlang-C) are often employed for management issues in call center operations (Koole, 2013). One reason,

revealed in the statistical analysis of Robbins et al. (2010), is that the Erlang-C formula gives a pessimistic

evaluation of call center performance and therefore results in safe managerial decisions. Thus, our findings on

the case without abandonment can be used to take routing decisions when abandonment is difficult to predict.

Predicting or anticipating abandonment is particularly challenging. Past waiting experiences (Emadi and

Swaminathan, 2017), customers’ beliefs and expectations (Veeraraghavan et al., 2018), delay announcements

(Akşin et al., 2013, 2016), and learning experience regarding the service speed while waiting (Cui et al., 2018)
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influence customers’ patience. The difficulty of capturing customers’ reasons when they abandon the queue

explains why abandonment is generally modeled as an exogenous parameter in most call center studies. In

particular, exponential distribution serves as a reference in the call center literature (Koole, 2013). Assuming a

memoryless distribution for abandonment might seem unrealistic. However, the statistical analysis by Brown

et al. (2005) showed the robustness of the M/M/s+M queue (Erlang-A) to fit performance measures reasonably

accurately. In this article, we also chose to model abandonment by an exponential distribution.

Finally, a specific feature of our queueing model under an a posteriori policy is that decisions are taken

based on the experienced waiting time of the oldest customer in the queue. While it is common in call centers

to use waiting time as a decision variable, the literature generally focuses on quantity-based policies where

the number of customers is the decision variable. This is often due to the difficulty of providing a Markov

chain analysis when the wait is the decision variable. To overcome this difficulty, Koole et al. (2012) created

a tool to develop Markov decision processes analysis where the first-in-line waiting time is used as a decision

variable. Later, Legros et al. (2017) extended this method to queueing models with abandonment. However,

complexity of the transition structure makes it complicated to prove the optimality of a threshold policy

using this method. In this paper, we tackle the issue by identifying new monotonicity properties of the value

function operator, with the first-in-line waiting time as a decision variable. This in turn allows us to prove the

optimality of a time-based threshold policy for our optimization problem. The proven monotonicity properties

are general and could be used in other queueing contexts involving time-based decisions.

2 The Model and the Routing Problem

Below, we provide the model description and the routing problem. Our assumptions are partly driven by the

actual problem that motivates the analysis, and partly by our concern to keep the model as simple as possible.

The idea is to obtain an easy-to-implement reservation and outsourcing policy, and to gain insights into the

environmental conditions that drive these routing decisions. We consider a system with a single pool of s

homogeneous agents and two types of calls, namely, inbound and outbound. We sometimes refer to inbound

calls as class-1 customers, and to outbound calls as class-2 (numbered in order of priority: class-1 customers

have non-preemptive priority over class-2 customers). Class-1 customers arrive at the system according to a

Poisson process with rate λ. If class-1 customers are not routed to the service immediately upon arrival, then

either they wait in an infinite capacity queue for their turn to be served, with customers being served in order

of arrival, or they are outsourced as explained below. Unlike class-1 customers, we assume that there is an

infinite supply of class-2 customers, so an available agent can always serve such a customer, if desired. The

service times of all class-i customers (i = 1, 2) are assumed to be exponential random variables with rate µ.

We denote by a the ratio between the arrival rate and the service rate; a = λ
µ .

The call center is engaged by a contract with an outsourcer, whereby a given proportion of class-1 customers,

PS , can be outsourced per time unit for a given fee, Couts. The call center may decide to outsource fewer calls

than the contract would allow. The proportion of outsourced calls in the contract should be chosen in a way as

to ensure the stability of the call center; λ(1− PS) < sµ. The call center’s revenue is generated by the service
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afforded to class-1 and class-2 customers. The revenue generated by the service of a class-2 customer, R2, is

random and depends on the customers’ heterogeneity. Therefore, the revenue generated by class-2 customers

per time unit is equal to R2×T , where T is the random throughput of served class-2 customers. Class-1 calls

service may also generate revenue. Unlike class-2 calls, class-1 calls may wait before being served. This wait,

denoted by WS , influences the callers’ willingness to accept a purchase offer (Güneş et al., 2010; Lu et al.,

2013). While callers’ delay sensitivity can be understood through an analysis of abandonment (Akşin et al.,

2013), the impact of waiting on purchase probability is not yet well understood in our context. Since customers

are initially seeking for a service, their wait may generate frustration from not achieving their goal. This type

of frustration may have detrimental consequences on satisfaction and loyalty as well as on the potential to

accept an unexpected purchase offer. Therefore, to simplify the analysis, we assume a decreasing and linear

relation between the revenue generated by the service for a class-1 call and its wait. The revenue from a

class-1 call is then R1(1 − ωWS), for ω ≥ 0, where R1 is a random variable independent of WS . In view of

the contract with the outsourcer, the long-run expected rate of served class-1 calls is λ(1−PS). The long-run

expected revenue per time unit, denoted by E(G), can thus be written as

E(G) = r2E(T ) + r1λ(1− PS)(1− ωE(WS))− Couts, (1)

where ri = E(Ri), for i = 1, 2, and where E(X) denotes the expected value of a given random variable, X.

The system manager has discretion regarding routing jobs to the various servers and to the outsourcer.

Treating the call center as a profit center, the system manager needs to choose a policy that maximizes the

expected revenue subject to a limitation for outsourcing a proportion of class-1 calls to the outsourcer. This

can be formulated as

{
maximize E(G),
subject to PS ≤ PS ,

(2)

where PS is the proportion of outsourced calls. It is reasonable (although not required) to expect that an

optimal policy to solve Problem (2) would be non-idling for class-1 customers in the sense that servers

may idle only if the queue is empty. The infinite number of class-2 customers could allow a full servers’

utilization. However, if all agents are constantly working, all class-1 customers will be delayed in the queue

before entering service. This can be avoided if there is idleness in the system, which can be controlled through

a reservation strategy. For outsourcing, two classes of policies are considered; a priori outsourcing and a

posteriori outsourcing. With a priori outsourcing, the decision to outsource a call is taken at customer’s

arrival. With a posteriori outsourcing, all calls are admitted into the system. The decision to outsource a call

is taken if the call has waited too long. We denote the set of policies for reservation and a priori outsourcing

by Ωe and the set of policies for reservation and a posteriori outsourcing by Ωl. The letters e and l refer to

early (a priori) or late (a posteriori) outsourcing respectively. Index e and l are also used to indicate whether

a policy π belongs to Ωe or to Ωl. We attempt to determine the optimal policies in Ωe or Ωl, Policy π∗e and

Policy π∗l , and to compare between them. While the system manager is in a revenue-maximizing perspective,

service quality should also be reported when comparing the two policy classes for outsourcing. Thus, the wait
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of outsourced callers should not be ignored. Service quality is evaluated by the expected wait, denoted by

E(W ), of both outsourced and served in-house class-1 calls.

The setting described above allows us to prove the optimal outsourcing and reservation policy (Section 3),

and to compare the two policy classes (Section 4). However, some of our assumptions may seem too restrictive.

In Section 5, we thus propose investigating some extensions that generalize our analysis. First, we suggest

including customer abandonment in the model. We assume that a waiting class-1 customer has finite patience

and will abandon if the waiting time exceeds a random time that is exponentially distributed with mean 1/β.

In this case, the percentage of abandonment, PA, is considered as an additional measure of the call center’s

service quality. Second, we reconsider the relation between the wait and the purchase probability. In the

context of retail stores, Lu et al. (2013) show a negative correlation between customers’ sensitivity to waiting

and price sensitivity. Moreover, Ulku et al. (2017) demonstrate that the consumption quantity increases with

the wait. Therefore, customers who can withstand a long wait may consume more with a preference for cheaper

products. It is however difficult to conclude whether the revenue per served customer would increase with the

wait, especially in our context where customers do not have the initial intention to buy a product. Although

a positive relation between the wait and the purchase probability is less likely to happen, by investigating

the case ω < 0, our article also aims to provide a routing solution for this case. Finally, we reconsider the

assumption of equal service rates for class-1 and class-2 calls. The assumption of equal service rates makes

sense in a context where class-2 calls are performed from a list of waiting customers that are a subset of

customers who have previously phoned the call center. However, in other contexts, class-1 and class-2 calls

may be independent groups of customers with different service rates. To explore this issue, we assume that

the service times of all class-i customers are exponential random variables with rate µi, i = 1, 2.

We conclude our model description with three remarks. First, as mentioned above, the proportion of

outsourced calls in the contract, PS , is chosen such that the system is stable. Therefore, situations where the

optimization problem has no solution should not occur. However, due to mistakes in the forecasting of the

arrival rate, instability could happen. If customers are patient and the call center managers wish to avoid too

long waits, it is possible to decide for a penalty to pay per outsourced call in case the call center needs to

outsource more calls than what was initially decided in the contract. Analysis of this possibility in the contract

can be made in a similar way to the one studied in the present article and leads to similar conclusions. We

therefore decided not to pursue this analysis.

Second, when agents initiate outbound calls, customers may not pick up the phone directly. This waste

of capacity may be significant if agents initiate outbound calls only at service completion. One way to reduce

these idling times is to employ an automatic dialer. Specifically, at many modern outbound contact centers,

automatic dialers initiate outbound calls even when all agents are busy, using predictive dialing software with

the purpose of minimizing agents’ idling times (Pang and Perry (2014)). However, automatic dialers are not

perfect for estimating the remaining service time of an agent or a customer’s availability. Therefore, one

unintended consequence of using this software is to drop calls if there is no agent available or to call some

customers and make them wait before service. This extension will not be pursued here.

Finally, the arrival rate λ is assumed to be fixed. This is unrealistic since in most service systems, such as
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call centers, there is strong variation depending on the time of the day, promotional offers and the customers’

history. Moreover, the customers’ waiting experience may influence their future behavior with phenomena of

retention and acquisition that can affect the arrival rate in the long-run. However, for the real-time routing

operations considered in this article, these effects may be ignored. Moreover, if the arrival rate gradually

varies relative to the system dynamics, then the call center can be analyzed using a point-wise stationary

approximation, where performance at a given time is approximated by the steady state performance of the

stationary system with a constant arrival rate (Green and Kolesar, 1991; Jennings et al., 1996). Therefore,

the extension of a time-varying or a state-varying arrival rate will not be pursued here.

3 Optimal policy

In this section, we determine the optimal policy to maximize E(G) as defined in Equation (1) for each class of

policies for outsourcing (Ωe and Ωl). For this purpose, Section 3.1 proves the form of the optimal policy within

the sets Ωe and Ωl for a given proportion of outsourced calls. Section 3.2 provides the performance measures

and their monotonicity properties in the control parameters. This allows us to determine how the search for

the control parameters should be initiated. Section 3.3 explains how to compute the control parameters under

each policy in order to answer our optimization question.

3.1 Form of the optimal policy

We formulate the routing problem as a Markov decision process (MDP) and next use the value iteration

technique to prove the form of the optimal reservation and outsourcing policy. We formulate the problem via

the transition structure and the possible actions.

The transition structure. The two classes of policies for outsourcing (Ωe and Ωl) require different defini-

tions for the state space. For a policy in Ωe, let us denote a state of the system by x, where x ≥ −s. States

with −s ≤ x ≤ 0 correspond to an empty queue and s+ x busy agents. States with x > 0 correspond to the

number of class-1 calls waiting in the queue. The transition rate from state x to state x′ is denoted as tx,x′ .

So, for x, x′ ≥ −s, we have

tx,x′ =


λ, if x′ = x+ 1, x ≥ −s,

min(s, x+ s)µ, if x′ = x− 1, x > −s,

0, otherwise,

which corresponds to arrival and service departure rates.

For a policy in Ωl, the previous system state definition does not allow for decisions based on the experienced

waiting time of a given call. To overcome this difficulty, we decided to explicitly model the wait of the first

customer in line (FIL) in the queue as in Koole et al. (2012) and Legros et al. (2017). The approach consists

of discretizing the FIL waiting time using successive exponential phases, each with rate γ, and then report the

waiting phase in the Markov process. Having large values of γ improves the approximation as it gives a better
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representation of the continuously elapsing time. As γ tends to infinity, this approximate setup converges

to the original one, which leads to an exact analysis. Again, we denote a state of the system by x, where

x ≥ −s. States with −s ≤ x ≤ 0 correspond to an empty queue and s + x busy agents. States with x > 0

correspond to a situation where the FIL is waiting at phase x and all agents are busy. The corresponding

transition rate from state x to state x′ are denoted by tx,x′ . As Koole et al. (2012) suggested, the transition

probabilities denoted by qx,x−h from a waiting phase x to a waiting phase x− h, are qx,x−h =
(

λ
λ+γ

)(
γ

λ+γ

)h
and qx,0 =

(
γ

λ+γ

)x
for x > 0 and 0 ≤ h < x. So, for x, x′ ≥ −s, we may write

tx,x′ =



λ, if x′ = x+ 1,−s ≤ x ≤ 0,

γ, if x′ = x+ 1, x > 0,

(s+ x)µ, if x′ = x− 1,−s < x ≤ 0,

sµqx,x−h, if x′ = x− h, x > 0, and 0 ≤ h ≤ x,

0, otherwise,

which corresponds to arrival, service departure and time elapsed.

Possible actions. If the queue is empty, the possible actions for an agent just after a service completion

are either to remain idle or to initiate a class-2 call. For a policy in Ωe, the possible actions at the arrival of

a class-1 call when all agents are busy are either to accept the call in the queue or to outsource it from the

system. For a policy in Ωl, the possible actions after an elapsing of time of the FIL are either to maintain the

call in the queue or to outsource it from the system.

The value function formulation. For both policy classes, the maximal event rate is bounded. This renders

each system uniformizable. We assume without loss of generality that λ+ sµ = 1 for a policy in Ωe, and that

λ+ sµ+γ = 1 for a policy in Ωl such that the rate out of each state is equal to 1. We formulate a 2-step value

function, in order to separate transitions and actions. We define the dynamic programming value functions

Vk(x), Wk(x) and Uk(x) over k ≥ 0 steps, depending on the state of the system x, x ≥ −s. The operators

Uk and Wk are decision-making operators that represent the class-1 customer outsourcing decision and the

class-2 customer initiation decision respectively. We choose V0 = U0 = W0 = 0.

Our optimization problem corresponds to a constrained MDP. Constrained MDP’s can be solved using

various techniques. Here, we use one that introduces the constraint in the objective using a Lagrange multiplier,

denoted by L. Under weak conditions, it can be seen that the optimal stationary policy for a certain Lagrange

multiplier is optimal for the constrained problem if the value of the constraint under this policy attains exactly

the desired proportion of outsourced calls (Altman, 1999). This means that the Lagrange multiplier L controls

the proportion of outsourced calls PS and should be chosen such that E(G) is maximized.

The costs and rewards involved in E(G) are counted at service initiation or outsourcing epochs. For Ωe

and Ωl, service initiations occur at λ-transitions from states with vacant servers, and sµ-transitions from

states x > 0. From states with vacant servers (i.e., for −s ≤ x < 0), a call starting service does not wait.

Therefore, a reward of ri is counted per served class-i call, i = 1, 2. For Ωe, the waiting time of a class-1
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customer who starts service is difficult to estimate in state x > 0. However, since customers arrive one by one,

the queue length is identical, in distribution, at arrival times and at service initiation epochs. Just after a

service initiation from state x, the expected wait of an arriving customer is x
sµ . So, a reward of r1

(
1− ω x

sµ

)
is counted per class-1 call served from state x > 0. For Ωl, the expected duration of a waiting phase is 1/γ.

Therefore, a customer who starts service from state x > 0 has already waited x
γ time units. So, a reward of

r1

(
1− ω xγ

)
is counted per class-1 call served from state x > 0. Finally, the cost L is counted per outsourced

call in Ωe and Ωl. We choose not to express Couts in the value function because this element is constant and

cannot be optimized. Therefore, it does not influence the routing decisions.

For Ωe, we may then write for k ≥ 0 and x ≥ −s,

Vk+1(x) =λUk(x) + min(s, s+ x)µ

(
Wk(x− 1) + r11x>0

(
1− ω x

sµ

))
+ (1− λ−min(s, s+ x)µ)Wk(x),

(3)

where the notation 1x∈A is used to express the indicator function of a given subset A, with

Uk(x) = Vk(x+ 1) + r1 if −s ≤ x < 0, and Uk(x) = max(Vk(x)− L, Vk(x+ 1)) if x ≥ 0,

Wk(x) = max(Vk(x), Vk(x+ 1) + r2) if −s ≤ x < 0, and Wk(x) = Vk(x) if x ≥ 0.

For Ωl, we denote by F the operator on the set of functions f from Z to R defined by F (f(x)) =
x∑
h=0

qx,x−hf(x − h) for x > 0, and F (f(x)) = f(x) for x ≤ 0. This operator is used to simplify the no-

tations. It represents the possible changes in the state of the FIL when either an outsourcing or a service

completion occurs. We may thus write, for k ≥ 0,

Vk+1(x) = λUk(x) + (s+ x)µWk(x− 1) + (1− λ− (s+ x)µ)Wk(x), for − s ≤ x ≤ 0, and, (4)

Vk+1(x) = γUk(x) + sµ

(
F (Wk(x)) + r1

(
1− ωx

γ

))
+ (1− γ − sµ)Wk(x), for x > 0, with

Uk(x) = Vk(x+ 1) + r1 if −s ≤ x < 0, and Uk(x) = max(F (Vk(x))− L, Vk(x+ 1)) if x ≥ 0,

Wk(x) = max(Vk(x), Vk(x+ 1) + r2) if −s ≤ x < 0, and Wk(x) = Vk(x) if x ≥ 0.

One way of obtaining the long-run average optimal actions is to use the value iteration technique, by

recursively evaluating Vk, for k ≥ 0. As k tends to infinity, the optimal policy converges to the unique average

optimal policy. Moreover, the optimal long-run policy is independent of the choice of V0. The convergence is

due to the aperiodic irreducible finite-state Markov chains considered here (e.g., see Theorem 8.5.3 part c of

Puterman (1994)). In Theorem 1, through induction on the value function, we prove that the optimal policy

for the two policy classes is of threshold type. For Ωe, we prove that the value function Vk is decreasing and

concave. For Ωl, we instead need to show that Vk(x+ 1)− F (Vk(x)) is decreasing in x for x ≥ 0. The latter

property is referred to as general concavity.

Theorem 1. The optimal policy for outsourcing and reservation within Ωe and Ωl is of threshold type.

Theorem 1 allows us to specify the formulation of the two optimal outsourcing policies and the optimal

reservation policy.

• Reservation threshold policy for Policies π∗e and π∗l
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We denote by c the threshold of number of agents reserved for class-1 customers, 0 ≤ c ≤ s. Consider

an idle agent just after a service completion. If the number of idle agents (excluding the idle agent

considered) is at least c, then this agent initiates the service of a class-2 customer. Otherwise, she

remains idle. In other words, there are c agents that are reserved for class-1 calls, so, there are at least

s− c agents working at any time.

• Call outsourcing policies

- a priori outsourcing threshold policy (for Policy π∗e). The decision to allow an arriving class-1

call to join the queue is based on the current number of customers in the queue when all agents are

busy. If this number is strictly lower than a certain threshold n (n ≥ 0) and all agents are busy, then

the arriving class-1 customer is allowed to join the queue. Otherwise, it is outsourced by the system.

- a posteriori outsourcing threshold policy (for Policy π∗l ). With outsourcing a posteriori, all

class-1 customers are allowed to join the queue, regardless of the system state. However, the system does

not allow class-1 calls to infinitely stay in the queue. A call waiting in the queue for exactly τ (τ ≥ 0)

time units is automatically outsourced.

3.2 Performance evaluation

We now evaluate the performance measures which constitute the expected cost, E(G), and the expected

waiting time, E(W ) for Policy π∗e and Policy π∗l . In addition, we evaluate the waiting time distribution of

served customers, P (WS > t), for t ≥ 0. The latter performance will be considered in Section 4 to compare

the two policy types. To express the performance measures, we use similar building blocks as in Zeltyn and

Mandelbaum (2005); ε, J , J1, JH , and J(t) . These building blocks were used to express abandonment

behavior. In our model, we instead consider outsourcing control which cannot be wholly assimilated with

abandonment behavior. This explains why we do not have a common expression for P (WS > t) for the two

policy classes and why J(0) 6= J for Policy π∗e . The performance measures are given by

PS =
1 + (λ− sµ)J

ε+ λJ
, E(T ) = λ

(s−1
c )

ac/c!

ε+ λJ
, E(W ) =

λJH
ε+ λJ

, and, E(WS) =
sµJ1 − J
ε+ sµJ − 1

,

where the notation
(
n
k

)
is used to express the binomial coefficient with integer parameters n and k (0 ≤ k ≤ n).

Finally, for t > 0, we have

P (WS > t) =
λJ(t)

ε+ sµJ − 1
, for Policy π∗e , and, P (WS > t) =

λJ(t)− 1− (λ− sµ)J

ε+ sµJ − 1
,

for Policy π∗l . For both policy classes, we have

ε =

c−1∑
x=0

ax

(s−c+x)!

ac−1

(s−1)!
.

In Table 1, we specify the other building blocks. The derivation of the performance measures follows from

a Markov chain analysis. For Policy π∗l , the approximated model is considered. We next obtain the exact
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Table 1: Building blocks

With Policy π∗e : With Policy π∗l :

J 1
sµ

1−( as )
n+1

1−a/s
1
sµ

1− as e
−τ(sµ−λ)

1−a/s

J1
1

(sµ)2
1−(n+2)( as )

n+1
+(n+1)( as )

n+2

(1−a/s)2
1

(sµ)2
1−(1+(1− as )(1+sµτ)) as e

−τ(sµ−λ)

(1−a/s)2

JH
1

(sµ)2
1−(n+1)(a/s)n+n(a/s)n+1

(1−a/s)2
1

(sµ)2
1−(1+ a

s τ(sµ−λ))e
−τ(sµ−λ)

(1−a/s)2

J(t) 1
sµ

e−sµt

1−a/s

n−1∑
x=0

(sµt)x((a/s)x−(a/s)n)
x! 1t<τ 1

sµ

e−t(sµ−λ)− as e
−τ(sµ−λ)

1−a/s

performance measures by letting the elapsing of time rate, γ, tend to infinity. The details of this analysis are

omitted. The computation of the optimal thresholds is based on the monotonicity properties of the performance

measures as given in Theorem 2. When the second order monotonicity property is not specified, it means

that the performance considered is neither convex nor concave. The results of Theorem 2 are also interesting

from a queueing perspective. With c = s, our model is reduced to a Markovian queue with deterministic

reneging under Policy π∗l -referred to in the queueing literature as the M/M/s+D queue- or to a finite capacity

Markovian queue under Policy π∗e -referred to in the queueing literature as the M/M/s/s+n queue-. The

convexity results obtained allow us to retrieve existing results for the M/M/s/s+n queue and to derive new

results for the M/M/s+D queue.

Theorem 2. The following holds:

• The expected throughput of class-2 customers, E(T ), is decreasing in c and decreasing and convex in n

(Policy π∗e) and in τ (Policy π∗l ),

• The proportion of outsourced callers, PS, is decreasing and convex in c and decreasing and convex in n

(Policy π∗e) and in τ (Policy π∗l ),

• The expected waiting time of served class-1 customers, E(WS), the expected waiting of served and out-

sourced customers, E(W ), and the proportion of served callers who wait more than t, P (WS > t), are

decreasing and convex in c and increasing in n (Policy π∗e) and in τ (Policy π∗l ).

Given that PS is decreasing in the outsourcing thresholds, the PS ≤ PS relation induces a relation between

the outsourcing and the reservation thresholds. We obtain

n ≥

ln

PS · 1+(1−a/s)
c−1∑
x=0

s!

(s−c+x)!ac−x

1− as (1−PS)


ln (a/s)

, for Policy π∗e , and τ ≥ −

ln

PS · 1+(1−a/s)
c−1∑
x=0

s!

(s−c+x)!ac−x

1− as (1−PS)


sµ− λ

, (5)

for Policy π∗l . Inequality (5) will be used in Section 3.3 to initiate the algorithm for the computation of the

optimal thresholds.

Special Case: When inbound callers are insensitive to their wait (i.e., ω = 0). Using Theorem 2,

Proposition 1 reveals that when callers’ purchase willingness is insensitive to their waiting time (i.e., ω = 0),
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then reservation should be excluded. In other words, agents should work full time on inbound or outbound

calls.

Proposition 1. When ω = 0, the following holds:

• If a
s ≥ 1, or if a

s < 1 and r2 > r1, then it is optimal to have c = 0, and n =
ln

(
P
S

1− a
s (1−P

S)

)
ln(a/s) for Policy

π∗e or τ = −
ln

(
P
S

1− a
s (1−P

S)

)
sµ−λ for Policy π∗l .

• Otherwise, if a
s < 1 and r2 ≤ r1, then it is optimal to have c = 0 and n = τ =∞.

3.3 Computation of the optimal policy

The constraint PS ≤ PS indicates that the proportion of outsourced calls should be optimized in the interval

[0, PS ]. Therefore, in Equations (3) and (4) of Section 3.1, several values for the Lagrange multiplier L

should be tested until the maximal expected revenue is reached. This procedure might be long given that for

each chosen value of L, we should let k tend to infinity in Equations (3) and (4). Instead, we adopted an

algorithmic approach where only a finite number of thresholds is tested before reaching their optimal values.

For the reservation threshold, c, an exhaustive evaluation is possible since the threshold c can only take s+ 1

values. These values are the integers in the interval [0, s]. However, for the outsourcing thresholds, n or τ , an

infinite number of values is possible. This renders an exhaustive search inapplicable.

To overcome this difficulty, we formulate an n-terminating problem as in Koçağa and Ward (2010) and

Adusumilli and Hasenbein (2010). This consists of expressing the long-run dynamic programming optimality

equations for the relative value function, V c(x), for x ≥ −c and the average constant E(G)c for a given

reservation threshold, c, under both policy classes. At this step, we do not consider the constraint PS ≤ PS .

Therefore, we chose L = 0. For Policy π∗l , we consider the approximated model used in Section 3.1. Under

both policies, we have

V c(−c) + E(G)c = λ(V c(−c+ 1) + r1) + (s− c)µr2 + (1− λ)V c(−c), for x = −c, (6)

V c(x) + E(G)c = λ(V c(x+ 1) + r1) + (s+ x)µV c(x− 1) + (1− λ− (s+ x)µ)V c(x), for − c < x < 0,

V c(0) + E(G)c = λmax(V c(1), V c(0)) + sµV c(−1) + (1− λ− sµ)V c(0), for x = 0.

For x > 0, and Policy π∗e , we have

V c(x) + E(G)c = λmax(V c(x+ 1), V c(x)) + sµ

(
V c(x− 1) + r1

(
1− ω x

sµ

))
+ (1− λ− sµ)V c(x).

For x > 0, and Policy π∗l , we have

V c(x) + E(G)c = γmax(V c(x+ 1), F (V c(x))) + sµ

(
F (V c(x)) + r1

(
1− ωx

γ

))
+ (1− γ − sµ)V c(x).

We introduce the relative cost difference defined as ∆c(x) = V c(x) − V c(x − 1) for Policy π∗e and ∆c(x) =

V c(x)− F (V c(x− 1)) for Policy π∗l , for x > −c. For Policy π∗l , using the notation u = λ
λ+γ , we have

V c(x)− F (V c(x)) = V c(x)−
x−1∑
k=0

u(1− u)kV c(x− k)− (1− u)xV c(0) = (1− u)∆c(x),
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for x > 0. Subsequently, we rewrite Equation (6) in terms of ∆c(x). Under both policies, we may write

E(G)c − g(x) = λ∆c(x+ 1)− (s+ x)µ∆c(x), for − c ≤ x < 0, (7)

E(G)c − g(0) = λmax(∆c(1), 0)− sµ∆c(0), for x = 0,

E(G)c − g(x) = λmax(∆c(x+ 1), 0)− sµ∆c(x), for Policy π∗e , and x > 0,

E(G)c − g(x) = γmax(∆c(x+ 1), 0)− (sµ+ γ)(1− u)∆c(x), for Policy π∗l , and x > 0,

with ∆c(−c) = 0, and where g(x) is the reward function defined as

g(x) =



λr1 + (s− c)µr2, for x = −c,

λr1, for − c < x < 0,

0, for x = 0,

sµr1

(
1− ω x

sµ

)
for Policy π∗e , and sµr1

(
1− ωx

γ

)
for Policy π∗l , for x > 0.

(8)

Theorem 1 proves that the optimal policy for call outsourcing is of threshold type. Therefore, the solution

of Equation (7) is given by the relative difference ∆c,n(x), for −c ≤ x ≤ n, and the expected revenue E(G)c,n

both depending on the reservation threshold, c, and on the outsourcing threshold, n, such that for both policies

we have

E(G)c,n − g(x) = λ∆c,n(x+ 1)− (s+ x)µ∆c,n(x), for − c ≤ x ≤ 0, (9)

E(G)c,n − g(x) = λ∆c,n(x+ 1)− sµ∆c,n(x), for Policy π∗e , and 0 < x ≤ n,

E(G)c,n − g(x) = γ∆c,n(x+ 1)− (sµ+ γ)(1− u)∆c,n(x), for Policy π∗l , and 0 < x ≤ n,

where ∆c,n(−c) = ∆c,n(n + 1) = 0. Recall that for Policy π∗l , the outsourcing threshold is a positive real, τ .

In Equation (9), we approximate the deterministic duration, τ , by an Erlang distribution with n phases and

rate γ per phase. By relating n and τ via n
γ = τ , this Erlang distribution converges to the deterministic one

as n and γ tend to infinity. In this way, the same notation, n, can be used for both policies.

The relations in (9) define a system of linear equations which can be solved explicitly. Using an induction

step, we can show after some algebra that

∆c,n(−c+ x) =

(
E(G)c,n

λ
− r1

) x−1∑
i=0

a−i(s− c+ x− 1)!

(s− c+ x− 1− i)!
− r2

a−x(s− c+ x− 1)!

(s− c− 1)!
,

for 1 ≤ x ≤ c, for Policy π∗e and Policy π∗l . For Policy π∗e , for x > 0, we obtain

∆c,n(x) =
E(G)c,n

λ

(a
s

)1−x( c∑
i=0

a−is!

(s− i)!
+
a

s

1−
(
a
s

)x−1
1− a

s

)
− r2

(a
s

)1−x a−(c+1)s!

(s− c− 1)!
(10)

− r1
(a
s

)1−x( c∑
i=1

a−is!

(s− i)!
+

1−
(
a
s

)x−1
1− a

s

− ω

sµ

1− x
(
a
s

)x−1
+ (x− 1)

(
a
s

)x(
1− a

s

)2
)
.
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For Policy π∗l , we introduce the notation aγ = s λ+γsµ+γ . For x > 0, we get

∆c,n(x) =
E(G)c,n

λ

(aγ
s

)1−x( c∑
i=0

a−is!

(s− i)!
+

(
1 +

λ

γ

)
a

s

1−
(aγ
s

)x−1
1− a

s

)
− r2

(aγ
s

)1−x a−(c+1)s!

(s− c− 1)!
(11)

− r1
(aγ
s

)1−x( c∑
i=1

a−is!

(s− i)!
+
sµ

γ

aγ
s

1−
(aγ
s

)x−1
1− aγ

s

− ω

γ

aγ
s

1− x
(aγ
s

)x−1
+ (x− 1)

(aγ
s

)x(
1− aγ

s

)2
)
.

The expected revenue, E(G)c,n, can be obtained by solving ∆c,n(n + 1) = 0. This allows us to retrieve the

expression of E(G) in Section 3.2 directly for Policy π∗e and after letting γ and n tend to infinity for Policy

π∗l .

Using the result of Lemma 1, Theorem 3 proves that the first local maximum of E(G)c,n found by increasing

n is the optimal outsourcing threshold.

Lemma 1. If E(G)c,n1 ≥ E(G)c,n2 for n1, n2 ∈ N, then

∆c,n1(x) ≥ ∆c,n2(x), for − c+ 1 ≤ x ≤ min(n1, n2) + 1. (12)

Theorem 3. If there exists a solution to Equation (9) with E(G)c,m > E(G)c,k, for 0 ≤ k ≤ m − 1 and

E(G)c,m+1 < E(G)c,m, then for all n > m, we have E(G)c,m ≥ E(G)c,n.

We may encounter a situation where E(G)c,n is increasing in n. This means that it is optimal to serve all

inbound calls in-house. In this case, in Proposition 2, we provide a stopping criterion for the search for the

optimal outsourcing threshold.

Proposition 2. If E(G)c,n is increasing in n, then E(G)c,∞ − E(G)c,n ≤ λ∆c,n(n), for Policy π∗e , and

E(G)c,∞ − E(G)c,n ≤ γ∆c,n(n), for Policy π∗l .

We are now in a position to establish an algorithm to compute the optimal outsourcing threshold. Inequality

(5) allows us to determine, for each reservation threshold c, the lowest possible outsourcing threshold such

that the constraint PS ≤ PS is satisfied. Moreover, Theorem 2 proves that PS is decreasing in the outsourcing

thresholds. Therefore, by increasing n, the constraint PS ≤ PS remains satisfied. While increasing the

outsourcing threshold, the result of Theorem 3 indicates that the first local maximum for the expected revenue

is also the global one. In the increasing case, Proposition 2 provides a stopping criterion for the search of the

optimal outsourcing threshold. Therefore, for each c, we can determine the optimal outsourcing threshold, nc,

after a finite number of iteration. The optimal reservation threshold, c, is then c∗ = arg max
c=0,1··· ,s

E(G)c,nc .

The algorithm is as follows:

Algorithm 1: Computation of the optimal outsourcing threshold for reservation threshold c.

1. Initialisation. Set nc as the lowest integer such that Inequality (5) is respected and compute E(G)c,nc ,

E(G)c,∞, and ∆c,nc(nc) using (10) or (11).

2. Iteration step: Increase nc by one and compute E(G)c,nc and ∆c,nc(nc) using (10) or (11).
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If E(G)c,nc < E(G)c,nc−1, then the outsourcing threshold nc − 1 is optimal.

If E(G)c,nc ≥ E(G)c,nc−1, then

• If E(G)c,∞ − E(G)c,n ≤ λ∆c,n(n) for Policy π∗e , or E(G)c,∞ − E(G)c,n ≤ γ∆c,n(n) for Policy π∗l ,

then it is optimal not to outsource any customer (i.e., nc =∞ is optimal).

• Otherwise, go back to the Iteration step.

4 Comparison between outsourcing policies

The main result is that Policy π∗l outperforms Policy π∗e for Problem (2). This result is proven in Theorem

4. The first point of Theorem 4 is given to qualify our main result. Although Policy π∗l outperforms Policy

π∗e from a revenue maximizer perspective, the improvement is detrimental to the quality of service measured

by E(W ) of both served and outsourced customers when the two policy classes have the same reservation

threshold and the same proportion of outsourced calls.

Theorem 4.

1. For a given reservation threshold and a given proportion of outsourced calls, the random variable WS is

highest for Policy π∗e under the usual stochastic ordering and the expected waiting time of all customers

(served in-house or outsourced), E(W ), is lowest for Policy π∗e .

2. E(G) is maximized for Policy π∗l .

In the following illustrations, we provide some numerical experiments to compare Policy π∗e and Policy π∗l .

The aim is to determine in which contexts the difference between the two policy classes may be significant.

Effect of the congestion. In Figure 1, we evaluate the two policies in terms of expected revenue, expected

waiting time, and proportion of outsourced calls as functions of the class-1 arrival rate. As the workload

increases, the difference between the two policies also increases (Figure 1(a)). This can be explained by the

increase in the proportion of outsourced calls (Figure 1(b)). Figure 1(b) also reveals that the proportion of

outsourced calls is very close under the two policies. This information, taken together with the observation

of very close reservation thresholds under the two policies, indicates that the conditions of the first point of

Theorem 4 are close to be respected in most cases. This validates the idea that Policy π∗l is detrimental to the

service quality measured by E(W ). Note that counterexamples can be found with very low arrival rates (see

Figure 1(c) for λ = 2). As shown in Figures 1(c) and 1(d), the difference between the two policies for E(W )

and E(WS) is not monotonous as a function of the arrival rate. We should recall that the optimal control

parameters are chosen to optimize E(G) and not E(W ). This explains the irregular behavior of E(W ) as a

function of λ. In some situations, the control parameters are chosen to encourage the service of class-2 calls,

with longer waits for class-1 customers, while in other situations, class-1 calls are given shorter wait times,

and the service initiation of class-2 calls is restricted. We observe however that the difference between the two

policies tends to increase with workload in high workload situations.
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(d) E(WS)

Figure 1: Comparison between the two policy classes (s = 10, µ = 1, r1 = 3, r2 = 1, ω = 1, Couts
λPS

= 1/2,

PS = 30%)

Effect of the call center size. Table 2 compares the expected revenue, E(G), and the expected wait, E(W ),

for the two policy classes and different call center sizes. We chose a/s = 0.8, 1 and 1.2 to reflect different

congestion situations. Columns 5 and 6 give the relative difference in revenue, RDG, defined as RDG =
E(G)Policy π∗l

−E(G)Policy π∗e
|E(G)Policy π∗e

| , and the absolute difference in revenue, ADG, defined as ADG = E(G)Policy π∗l −

E(G)Policy π∗e . Columns 7 and 8 provide the expected revenue generated per agent and per time unit. The

last three columns specify the expected wait and the absolute difference in service quality, ADW , defined as

ADW = E(W )Policy π∗l − E(W )Policy π∗e . We also specify the cost per outsourced call if the constraint in the

contract is saturated; Couts

λPS
. The table reveals that the difference in revenue between the two outsourcing

Table 2: Performance comparison (µ = 1, r1 = 3, r2 = 1, ω = 1, Couts
λPS

= 1/2, PS = 20%)

Parameters E(G) E(G)
s

E(W )
a/s s Policy π∗

l Policy π∗
e RDG ADG Policy π∗

l Policy π∗
e Policy π∗

l Policy π∗
e ADW

0.8 1 0.94 0.48 94.178% 0.454 0.94 0.48 0.741 0.566 0.175
1 1 -0.39 -1.28 69.850% 0.897 -0.39 -1.28 1.483 1.195 0.288

1.2 1 -9.25 -11.74 21.218% 2.491 -9.25 -11.74 4.766 4.027 0.739

0.8 10 21.67 21.39 1.339% 0.286 2.17 2.14 0.058 0.039 0.019
1 10 23.75 23.21 2.335% 0.542 2.38 2.32 0.048 0.025 0.024

1.2 10 18.04 15.83 13.943% 2.207 1.80 1.58 0.400 0.335 0.065

0.8 50 120.39 120.24 0.124% 0.149 2.41 2.40 0.021 0.020 0.001
1 50 132.23 131.77 0.347% 0.458 2.64 2.64 0.022 0.018 0.004

1.2 50 138.19 136.62 1.144% 1.563 2.76 2.73 0.014 0.008 0.007

0.8 200 497.79 497.78 0.001% 0.004 2.49 2.49 0.000 0.000 0.000
1 200 553.93 553.09 0.153% 0.844 2.77 2.77 0.008 0.007 0.001

1.2 200 567.13 565.71 0.251% 1.421 2.84 2.83 0.006 0.005 0.002

0.8 400 1001.79 1001.79 0.000% 0.000 2.50 2.50 0.000 0.000 0.000
1 400 1122.59 1122.13 0.042% 0.468 2.81 2.81 0.002 0.001 0.000

1.2 400 1141.73 1140.47 0.110% 1.260 2.85 2.85 0.004 0.002 0.001

policies is significant (i) in small call centers, (ii) in congested situations, and (iii) when the proportion of
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outsourced customers chosen is high. In large call centers, the effect of the service time variability is reduced,

and agents have greater efficiency as shown in Columns 7 and 8. Customers’ wait is thus better controlled,

and the relative improvement obtained by choosing a good routing strategy is reduced. As shown in the last

three columns, the difference in service quality is also the most substantial in small call centers. In large call

centers, the control parameters are adjusted in a way which cancels the wait.

This analysis allows us to specify the domain of applicability of our study. With more than 50 agents

present, the two policies are virtually the same. The improvement which can be obtained by implementing

Policy π∗l instead of Policy π∗e is marginal with less than 1% difference. This means that the results of our

study mostly reflect small call centers or call centers organized in small independent teams. Examples of

small-size call centers organization can be found for helpdesks of very specialized services, where agents might

need special tools to solve the client’s problems. In banks also, the management of large accounts requires

small teams of specially trained agents. In general, in the Business-to-Business environment, call centers are

usually small as compared to the Business-to-Consumer sector (Chevalier and Van den Schrieck, 2008). For

management reasons, some large call centers choose to be organized in smaller teams with identical skills.

Although the beneficial pooling effect is reduced in smaller systems, the human resource management can

be performed in a much better way. Agents’ motivation and responsibility would increase. For instance

Bouygues Telecom decided to adopt a small-team organization. For this call center, the number of agents

simultaneously present is in the order of 1000 and the corresponding number of agents present in each team

would be ranging from 20 to 50 (Jouini et al., 2008). Our study provides a valuable decision-support tool for

managing outsourcing and reservation decisions for this type of environment.

Routing solutions for extreme workload situations. We now focus further on extreme workload cases.

This analysis may help to explain routing practices commonly adopted in call centers. In Table 3, using Taylor

expansions, we provide equivalent expressions of the performance measures when a is in the neighborhood of

∞ and in the neighborhood of 0. Let us start with high workload situations. In both policy classes, PS is

Table 3: Equivalent expressions of the performance measures

a is in the neighborhood of ∞ a is in the neighborhood of 0

Policy π∗e Policy π∗l Policy π∗e Policy π∗l

E(T ) µ(s−c)s!sn
(s−c)! a−(c+n) µ(s−c)s!

(s−c)! a
−ce−τ(sµ−λ) µ(s− c)

PS

[
c∑

x=0

s!
(s−c+x)!ac−x

]−1
(s−c)!
s!sn ac+n (s−c)!

s! ace−τsµ

E(WS) n
sµ τ 1

sµ
(s−c)!ac

s!

insensitive to the outsourcing threshold. Moreover, E(T ) is decreasing and E(WS) is increasing in n (Policy

π∗e) and in τ (Policy π∗l ). Therefore, the outsourcing thresholds should be chosen as low as possible. For this

purpose, the constraint for the proportion of outsourced calls should be saturated (i.e., PS = PS) as observed

in Figure 1(b).

We now consider low workload situations. For both policies, E(T ) and all the performance measures related

to the waiting time are only controlled by c. The only measure that depends on the outsourcing parameters
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is PS . Since PS is decreasing in n and in τ , n =∞ and τ =∞ are optimal (no outsourcing). In Proposition

3, we show that either c = 0 or c = 1 is optimal.

Proposition 3. For Policy π∗e or Policy π∗l in low workload situations, n = ∞ or τ = ∞ is optimal and if

µr2 ≥ a
s r1ω, then c = 0 is optimal. Otherwise, c = 1 is optimal.

Therefore, in low workload situations, it is not optimal to outsource calls and reservation should be limited

to one agent at most. This result is intuitive; with too many agents there is no need to outsource and

reservation should be limited. The reason why c = 0 is not necessarily optimal is because with c = 0 all class-1

callers have to wait. So, even in a low workload situation, if the service times are long it might be beneficial

to have at least one idle agent to avoid waiting.

This analysis of extreme workload situations may partially confirm some common intuitions in call center

management. Reservation and outsourcing do not seem to meet the same environmental conditions. Initiating

outbound calls is generally considered by managers as a way to use overstaffing capacity. With too many

resources, outsourcing no longer appears useful. Instead, outsourcing is used to better manage congested

situations when the call center’s resources cannot handle the flow of arriving customers.

5 Robustness of the analysis

This section develops different natural extensions of the initial model. Section 5.1 considers the feature of

abandonment. Section 5.2 explores the consequences of the wait having a positive impact on purchase behavior

in a context of abandonment. Section 5.3 evaluates the impact of having different service rates for class-1 and

class-2 customers. The idea is to determine whether the conclusion of Section 4 is still valid in these different

settings.

5.1 Impact of abandonment

We now add the abandonment feature to the model. We assume that the patience of each customer in the

queue is exponentially distributed with rate β. This changes the MDP formulation of Section 3.1. For Ωe with

abandonment, the total event rate, λ + sµ + xβ, is an unbounded function of the system state. Therefore,

uniformization does not apply for the original model. To overcome this difficulty, we truncated the system

with parameter N , such that the maximal event rate, λ + sµ + Nβ, is bounded. This parameter should be

chosen as high as possible so that any further increase of N does not impact the policy obtained and the

expected revenue, E(G). As in Section 3.1, we assume that λ+ sµ+Nβ = 1. Equation (3) becomes

Vk+1(x) =λUk(x) + min(s, s+ x)µ

(
Wk(x− 1) + r11x>0

(
1− ω x

sµ

))
+ xβ1x>0Wk(x− 1) (13)

+ (1− λ−min(s, s+ x)µ− xβ1x>0)Wk(x),

for k ≥ 0 and −s ≤ x ≤ N , where the operators Uk and Wk are defined as in Section 3.1 for x < N . We

chose Wk(N) = Vk(N) and Uk(N) = Vk(N)−L, such that a rejection from state N is seen as an outsourcing

decision.
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For Ωl with abandonment, we used the approximation model developed in a previous contribution (Legros

et al., 2017). The idea is to approximate the abandonment distribution by a homogeneous Coxian distribution

evolving with rate γ. The purpose of this method is to have a uniformizable MDP with decisions based on

the experienced wait. From Theorem 2 in Section 4 of Legros et al. (2017), the transition probabilities from

waiting phase x > 0 to a lower waiting phase, x− h, for 0 ≤ h ≤ x, are given by

qx,0 =

x∏
k=1

(
1 +

λ

γ

(
γ

γ + β

)k)−1
, and, qx,x−h =

λ

γ

(
γ

γ + β

)x−h x∏
k=x−h

(
1 +

λ

γ

(
γ

γ + β

)k)−1
.

Therefore, for k ≥ 0, and x > 0, the second line of Equation (4) is changed to

Vk+1(x) = γ
γ

γ + β
Uk(x) + γ

β

γ + β
F (Wk(x)) + sµ

(
F (Wk(x)) + r1

(
1− ωx

γ

))
+ (1− γ − sµ)Wk(x). (14)

Using the value iteration technique, we find that the long-run optimal policy (i.e., as k tends to infinity)

for outsourcing and reservation is of threshold type as defined in Section 3.1. However, the value iteration

technique does not allow us to prove this result. Contrary to the case without abandonment, the monotonicity

properties of the value function which define a threshold policy are not valid for each k. For Ωe, the concavity

property at x = 0 can be broken for some k if β > µ. Note that the condition µ ≥ β was also found to be a

limitation for proving other second order monotonicity properties in the system parameters for the M/M/s+M

queue (e.g., see Theorem 3 in Armony et al. (2009)). For Ωl, the difficulty lies in the transition probabilities,

qx,x−h, for 0 ≤ h ≤ x, and x > 0. Without abandonment, in the proof of Theorem 1, we used the property

qx+1,x+1−h = qx,x−h, for 0 ≤ h < x, to show the propagation of the general concavity property in x. This

equality is broken with abandonment which prevents proving the induction step.

Interestingly, the n−terminating approach in Section 3.2 for computing the optimal outsourcing thresholds

is valid. More precisely, the results in Lemma 1, Theorem 3 and Proposition 2 can be extended to the case

with abandonment. This can be seen by rewriting the relative difference, ∆c(x) in Equation (7) and ∆c,n(x)

in Equation (9) with abandonment, for x > 0. For Policy π∗e , we obtain,

E(G)c − g(x) = λmax(∆c(x+ 1), 0)− (sµ+ xβ)∆c(x), for 0 < x < N, (15)

E(G)c,n − g(x) = λ∆c,n(x+ 1)− (sµ+ xβ)∆c,n(x), for 0 < x ≤ n ≤ N,

with ∆c,n(n+ 1) = 0. For Ωl, for x > 0, note that qx,k = (1− qx,x)qx−1,k, for x > 1 and 0 ≤ k ≤ x− 1. Thus,

we have V (x)−F (V (x)) = (1− qx,x)(V (x)−F (V (x− 1))). Therefore, Equations (7) and (9) can be rewritten

as

E(G)c − g(x) = γ
γ

γ + β
max(∆c(x+ 1), 0)− (1− qx,x)

(
sµ+ γ

β

γ + β

)
∆c(x), for, x > 0, (16)

E(G)c,n − g(x) = γ
γ

γ + β
∆c,n(x+ 1)− (1− qx,x)

(
sµ+ γ

β

γ + β

)
∆c,n(x), for 0 < x ≤ n,

with ∆c,n(n + 1) = 0. Equations (15) and (16) can be used to extend the proofs of Section 3.2 to the case

with abandonment. The only change in the proofs is the definition of the modified problem with threshold
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level m for Theorem 3 and Proposition 2. Instead of assuming that the transition rates are identical between

the original and the modified problem, we chose to have the transition rates constant in the modified problem

for x > m and equal to their value in the original problem at x = m+ 1.

Consequently, Algorithm 1 can be used to obtain the optimal reservation and outsourcing thresholds

by solving Equations (15) and (16) numerically. There remains to provide the performance measures for

initiating the algorithm and facilitating the comparison between the two policy classes. For Policy π∗e , a

Markov chain analysis can lead to the performance measures. For Policy π∗l , the combination of abandonment

and outsourcing can be seen as a global reneging behavior, where the reneging behavior is the minimum

between a deterministic threshold τ and an exponential duration with parameter β. This allows us to adjust

some of the results of Zeltyn and Mandelbaum (2005) to our model. As for the case without abandonment, the

details of the performance measures’ computation are omitted. As in Section 3.3, we express the performance

measures as functions of certain building blocks. For both policy classes, we have

E(T ) = λ

(s−1
c )

ac/c!

ε+ λJ
, E(W ) =

λJH
ε+ λJ

, and, PA = β
λJH
ε+ λJ

.

For Policy π∗e , we have PS = λI
ε+λJ , and E(WS) = λJ1

ε+λ(J−I)−λβJH . For Policy π∗l , we have PS = 1+(λ−sµ)J−λβJH
ε+λJ ,

and E(WS) = sµJ1−J
ε+sµJ−1 . The building block ε is identical to that of Section 3.2. In Table 4, we specify the

other building blocks with abandonment. The building block J1 cannot be expressed explicitly. Consequently,

Table 4: Building blocks

Policy π∗e Policy π∗l

I λn
n∏
i=0

(sµ+iβ)
−

J
n∑
k=0

λk

k∏
i=0

(sµ+iβ)

1
sµ +

∞∑
k=1

λk
(
1−e

λ
β

(1−e−βτ )−(sµ+kβ)τ
)

k∏
i=0

(sµ+iβ)

J1
1

sµ+β

n−1∑
k=0

(k+1)( λsµ
sµ+β )

k

k∏
i=0

(sµ+iβ)

∫ ∞
0

xe
λ
β (1−e

−βmin(x,τ))−sµxdx

JH
n∑
k=1

kλk−1

k∏
i=0

(sµ+iβ)

1
β

J − e−(sµ+β)τ+λ
β (1−e

−βτ )

 1
sµ +

∞∑
k=0

λk(1−e−kβτ )
k+1∏
i=1

(sµ+iβ)



the expected revenue which involves J1 must be calculated numerically and the comparison between the two

policy classes can only be made numerically.

Figure 2 compares the two policy classes. This confirms the result of Section 4 which states that Policy

π∗l outperforms Policy π∗e in terms of revenue, but is detrimental to service quality (measured here by the

percentage of abandonment). Nevertheless, the difference between the two policies is reduced with highly

impatient customers. As in Figure 1, we observe that the difference between the two policies increases with

the arrival rate. However, this observation is valid only up to a certain arrival rate. When the arrival rate is

very high compared to service capacity, the difference between the two policies decreases with the arrival rate,

because the efficiency-driven regime is reached (Whitt, 2004). For this regime, the threshold c is irrelevant as

agents have no opportunity to initiate a class-2 call since the queue is never empty. Under both policy classes,
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(b) PA

Figure 2: Comparison between the two policy classes (s = 10, µ = 1, r1 = 3, r2 = 1, Couts
λPS

= 1/2, ω = 1,

PS = 20%, β = 1)

the proportion of served customers is equal to sµ
λ and the expected waiting time of served customers is

ln( λ
sµ )
β .

This renders the expected revenue identical under both policies.

5.2 When the wait has a positive impact

We also explored the case where waiting has a positive impact on purchase behavior. For this purpose, we

assume that ω < 0. In this way, the longer customers wait before being served, the more likely they are to

accept the purchase offer. Without abandonment, the manager should choose an understaffing level such that

λ > sµ and should not outsource any call. In this way, the wait and the expected revenue would be infinite.

This situation is, however, unlikely to happen since callers would not wait infinitely. With abandonment,

letting customers wait a long time increases the revenue per served caller but reduces the number of callers

who accept to stay in the queue. Therefore, allowing customers to wait a long time is not necessarily beneficial.

Using the tools developed for the case ω > 0 (i.e., negative impact of the wait), we investigate how reservation

and outsourcing could be implemented with ω < 0.

The optimal policy with ω < 0 can be obtained by recursively evaluating Vk using Equations (13) and

(14). Without the constraint PS ≤ PS , regardless of the contract cost Couts, we observe that extreme decisions

should be taken for outsourcing; either all calls should be served in-house (i.e., n = τ = ∞ is optimal) or

all calls should be outsourced (i.e., n = τ = 0, and c = 0). This result is proven in Proposition 4 when

assuming a threshold reservation policy. This means that it is never optimal to have a non-extreme proportion

of outsourced calls as was the case with ω > 0. Therefore, either the outsourcer should serve all inbound callers

(PS = 100%) and the call center becomes a specialized outbound contact center, or the call center should

not implement any outsourcing strategy (PS = 0%). In both cases, the two policy classes for outsourcing are

identical. When all calls are served in-house, the outbound call initiation follows a threshold policy as in the

case ω > 0. It is not possible to prove this result by induction on Vk however. The reason is that Vk(x) is no

longer decreasing and concave for x ≤ 0, or for any combination of the system parameters.

Proposition 4. For a given reservation threshold c, it is either optimal to have n = τ = 0 or n = τ =∞.

Figure 3 presents the optimal policy, computed with Equations (13) and (14), for different combinations

of the system parameters. Figure 3(a) presents the preference zones -separated by the curve- for outsourcing
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all inbound calls or serving all of them in-house as functions of the reward for initiating an outbound call,

r2, and customers’ expected patience, 1/β. Given that the wait has a positive effect on revenue with ω < 0,

the only motivation for having n = τ = 0 is to provide some service capacity for outbound calls. Therefore,

if n = τ = 0 is optimal, it means that outbound calls are significantly more valuable than inbound ones. In

order to maximize the time spent on outbound calls, it makes sense to also choose c = 0. As observed in

Figure 3(a), the motivation for choosing this strategy increases with the reward for serving an outbound call,

r2, and with the expected patience, 1/β. When it is optimal to be a specialized outbound call center, inbound

callers are seen as an obstacle to achieving high expected revenue. The reason is that these callers keep some

agents busy who could instead be initiating more valuable outbound calls. If the patience of inbound callers

increases, then inbound callers may stay longer in the system and agents could potentially be busier with

them. This strengthens the motivation to outsource all of them and explains the impact of patience.
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(b) Optimal reservation threshold (r2 = 0.01, n =
τ = ∞)

Figure 3: Optimal policy (s = 10, µ = 1, r1 = 0.1, ω = −0.01, Couts = 1/10)

Figure 3(b) presents the way the optimal reservation threshold should be chosen as a function of expected

patience, 1/β, for different values of the arrival rate, λ, in a situation where it is optimal to have n = τ =∞

(i.e., no outsourcing). Reservation tends to increase with the arrival rate in such a way as to provide sufficient

idle agents for inbound callers. When inbound callers are very impatient (i.e., for low values of 1/β), the

wait plays a negligible role in the call center’s revenue since callers refuse to wait. Therefore, an increase in

customers’ patience is seen as an increase in demand for inbound calls. One way to respond to this demand is

to increase the reservation threshold, c. When callers are more patient, the wait can be used to increase the

call center’s revenue. The more patient customers are, the more profitable it is to let them wait. One way to

increase the wait is to reduce the reservation threshold, c. This explains the non-monotonous evolution of c

as a function of 1/β.

5.3 Analysis with different service rates

We now investigate the effect of having different service rates with class-1 and class-2 calls. We denote the

service rate of class-i calls by µi, for i = 1, 2. As in the case of equal service rates, if 1− sµ1/λ ≥ PS (unstable

situation), then the optimization problem has no solution. The optimal policy with different service rates is

likely to be a state-dependent threshold policy where the threshold depends on the number of class-1 and

class-2 calls in the system. From a practical point of view, a state-dependent threshold policy can be difficult
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to implement using call center software. Therefore, we prefer to study the simpler threshold policies considered

in the sections above. This choice is partially supported by the observation of Bhulai and Koole (2003) who

showed that a threshold policy is close to optimal in a similar reservation-related queueing model.

First, we evaluate the system performance under the two policy classes. Despite the fairly simple policies

under consideration, explicit analysis of the Markov chain is very involved. Alternatively, we propose to use

the value iteration technique to compute the performance measures. This approach is consistent with the

MDP approach of Section 3. The idea under both policy classes is to recursively define a value function,

denoted by Vk, on a 2-dimensional aperiodic irreducible finite state Markov chain. As k tends to infinity, the

Vk+1 − Vk difference tends to the sought metric.

Policy π∗e . A state of the system is defined by the couple (x, y) where x is the number of calls (class-1

+ class-2) in the system and y is the number of class-2 customers in service, for s − c ≤ x ≤ s + n and

0 ≤ y ≤ s− c. We have

Vk+1(x, y) = c1(x− s)+ +
λ

λ+ smax(µ1, µ2)
[1x<s+nVk(x+ 1, y) + 1x=s+n(Vk(x, y) + c2)] (17)

+
min(x− y, s− y)µ1

λ+ smax(µ1, µ2)
[1x>s−cVk(x− 1, y) + 1x=s−cVk(x, y + 1)]

+
yµ2

λ+ smax(µ1, µ2)
[c3 + 1x>s−cVk(x− 1, y − 1) + 1x=s−cVk(x, y)]

+

(
1− λ+ min(x− y, s− y)µ1 + yµ2

λ+ smax(µ1, µ2)

)
Vk(x, y),

with V0(x, y) = 0, for s − c ≤ x ≤ s + n and 0 ≤ y ≤ s − c, and where the cost parameters c1, c2, and c3 are

chosen in order to derive the performance measures. With c1 = 1
λ and c2 = c2 = 0, we obtain the expected

waiting time E(W ). With c2 = λ+smax(µ1,µ2)
λ and c1 = c3 = 0, we obtain the proportion of outsourced

customers, PS . Using E(W ) = (1 − PS)E(WS), the expected waiting time of served customers can also be

determined. Finally, with c3 = λ+ smax(µ1, µ2) and c1 = c2 = 0, we obtain the throughput of served class-2

customers. Therefore, the expected revenue and the service quality can be fully determined.

Policy π∗l . We use the approximated model defined in Section 3. The maximal number of waiting phases is

denoted by n, with n
γ = τ . A state of the system is defined by the couple (x, y) where s+ x is the number of

calls (class-1 + class-2) in the system if x ≤ 0 or x is the waiting phase of the FIL if x > 0 and y is the number

of class-2 customers in service, for −c ≤ x ≤ n and 0 ≤ y ≤ s− c. We extend the definition of the operator F

to the set of functions f from Z2 to R by F (f(x, y)) =
x∑
h=0

qx,x−hf(x−h, y) for x > 0, and F (f(x, y)) = f(x, y)
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for x ≤ 0. We have

Vk+1(x, y) = c1x
+ +

λ

λ+ γ + smax(µ1, µ2)
[1−c≤x≤0Vk(x+ 1, y) + 10<x≤nVk(x, y)] (18)

+
γ

λ+ γ + smax(µ1, µ2)
[1−c≤x≤0Vk(x, y) + 10<x<nVk(x+ 1, y) + 1x=n(F (Vk(x, y)) + c2)]

+
min(x+ s− y, s− y)µ1

λ+ γ + smax(µ1, µ2)
[1x=−cVk(x, y + 1) + 1−c<x≤0Vk(x− 1, y) + 10<x≤nF (Vk(x, y))]

+
yµ2

λ+ γ + smax(µ1, µ2)
[c3 + 1x=−cVk(x, y) + 1−c<x≤0Vk(x− 1, y − 1) + 10<x≤nF (Vk(x, y − 1))]

+

(
1− λ+ γ + min(x+ s− y, s− y)µ1 + yµ2

λ+ γ + smax(µ1, µ2)

)
Vk(x, y),

with V0(x, y) = 0, for −c ≤ x ≤ n and 0 ≤ y ≤ s − c. With c1 = sµ
λγ and c2 = c3 = 0, we obtain the

expected waiting time of served customers, E(WS). With c2 = λ+θ+smax(µ1,µ2)
λ and c1 = c3 = 0, we obtain

the proportion of outsourced customers, PS . Using E(W ) = (1 − PS)E(WS) + PS
n
γ , the expected waiting

time of served and outsourced customers can also be determined. Finally, with c3 = λ+γ+ smax(µ1, µ2) and

c1 = c2 = 0, we obtain the throughput of served class-2 customers.

Under both policy classes, the optimal thresholds can be computed using Algorithm 1. Before comparing

the two policy classes, in Figure 4 we evaluate the impact of the service rate of class-2 calls on the expected

revenue and on the quality of service under Policy π∗e . Note that similar observations could be made for Policy

π∗l . In the different examples (µ2 = 0.5, 1, and 2), we selected the product r2 × µ2 = 1, such that the revenue

rate of an agent working on a class-2 call is maintained as constant. As expected, we can observe that the
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(b) E(W )

Figure 4: Impact of the service rate of class-2 customers (s = 10, µ1 = 1, r1 = 3, r2 × µ2 = 1, ω = 1,
Couts
λPS

= 1/2, PS = 30%, a priori policy)

expected revenue increases and the expected waiting time decreases with µ2. When the class-2 calls service is

short, there are more opportunities either to initiate more class-2 calls or to serve class-1 calls with a shorter

waiting time. Nevertheless, the expected revenue is not highly sensitive to µ2 (Figure 4(a)) and the sensitivity

of the expected waiting time to µ2 tends to decrease with the arrival rate. When the arrival rate is low, the

revenue is mostly driven by the class-2 calls service. The expected waiting time of served class-1 calls has only

a little effect on the revenue. This explains why the revenue is also virtually insensitive to µ2 in this case.

As λ increases, the effect of the waiting time on the revenue increases but fewer class-2 calls are initiated.

This reduces the effect of µ2 on E(W ) and E(WS). Moreover, when the arrival rate is very high, then c = s

is optimal. Therefore, the call center only treats class-1 calls. This cancels out the effect of the class-2 calls
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service rate.

We are also interested in the impact of µ2 in the comparison between the two policy classes. In Figure 5,
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(b) E(W )

Figure 5: Impact of the service rate of class-2 calls (s = 10, λ = 12, µ1 = 1, r1 = 3, r2 × µ2 = 1, ω = 1,
Couts
λPS

= 1/2, PS = 30%)

we give the expected revenue and the expected waiting time as functions of µ2. We choose λ = 12 in order

to consider a zone where the service rate µ2 sufficiently impacts the expected revenue (see Figure 4(a)). As

expected from Figure 4(a), the expected revenue increases with µ2. Contrary to what was observed in Figure

4(b), the expected waiting time can increase in µ2. This is due to the choice of threshold parameters which

incentivizes initiation of class-2 calls detrimentally to the service of class-1 customers. The difference between

the two policy classes in terms of expected revenue (Figure 5(a)) and expected waiting time (Figure 5(b)) is

maximal when µ2 is close to µ1. When µ2 tends to zero, the expected service time of a class-2 call tends to

infinity. Initiating a class-2 call would thus block an agent. It is therefore optimal not to initiate any class-2

call (i.e., c = s is optimal). The waiting time of class-1 calls is therefore low, which also renders the difference

between the two policy classes low. As µ2 increases, initiating class-2 calls becomes more interesting. The

choice is thus to decrease the reservation threshold, which in turns leads to higher waiting times for class-1

calls and to a higher difference between the two policy classes. When µ2 is high, it becomes optimal not to

reserve any agents for class-1 calls (i.e., c = 0 is optimal). Therefore, the effect of increasing µ2 is to reduce

the waiting time of class-1 calls, which in turn reduces the difference between the two outsourcing policies.

6 Conclusion

The practice of initiating or outsourcing calls in contact centers is becoming increasingly prevalent. These two

levels of decisions allow managers to meet service quality and revenue targets. However, to our knowledge, no

papers have addressed the control problem of outsourcing and reservation within a single framework. To this

end, we considered a call center with inbound and outbound calls in a cross-selling context. One distinguishing

feature of our model was that the propensity of inbound callers to buy was related to their waiting experience,

based on the understanding that it may be detrimental to keep customers too long in the system. One solution

to limit system congestion is to outsource part of the inbound calls. To maximize the call center’s revenue, we

considered the impact of call outsourcing following a wait (a posteriori outsourcing) as against outsourcing

upon arrival (a priori outsourcing).

Using a Markov decision process approach, we proved the optimality of a reservation and outsourcing
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threshold policy. By studying the relative value function under the optimal policy, we showed that the optimal

outsourcing threshold could be computed within a finite number of iterations. Next, we derived closed-form

expressions of the performance measures under both policy classes and proved the first and second order

monotonicity results in the control parameters. Our main finding was that postponing an outsourcing decision

improves the call center’s revenue by better serving in-house customers, albeit detrimentally to outsourced

ones. We believe that this result can be extended to other cases where the main focus is on served customers.

We showed that the benefits of implementing an a posteriori policy were most significant in small congested

call centers with relatively patient customers, similar expected service time for inbound and outbound calls,

and when the wait has a negative effect on customers’ purchase behavior.

Our analysis can be extended in several other directions to better model the operational complexity of

call centers, as well as that of customer behavior. One important extension from a practical viewpoint is to

allow for non-stationary arrivals or arrivals which depend on the previous customers’ experiences with the call

center to account for retention or acquisition phenomena. The call centers’ complexity may include multiple

pools of agents, different channels (chats, emails), as well as more complex service requirements. Also, from

a practical perspective, separate pools of agents often handle inbound calls or initiate outbound calls. This

paper provides a deeper understanding of the benefits of cross-training agents to perform each of these tasks.

At methodological level, we believe that the idea of constructing a time-based decision-making policy is general

enough to apply to other operations management issues. For instance, in situations where the holding cost

function is non-linear, it could be interesting to develop such policies as opposed to quantity-based ones.
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Güneş, E., Akşin, O., Örmeci, E., and Özden, S. (2010). Modeling customer reactions to sales attempts: If

cross-selling backfires. Journal of Service Research, 13(2):168–183.
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