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Motivated by recent studies that have revealed the existence of trapped acoustic waves
in subsonic jets (Towne et al. J. Fluid Mech. vol 825, 2017, p. 1113-1152), we undertake a
more general exploration of the physics associated with acoustic modes in jets and wakes,
using a double vortex-sheet model. We show how jets and wakes may both behave as
waveguides under certain conditions, emulating ducts with soft or hard walls, with the
vortex-sheet impedance providing effective ‘wall’ conditions. We consider, in particular,
the role that upstream-travelling acoustic modes play in the dispersion-relation saddle
points that underpin the onset of absolute instability. The analysis illustrates how
departure from duct-like behaviour is a necessary condition for absolute instability, and
this provides a new perspective on the stabilising and destabilising effects of reverse
flow, temperature ratio and compressibility; it also clarifies the differing symmetries of
jet (symmetric) and wake (antisymmetric) instabilities. An energy balance, based on
the vortex-sheet impedance, is used to determine stability conditions for the acoustic
modes: these may become unstable in supersonic flow due to an energy influx through
the shear layers. Finally, we construct the impulse response of flows with zero and finite
shear-layer thickness. This allows us to show how the long-time wavepacket behaviour is
indeed determined by interaction between Kelvin-Helmholtz and acoustic modes.

1. Introduction

Flow instabilities may be broadly divided into two categories, convective and global.
The former involve disturbances that undergo spatial growth as they are convected away
from their inception point. In such cases, all regions of the flow eventually return to their
equilibrium state, once the disturbance has passed. In parallel or weakly non-parallel
frameworks, the dynamics of such flows are underpinned by local, convectively unsta-
ble, downstream-travelling modes, such as the Kelvin-Helmholtz (KH) mode, typically
observed in free shear layers, or Tollmien-Schlichting (TS) waves, typically observed in
boundary layers. Globally unstable flows, on the other hand, involve disturbances that
undergo temporal growth throughout the domain.

When analysed locally, global instability generally involves a feedback loop between
upstream- and downstream-travelling modes. In free-shear flows, the downstream-
travelling mode is frequently a KH instability, whereas the nature of the upstream-
travelling mode may vary depending on the flow considered. Powell (1953) proposed
that acoustic waves are responsible for the feedback that underpins tonal behaviour
observed in underexpanded supersonic jets which screech, a concept later used to explain
the tonal dynamics of impinging jets (Krothapalli 1985; Krothapalli et al. 1999; Gojon
et al. 2015; Gojon & Bogey 2017; Bogey & Gojon 2017) and cavity flows (Karamcheti
1956; Rossiter 1964; Rowley et al. 2002; Yamouni et al. 2013). In these flows, upstream
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disturbances are spatially amplified up to some downstream point at which they undergo
an interaction (with a solid surface where impinging jets and cavities are concerned,
with shock-cells in the case of screeching jets) that causes them to be scattered into,
among other things, upstream-travelling sound waves, which are then reflected in the
nozzle plane. When the phases of the upstream- and downstream-travelling waves are
matched at the boundaries, and the reflection conditions are such that positive gain is
possible, one has resonance, and global instability.

Towne et al. (2017) showed that, under certain conditions, discrete acoustic modes may
be supported within the potential core of a jet, which behaves as a wave guide. Much
of the flow physics could be understood using three simplified models: a cylindrical,
soft-walled duct; a cylindrical vortex sheet; and a locally parallel, finite-thickness jet.
Turning points associated with the narrowing of the potential core were identified at
which the guided, propagative acoustic modes become evanescent, whence their reflection
into upstream-travelling guided modes that are subsequently reflected in the nozzle plane.
The same mechanism was revealed in a global-mode analysis (Schmidt et al. 2017), thus
explaining the existence of weak tones observed in simulations and experiments (Brès
et al. 2018).

To understand the correspondence between the soft-walled duct model and the vortex-
sheet and finite-thickness jet models, properties of the eigenmodes of the latter two were
considered. It was thus shown how round jets can support phenomena such as refraction
and total reflection (illustrated in figure 1), and how the latter may cause the jet to
behave as a wave guide, for both upstream- and downstream-travelling, neutrally stable,
acoustic disturbances. Any mechanism enabling interaction between the KH mode and
the guided, upstream-travelling acoustic modes, may potentially lead to global instability.
Jordan et al. (2018) show, for instance, how such interactions underpin tones that occur
when a turbulent jet grazes a sharp edge.

Such long-range mechanisms are not the only path to global instability. Wakes (Noack
& Eckelmann 1994) and hot jets (Monkewitz & Sohn 1988) exhibit global instability that
is not related to wave reflections, but, rather, to flow features that can be studied in a
locally parallel framework. Huerre & Monkewitz (1985), adapting the works of Briggs
(1964) and Bers (1975), provide a framework for the study of absolute instability in
parallel base flows, showing how the long-time impulse response is dominated by an
exp(−iω0t) time dependence, the absolute frequency, ω0, being obtained from a saddle
point formed between upstream- and downstream-travelling branches of the dispersion
relation. For slowly-diverging base flows, the analysis can be extended using asymptotic
methods that show how a spatially localised pocket of absolute instability is a requirement
for global instability (Chomaz et al. 1991; Monkewitz et al. 1993). A recent global stability
analysis for slowly-diverging base flows, by Siconolfi et al. (2017), shows how accurate
predictions of global modes may be obtained using the asymptotic approach.

While global stability problems may now be solved numerically (Theofilis 2011), knowl-
edge of the local mechanisms is frequently necessary, both for a complete understanding of
the underlying flow physics, and for the proposition of simplified models. The combination
of local and global analyses was the key to understanding the resonant trapped waves in
the study of Schmidt et al. (2017).

For both wakes (typically globally unstable) and jets (typically globally stable), the
downstream-travelling mode is a KH wave. One may therefore infer that the contrast in
stability characteristics of jets and wakes is due to the nature of their upstream-travelling
modes, which are often left unexplored. Motivated by the work of Towne et al. (2017), we
perform a systematic study of acoustic modes supported by jets and wakes, our ultimate
goal being to clarify their role in global instability. We use a parallel double vortex-sheet
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Figure 1: Illustration of transmission, refraction and total reflection of waves travelling
between two media. Reflected waves are not shown in the interest of figure clarity.

(DVS) model to provide a general representation of both jets and wakes. We explore the
conditions, for both flows, under which trapped acoustic modes may be found, we study
the associated physical mechanisms, and, finally, we establish the role that these modes
play in absolute instability.

While we focus primarily on the incompressible limit, where acoustic modes become
evanescent pressure waves, we nonetheless consider certain aspects of the role of com-
pressibility. Specifically, we show how the conditions for spatial stability of propagative
acoustic modes in the DVS model are associated with their phase speeds: acoustic modes
are neutrally stable when their phase-speed is subsonic with respect to the outer flow, and
they may be stable or unstable when their phase-speed is supersonic, instability being
shown to be associated with an influx of fluctuation energy through the vortex sheets.
The unstable scenario is shown to correspond to that identified by Tam & Hu (1989b).

The paper is organised as follows. In §2 we present a double vortex-sheet (DVS) model.
Section §3 is concerned with a demonstration of the existence of guided acoustic modes
in the DVS and a consideration of the role they play in absolute instability. In Section §4
an energy balance approach is used to provide a more complete physical interpretation
of the guided acoustic modes; effects of finite impedance are also considered, as is the
relation of the guided modes to spatially unstable acoustic modes identified by Tam &
Hu (1989b) in the supersonic regime. In Section §5 we construct the impulse responses
of the DVS, and use it to explore compressibility and finite-thickness effects. A closing
discussion is provided in §6.

2. Double vortex-sheet (DVS) flow model

We consider the compressible, linearised Euler equations for a double vortex sheet
(DVS) (Lessen et al. 1965), whose base state is defined as,

U(y), a(y), T (y), ρ(y) =

{
Uout, aout, Tout, ρout , |y| > 1

Uin , ain , Tin , ρin , |y| < 1
, (2.1)

where U , a, T and ρ denote, respectively, base-flow velocity, sound speed, temperature
and density, subscripts in and out referring, respectively, to the inner (|y| < 1) and
outer (|y| > 1) regions, as shown in figure 2. Assuming ideal gas relations, the following



4 E.Martini, A. Cavalieri and P. Jordan

Figure 2: Double vortex-sheet (DVS) base flow.

parameterisation is obtained,

Uin = − Vref Tin =1 ain =
1

M
ρin =1

Uout =1− Vref Tout =
1

Tr
aout =

1

M
√
T r

ρout =ρrTr

. (2.2)

This leads to the following non-dimensional parameters: the Mach number, M , the
Strouhal number, St = ω/π, the inner-to-outer temperature and density ratios, respec-
tively, Tr and ρr. The parameterisation is such that the inner fluid properties and the
shear strength remain constant. On varying Vref from 0 to 1, the system transitions
from an ideal wake to an ideal left-pointing jet, as illustrated in figure 3. But Vref
can also be considered to define the reference frame in which the flow is observed, thus
clarifying a similarity between jets and wakes: they are underpinned by the same physical
mechanisms, only observed from different perspectives. Because the choice to consider
left-pointing jets, described by Vref = 1, differs from the more usual convention, according
to which jets are considered as right-pointing, wavenumbers and phases speeds associated
with jet configurations will be plotted as −α and −c in order to facilitate comparison
with similar figures found in the literature.

Four regimes can be identified: (1) Vref < 0, which defines a wake with co-flow; (2)
0 < Vref < 1, defining a wake with reverse flow in the inner region; (3) Vref = 1, which
corresponds to a left pointing jet; and, (4) Vref > 1, which gives a left-pointing jet with
a flight effect. The regime 0 < Vref < 1 could of course be understood to correspond to
a left-pointing jet with counter flow, highlighting the point made above, that differences
between jets and wakes are largely due to the choice of reference frame. Also, the limit
between “wake behavior” and “jet behavior” is arbitrary; we choose, therefore, to refer
to Vref < 0.5 as the wake-like regime and Vref > 0.5 as the jet-like regime, and the terms
Wake and Jet are chosen to indicate Vref = 0 and 1, respectively.

The variables of equation 2.1 are used in all derivations, and those of equation 2.2
are considered for the study of jet and wake configurations. Small perturbations,
u′(x, y, t), v′(x, y, t) and p′(x, y, t), are superposed on the base flow, u′ and v′ denoting
velocity fluctuations in streamwise, x, and vortex-sheet-normal y, directions, respectively,
t denoting time, and p′ denoting pressure fluctuations. The base flow is parallel, and thus
homogeneous in the x− and t−directions, leading to the normal-mode Ansatz,

p′(x, y, t) = p̂(y)ei(αx−ωt), (2.3)

for the pressure, and equivalent expressions for the other flow variables.
The inviscid, compressible Euler equations are linearised for the inner and outer

regions, giving,
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Figure 3: Illustration of the DVS parameterisation defined by equation 2.2. The flow
transitions between wake and jet behaviours with increasing Vref .

(
∂2

∂y2
+

(ω − Uin α)
2

a2in
− α2

)
p̂in = 0, (2.4)(

∂2

∂y2
+

(ω − Uoutα)
2

a2out
− α2

)
p̂out = 0, (2.5)

matching conditions between the domains giving,

(−iω + iUin α)
2
η̂ =

1

ρin

∂p̂in
∂y

, (2.6)

(−iω + iUoutα)
2
η̂ =

1

ρout

∂p̂out
∂y

, (2.7)

p̂in =p̂out, (2.8)

where η is the vortex-sheet displacement at y = ±1. The first two equations match
interface displacements between the inner and outer regions, while the third imposes
pressure continuity across the vortex-sheets. Additionally, it is required that p̂(y) be
bounded at ±∞.

Solutions of the system are,

p̂s,a(y) =


As,ae−ξouty , y > 1

eξiny ± e−ξiny , |y| < 1

±As,aeξouty , y < −1

, As,a =
eξin ± e−ξin

e−ξout
, (2.9)

with plus and minus signs corresponding to symmetric (s) and anti-symmetric (a)
perturbations, where,

ξin,out =

√√√√α2

(
1−

(
Uin,out − c
ain,out

)2
)
, (2.10)

and c = ω/α is the streamwise phase velocity. The branch cut of equation 2.10 is chosen
such that −π/2 6 arg(ξout,in) < π/2, as discussed by Tam & Hu (1989b). The dispersion
relations for the symmetric and antisymmetric modes are, respectively,

tanh(ξin ) = −ρin
ρout

ξout
ξin

(
Uin − c
Uout − c

)2

, coth(ξin ) = −ρin
ρout

ξout
ξin

(
Uin − c
Uout − c

)2

, (2.11)
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and the other flow variables can be recovered from the pressure distribution as,

û =
p̂

(c− U) ρ
, v̂ =

∂p̂
∂y

iα (c− U) ρ
, ρ̂ =

p̂

a2
. (2.12)

The singularities at c = Uin,out are avoided by investigating only nearby points, c ≈
Uin,out).

3. Acoustic modes and stability of the DVS flow

Our goal is to explore the role of acoustic phenomena in the stability of jets and
wakes, considered via the DVS model described in the previous section. What we refer
to as acoustic modes are solutions of the convected wave equation,

1

a2

(
d

dt
+ U

d

dx

)2

p(x, y, t)−∇2p(x, y, t) = 0. (3.1)

Note that for low frequency, and particularly in ducts (which we will show support
dynamics analogous to those of the DVS), solutions of the wave equation are evanescent
waves. In the incompressible limit, as a→∞, the cut-on frequency that marks transition
between evanescent and propagative waves also goes to ∞. The evanescent waves that
solve the wave equation in the incompressible limit are therefore synonymous with
evanescent-wave solutions that exist for finite a, justifying the denomination ‘acoustic’
in reference to solutions in the incompressible limit, which we consider in what follows.
For ducts with uniform flow, U , a mode with radial wavenumber, n, leads to dispersion
relation and group-velocity definitions,

α =
−Uω ± a

√
ω2 − (nπ/2)2(a2 − U2)

a2 − U2
, (3.2)

vgroup =
∂ω

∂α
=U +

a

(c− U)
a, (3.3)

which will be used throughout the work. Their derivation, along with an overview of duct
acoustics, can be found in Appendix A.

3.1. Incompressible regime

We now consider the DVS flow in the incompressible limit. We show, firstly, that KH
and acoustic duct-modes are asymptotic solutions of the DVS model. We then determine
conditions for the existence of acoustic modes in terms of vortex-sheet impedances. This
allows us to show how the vortex sheet (VS) may behave in the manner of a hard- or a
soft-walled duct, depending on the region of the parameter space that is considered,

In the incompressible limit, equation 2.10 reduces to ξin,out =
√
α2. For |ar| � 1,

solutions of the dispersion relation given by 2.11 are KH modes (Lamb 1945, page 373),

c =
Uoutρout + Uinρin

ρout + ρin
± i

√
ρinρout

ρout + ρin
(Uout − Uin) , (3.4)

which may be symmetric or antisymmetric, as illustrated in figures 4 (a) and (b). Another
asymptotic behaviour is obtained when c ≈ Uin or c ≈ Uout:

for c ≈ Uin : tanh ξin = 0 and coth ξin = 0
for c ≈ Uout : tanh ξin = ∞ and coth ξin = ∞

}
⇒ ξin = −iπ

n

2
. (3.5)
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(a) Incompressible Jet, ω = 2.5
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Figure 4: Comparison between DVS and KH modes (top) and duct-like modes (bottom).
Spatial spectra are shown on the left of each sub plot, with blue and red circles indicating
symmetric and antisymmetric DVS modes, respectively, black diamonds acoustic-duct
modes and triangles single vortex-sheet KH modes. The right-hand sub plots show
eigenmode comparisons between DVS (solid lines), acoustic-duct modes (diamonds) and
single vortex-sheet KH modes (triangles).

Solving for α leads to,

α± =
−Uinω ± ain

√
ω2 − (π n2 )2(a2in − Uin 2)

a2in − Uin 2
, (3.6)

which is the dispersion relation for the acoustics of hard- and soft-walled ducts (equation
3.2). For Uin = 0, α+ and α− correspond to left- and right-travelling modes, but if a
mean flow is present, the phase and/or group velocities of certain modes may change
direction, as discussed in Appendix A. Figures 4 (c) and (d) show the similarity between
acoustic modes in ducts and those of the DVS jet and wake. When ω ≈ 0 we have
c = ω/α ≈ 0 and so, c ≈ Uin and c ≈ Uout, for the wake and jet, respectively, everywhere
in the complex α plane, except near α = 0.

Motivated by the realisation that soft- and hard-walled duct-like behaviours reflect the
vortex-sheet “stiffness”, we perform a systematic study of the vortex-sheet impedance,
ZV S , which will also be useful in identifying total-reflection conditions, as in Towne et al.
(2017), when we consider compressible flows. The impedance of a single vortex-sheet,
located at y = 1, is calculated. Flows above and below the vortex sheet have properties
of the outer and inner flows, respectively. For y < 1 we assume p′(x, y, t) = Ap̂(y)eiαx−iωt,
while for y > 1 we enforce the Euler equations, p′(x, y, t) = Be−ξouty+iαx−iωt. The two
domains are connected with interface conditions identical to those of equations 2.6–2.8,
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giving,

ZV S(ω, α) =
p′

v′

∣∣∣∣
y=1−

= ρout
α

iξout

(c− Uout)2

c− Uin
. (3.7)

The impedance of the inner region, Zin, is obtained from the |y| < 1 solutions of equation
2.9, for symmetric and antisymmetric modes, respectively,

Zin,s(ω, α) = −ρinα
(c− Uin)

iξin
tanh(ξin), Zin,a(ω, α) = −ρinα

(c− Uin)

iξin
coth(ξin).

(3.8)

Note that the DVS dispersion relation (equation 2.11) is a compatibility condition
between the impedances of the vortex-sheet and the inner flow region.

In order to determine whether the vortex-sheet impedance should be considered high
or low, a reference impedance is defined. Assuming hard- or soft-walled duct modes
(ξin = −inπ/2), the hyperbolic functions in the dispersion relation become either 0 or
∞; we thus use the other terms of the dispersion relation to define a reference impedance
such that,

ρin
ρout

ξin
ξout

(
Uin − c
Uout − c

)2

=
ZV S
Zref

≈

{
0 , with a soft-duct approximation

∞ , with a hard-duct approximation
, (3.9)

where,

Zref (ω, α) = ρin
α

iξin
(c− Uin). (3.10)

The reference impedance depends only on the parameters of the inner region, and thus
may be interpreted as an impedance to perturbations in the inner region, to which the
vortex-sheet “stiffness” is compared. We are interested in the conditions under which
the duct-mode Ansatz is self-consistent. A duct-mode Ansatz for the DVS is assumed,
and the impedance ratio calculated; impedances of 0 and ∞ indicate self-consistency of
the Ansatz ; large (respectively small), but finite, values indicate that hard- (respectively
soft-) walled duct modes are a good approximation for DVS modes

Impedance ratios are shown, as a function of Vref and ω, in figure 5. A clear distinction
is manifest between jet and wake behaviours at low frequency, low and high values of
impedance-ratio being observed, respectively, in the jet (Vref = 1) and wake (Vref = 0)
regimes, satisfying soft- and hard-walled acoustic duct Ansätze, respectively. At higher
frequency the self-consistency condition is weakened, implying a departure from duct-
like behaviour, which is manifest in the higher-frequency eigenfunctions of figure 6 (cf.
DVS mode at ω = 0.8 for example): when the impedance-ratio values depart from those
consistent with the Ansatz, the DVS eigenfunctions no longer match, but nonetheless
resemble, duct modes, modified to have non-zero support in the outer flow. We may infer
that the associated mechanisms are of an acoustic nature, but modified by interaction
with the vortex sheets.

We note that the first harmonic duct-like modes of the jet and wake DVS solutions
exhibit symmetries similar to those of unstable modes in hot jets (symmetric) and wakes
(antisymmetric). This suggests that it is the duct-like modes that provide the upstream-
travelling dynamics necessary for absolute instability. The relation between acoustic
modes and absolute instability is further explored in what follows.
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Figure 5: Impedance-ratio map indicating regions where modes resemble those of
soft- (yellow) or hard-walled (green) acoustic ducts. A clear trend is identified at low
frequency, wakes (Vref < 0.5) and jets (Vref > 0.5) exhibiting hard- and soft-walled
behaviours, respectively. The distinction deteriorates at higher frequencies. The colour
scale corresponds to absolute value of the impedance ratio (ZV S/Zref ) for Tr = 1, ρr =
1,M = 0.01. Top and bottom plots correspond, respectively, to first (n = 1) and second
(n = 2) harmonic, duct-like modes.
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Figure 6: Deviation of DVS jet (Vref = 1) modes from acoustic, duct-like behaviour with
increasing frequency. Left plot shows DVS, the markers �,4,O indicating, respectively
ω = 0.2, 0.4 and 0.8; the right plot shows corresponding pressure eigenfunctions, for,
from top to bottom, ω = 0.2, 0.4 and 0.8, black diamonds indicating the corresponding
acoustic-duct mode.

3.2. Absolute instability of incompressible wakes and jets

We now wish to establish the relationship between the acoustic duct-like behaviour
considered above and the absolute instability of jets and wakes. It is of course clear
that, at the DVS saddle point that determines absolute instability, the DVS duct-like



10 E.Martini, A. Cavalieri and P. Jordan

Figure 7: Impedance-ratio (ZV S/Zref ) map showing dependence on Tr and Vref . Colour
map is the same as in Figure 5, for ρr = 1, ω = π/2,M = 0.01, for the first harmonic
duct mode (n = 1).

modes cannot exactly match true duct modes, as such saddle points do not exits in
ducts. Indeed, the results to follow support the idea that a departure from duct-like
behaviour is a necessary condition for the onset of absolute instability. We begin with a
consideration of the destabilising effect of temperature, when jets are heated and wakes
are cool (Yu & Monkewitz 1990). Figure 7 shows the effect of Tr on the impedance-ratio.
This increases with increasing Tr, but with opposite effects for wakes and jets. When the
wake is heated, conditions for duct-like behaviour are improved; when the jet is heated,
on the other hand, the duct-like behaviour is degraded. This is a direct consequence of
the different duct-behaviour approximations: duct-like behaviour in jets is soft-walled,
whereas in wakes it is hard-walled.

We now consider the saddle point that marks the transition between convective and
absolute instability. As established by Huerre & Monkewitz (1990) for parallel flows,
following Briggs (1964) and Bers (1975), the distinction between absolute and convective
instability is given by the imaginary part of the frequency associated with a double
root, α0, of the spatial stability problem, such that ∂ω/∂α(α0) = 0. The double root
must be formed between two modes, one of which is downstream-travelling, the other
being upstream-travelling. Absolute instability can be understood as due to a resonant
interaction between modes of opposite group velocities; there is disturbance growth if
Im(ω0) > 0, where ω0 = ω(α0). It is known that vortex-sheet models are ill-posed, in
so far as they present unbounded growth with increasing wavenumber and/or frequency,
which precludes calculation of the impulse response. We may nonetheless compute the
saddle point, as this permits a useful discussion of the role of the duct-like modes in
absolute instability, and we leave discussion the effects of these on the impulse respons
to Section §5.2.

Isothermal DVS jets and wakes are convectively unstable in the absence of co-flow.
By varying Tr and mapping loci of the roots for real frequencies a “pinching” between
two branches is observed, indicating a saddle-point leaving the negative ωi plane, and
signaling the onset of absolute instability. The neutral saddle point for the jet is observed
at Tr ≈ 1.26, whereas for the wake it is found at Tr ≈ 0.79, as shown in figure 8. The
branches associated with the saddle point can be recognised as the acoustic and KH
branches; this confirms that the acoustic modes underpin absolute instability. Figures
7 and 8 show how destabilisation is associated with a deterioration of the duct-like
behaviour. Equivalent results are obtained when the effect of backflow is considered, as
can be seen in figures 5 and 9.

We see how a departure from duct-like behaviour seems to be a necessary for interaction
between KH and acoustic modes, and therefore for absolute instability. The KH and



Acoustic modes in jets and wakes 11

0 21−0.5 0.5 1.5

0

−2

−3

−1

−3.5

−2.5

−1.5

−0.5

0.5

0 21−0.5 0.5 1.5

0

−2

−3

−1

−3.5

−2.5

−1.5

−0.5

0.5

Figure 8: Spatial eigenspectra for incompressible (M = 0.01) wake (left) and jet (right),
showing “pinching” of the acoustic and KH branches with temperature variation. Solid,
dotted, and dashed lines corresponds to Tr of (1.00, 0.83, 0.76, 0.66) on the left and
(1.0, 1.2, 1, 3, 1.5) on the right. Blue/red lines indicate antisymmetric/symmetric modes,
diamonds/triangles indicate duct/KH modes. Neutral saddles location with real ω0 are
found at Tr ≈ 1.26 for the jet and at Tr ≈ 0.79 for the wake (black stars). Loci are shown
for ω ∈ [0, 1.5π].
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Figure 9: Same as Figure 8, but with saddle point formed due to changes in Vref . Solid,
dotted, and dashed lines corresponds to Vref = (1.00, 0.95, 0.93, 0.90) for the jet and
(0.00, 0.06, 0.07, 0.10) for the wake. Neutral saddles (black stars), are found for Vref =
0.935 and 0.065 for the jet and wake, respectively.

acoustic branches must move away from their asymptotic loci in order to meet at the
saddle point, and with this movement, their eigenfunctions are deformed with respect to
their asymptotic forms. This provides the following interesting interpretation of saddle-
point ringing: deterioration of the asymptotic duct-mode form involves an extension of
the acoustic mode support across the vortex-sheet and into the outer flow, a “reaching
outward”, while the asymptotic KH deterioration involves a “reaching inward” of the KH
mode. The process of absolute instability involves the modes reaching radially towards
one another in order to interact.
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(a) Jet (Vref = 1)

(b) Wake (Vref = 0)

Figure 10: Impedance-ratio (ZV S/Zref ) map showing dependence on ω and M . For the
jet, both α+ and α− modes exhibit total reflection (shaded areas), while for the wake
this is only the case for α+ (downstream-traveling) modes. The colour map is the same
as in 5, for Tr = 1, ρr = 1, ω = π/2, and the first duct mode (n = 1).

3.3. Acoustic modes in the compressible regime

We have seen, in the previous section, how a resonance between KH and acoustic modes
underpins the transition to absolute instability in the incompressible regime, under the
effects of both Vref and Tr. We now explore some aspects of the compressible regime,
where richer dynamics can occur thanks to the existence of propagative waves, both inside
and outside the vortex-sheet, and the internal trapping of these, as found by Towne et al.
(2017) and Schmidt et al. (2017).

The self-consistency impedance condition is extended to incorporate total internal
reflection, which also leads to duct-like behaviour. Equation 3.7 shows how, for propaga-
tive modes (real α and ω), the impedance is purely imaginary only if ξout is real, which
occurs when |c−Uout| < aout; i.e. when the mode is subsonic, and thus evanescent, in the
outer region. As the real part of the impedance is associated with energy flux through
the boundary (Rienstra & Hirschberg 2018), a purely imaginary impedance implies zero
energy flux, due to total internal reflection and an internal trapping of fluctuation energy.
A broader discussion of the relationship between impedance and energy flux is provided
in section 4.

Figure 10 shows impedance ratios for isothermal jets and wakes. In the shaded regions
the impedance is purely imaginary. For a wake, subsonic phase velocity with respect to
the outer stream (c between 1±aout) is only observed for the downstream-travelling (α+)
mode. For the jet, due to the presence of inner flow, both α+ and α− modes may have
subsonic phase velocity (c between ±aout). This distinction between the jet and the wake
suggests that compressibility may have a greater stabilising effect in jets, which will be
confirmed in §5.1, where we consider the impulse response of the DVS.



Acoustic modes in jets and wakes 13

3.4. Summary

We have shown how duct-like behaviour is associated with extreme values of vortex-
sheet impedance, and how the saddle point underpinning absolute instability is formed
by KH and upstream-travelling acoustic branches when the conditions for asymptotic
KH and duct-like behaviours are deteriorated. This is consistent with known destabilisa-
tion trends associated with temperature-ratio, co-flow and compressibility effects, and,
furthermore, it clarifies the different symmetries of unstable jet and wake modes. The
analysis confirms the essential role played by upstream-travelling acoustic modes in the
instability of jets and wakes.

4. Energy balance

We now consider the implications of finite VS impedance. This is done by performing
an energy-flux analysis, which also allows us to develop a more complete physical
interpretation of the vortex-sheet behavior. A similar procedure to that applied in §3.1 is
used: duct-mode Ansätze are assumed and corresponding impedances and energy fluxes
are calculated.

The energy conservation law reads, (Goldstein 1976; Pierce 1981),

∂E

∂t
+ ∇ · J = 0, (4.1)

where E is the total energy and J the energy flux. This expression for energy conservation
is only valid for small perturbations in uniform flows, and thus will only be applied to
control volumes localised in the inner or outer regions. Assuming a stationary regime,
where mean energy density is constant in time, equation 4.1 becomes 〈∇ · J〉 = 0, where
〈·〉 denotes a time average. The flux is given by,

J =

(
a2ρ′

ρ
+ u′ ·U

)
(ρu′ + ρ′U), (4.2)

which for the no-flow case can be readily identified with the acoustic intensity p′u′.
Assuming propagative acoustic modes, J components can be written, using equations
2.12, as,

Ji(x, y, t) =
(
<(p̂(y)ei(αx−ωt))

)2 1

ρ

(
1

c− U
+
U

a2

)(
c

c− U

)
, (4.3)

Jj(x, y, t) = <(v̂(y)ei(αx−ωt))<(p̂(y)ei(αx−ωt))

(
c

c− U

)
. (4.4)

The energy balance will be considered in two different manners: (1) a comparison of
the magnitude of J in the inner and outer regions will be used to justify soft- and hard-
walled duct approximations when c ≈ Uout and c ≈ Uin; (2) a comparison of the energy
flux in cross sections of the inner region and fluxes across the vortex-sheets will be used
to derive corrections for cases where the impedance is finite.

4.1. Soft- and hard-walled approximations

As we have seen, small and large impedance ratios imply modes that behave as in
a duct with uniform flow. In §3.1 these limits were found when c ≈ Uout or c ≈
Uin. The energy density flux relations defined by equations 4.2–4.4 can be used to
clarify the underlying physical mechanisms. The energy flux (equation 4.2) comprises
scalar and vector components, in the first and second parentheses, respectively. The
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Figure 11: Analogy with vibration of an infinite string with DVS modes exhibiting
discontinuous density and pressure. The left plot shows an infinite, vibrating string with
discontinuous density, the thick line indicating higher density. The right plots show duct-
like modes of the jet (top) and the wake (bottom) for ω = 0.8. Solid and dashed lines
indicate the real and imaginary parts of the eigenfunctions, respectively.

former is proportional to c/(c − U) and leads to high magnitude of J when c ≈ U .
Pressure continuity requires that the amplitude of the transmitted wave equal the sum
of incident- and reflected-wave amplitudes. When c ≈ Uout, the incident wave has a high
energy density, and phase-opposition of the reflected wave reduces the amplitude of the
transmitted wave.

A direct analogy may be drawn with the following simplified model: a wave travelling
on a stretched string meets a discontinuity in string density, with the string becoming
suddenly much heavier. Here also, reflected waves limit the amplitude at the string
discontinuity, which behaves as a rigid constraint. This is analogous to the soft-wall
condition, string displacement playing the role of acoustic pressure in the DVS. Similarly,
the case where c ≈ Uin is analogous to a string discontinuity at which the string
becomes much lighter. In-phase reflection limits stresses at the discontinuity: a force-
relieving boundary condition exists, and outgoing waves, travelling on the light string,
have insignificant energy content, and thus only slightly damp oscillations of the heavy
string. These analogies are illustrated in figure 11, and the corresponding formulations
are provided in Appendix C.

4.2. Energy balance in the inner region

The effect of finite impedance can be explored by energy balance analysis of the control
volume shown in figure 12. Specifically, we compare energy fluxes across sections of the
inner region (F ) to fluxes to and from the interfaces (Jvs). The inner flux is given by,

F (x, t) =

∫ 1

−1
Ji(x, y, t)dy, (4.5)

while energy flux at the upper and lower vortex-sheets is given by,

Jvs(x, t) = Jj(x, 1, t)− Jj(x,−1, t), (4.6)

where (Ji, Jj) are the components of J , as defined by equation 4.2.
The time-averaged energy-conservation law for the control volume becomes,
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Figure 12: Schematic depiction of energy balance analysis. Control volume shown in blue,
vortex-sheets indicated by the black dashed lines and energy fluxes by arrows.

∂

∂x
F(x) = −Jj(x), (4.7)

with

F(x) = 〈F (x, t)〉 , Jj(x) = 〈Jvs(x, t)〉 . (4.8)

Leading-order approximations of energy fluxes in the inner region and at the interfaces
are obtained by assuming hard- and soft-walled duct behaviour,

p̂(y) = A
(
eξiny ± e−ξiny

)
, (4.9)

the plus and minus signs being associated with symmetric and anti-symmetric modes,
respectively. The time-averaged duct-like energy flux for the symmetric mode is,

F(x) = 〈F (x, t)〉 =

∫ 1

−1
〈J i(y)〉 dy

=
|A|2

ρin

c

c− Uin

(
1

c− Uin
+
Uin
a2in

)∫ 1

−1
cos
(nπ

2
y
)2
dy

=
|A|2

ρin

c

c− Uin

(
1

c− Uin
+
Uin
a2in

)
,

(4.10)

a similar result being obtained for the anti-symmetric modes. The average net energy
flux at the interface is given by,

Jj(x) =
〈
Jj(x, 1

−, t)− Jj(x,−1+, t)
〉

=
(
<
(
v̂(1)p̂+(1)

)
−<

(
v̂(−1)p̂+(−1)

))
ρin

c

c− Uin
.

(4.11)

For a duct mode, either p̂(±1) = 0 (soft duct) or v̂(±1) = 0 (hard duct), both of which
lead to zero interface flux and thus to constant flux in the inner region. A first-order
correction for the interface flux of modes departing from these behaviours is obtained by
expanding the components p′ and v′ up to first order,

p̂ = p̂0 + δp̂, v̂ = v̂0 + δv̂, (4.12)

the constraint at the interface being,

p̂0 + δp̂ = (v̂0 + δv̂)ZV S . (4.13)

For large ZV S and v̂0 = 0, the leading terms are,

δp̂ = 0, δv̂ =
p̂0
ZV S

, (4.14)
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while for small ZV S and p̂0 = 0, we have,

δp̂ = v̂0ZV S , δv̂ = 0. (4.15)

Expressions for the interface energy flux under hard- and soft-walled duct approximations
are obtained, respectively, by inserting 4.14 or 4.15 into 4.13 and 4.11,

J hj =2|A|2 c

c− Uin
<
(
Z−1V S

)
, (4.16)

J sj =2|A|2 |ξin|2

ρ2in|α (c− Uin) |2
c

c− Uin
< (ZV S) . (4.17)

If |J s,hj | � |F|, a slowly varying amplitude, A = A(x), may be assumed. The
x−dependence of the amplitude is obtained by inserting equations 4.10 and 4.16 or 4.17
into 4.7, giving,

∂|A(x)|2

∂x
= −J

s,h

F
|A(x)|2, (4.18)

and thus

|Ap(x)| = |Ap(0)|e−
Js,h

2F x. (4.19)

This spatial dependence can be seen as a wavenumber correction,

∆αi =
J s,h

2F
, (4.20)

which scales with <(1/ZV S) and <(ZV S) for soft- and hard-walled duct modes, respec-
tively. Using equation 3.3 the correction for a hard-walled duct becomes,

∆αi =
J h

2F
=
a2inρin
vgroup

<
(
Z−1V S

)
. (4.21)

Convective stability/instability is thus associated with negative/positive values of
<(ZV S). An analogous result is found for soft-walled ducts. A similar relation between
stability in ducts and the real part of the impedance has been described by Rienstra &
Hirschberg (2018).

4.3. Finite impedances in a compressible wake

We now explore a first-order approximation for finite impedance (equation 4.20) in a
Mach 0.9 wake. In order to isolate impedance effects, root loci are mapped as a function
of ρr: with ω and Tr maintained constant, the propagative/evanescent characteristics of
the soft-walled duct modes remain unaltered. The spatial eigenspectrum for ρr = 1 is
shown in figure 13. Modes in the left and right half-planes are, respectively, upstream-
and downstream-travelling. All subsonic modes are constrained to the real α axis, and
closely match the duct modes. Supersonic modes are all damped (i.e. they decay in the
direction of generalised group velocity (Bers 1975)), and resemble attenuated duct modes.

Figure 14 maps loci of the modes indicated by solid markers in figure 13 as ρr is varied.
Supersonic modes make an excursion into the complex α plane, while subsonic modes
are restricted to the real axis due to total internal reflection, as predicted by equation
4.2. Figure 15 compares αi with the predictions of equation 4.20, which accurately
captures the spatial amplitude variation of these modes for most impedance values,
failing only when the DVS transitions between soft- and hard-walled duct behaviours. The
results illustrates how energy fluxes through the vortex-sheets constitute the stabilisation
mechanism of the acoustic modes.
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Figure 13: Roots of Equation 2.11 for Vref = 0,M = 0.9, ρin,out = 1, and ω = 4π. Blue
and red markers indicate symmetric and asymmetric modes, respectively, solid circles
indicate the modes considered in figures 14 and 15. Hard- and soft-walled duct roots
are indicated by “x” and “+”, respectively. The blue region indicates supersonic phase-
velocity with respect to the outer flow.
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Figure 14: Loci, as a function of ρr, of upstream- (left) and downstream- (right) travelling
modes, indicated in the left and right half planes of figure 13. Upstream-travelling modes
move in to the complex α plane, while downstream-travelling modes remain on the
real axis due to total reflection. Limits of hard- (ρr = ∞) and soft-duct (ρr = 0)
behaviour are indicated, respectively, by diamonds and circles. Red and blue lines
represent antisymmetric and symmetric modes, respectively.

4.4. Finite impedances in compressible jets

We now consider a regime in which the real part of the impedance becomes negative.
Inspection of equation 3.7 shows that the term ρout(c− Uout)2 is always positive and
real, iξout is imaginary or positive real, and so only the term α/(c− Uin) may be either
positive or negative. Expanding this term with equation 3.2, we obtain,

α

c− Uin
=

α2(U2
in/a

2 − 1)

ω

(
−1± Uin/a

√
1 +

(nπ/2)2(U2
in−a2)

ω2

) , (4.22)
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Figure 15: Relation between real part of impedance and αi for the upstream-travelling
modes of figure 13. Solid lines indicate dispersion-relation solutions, equation 2.11, and
dashed lines show the first-order correction provided by equation 4.20.

where ± corresponds to α+ and α− modes. For a left-pointing supersonic jet (Uin < −a),
the ratio α/(c− Uin) is always positive for α− modes and negative for α+. If they have
supersonic phase speeds, the α− and α+ modes become, respectively, stable and unstable,
the number of supersonic modes increasing with Mach number.

Figure 16 shows the impedances associated with α+ duct-mode Ansätze for a jet, as a
function of Mach number. The impedance presents spikes whose locations collapse when
scaled using duct-mode phase-speeds. The impedance spikes are related to transition
between sub- and super-sonic phase-speeds: at the sonic limit, ξout → 0, and thus, ZV S →
∞. The flow transitions from soft- to hard-walled duct behaviour.

Figure 17 compares the DVS modes of a supersonic jet to α− and α+ duct modes,
illustrating a correspondence between jet and duct behaviour. As predicted, waves
corresponding to α− (respectively α+) duct modes exhibit spatial decay (respectively
growth). The transition from soft- to hard-walled behavior is seen in 18. Supersonic α+

modes correspond to the unstable supersonic modes of Tam & Hu (1989b): figure 17
corresponds to the transition between the subsonic and supersonic scenarios discussed
in their work (cf. Figures 11 and 10, respectively, in Tam & Hu (1989b)) . We thus
see that the instability mechanism identified by Tam & Hu (1989b) is underpinned by
interaction of acoustic modes with the vortex sheet, and an associated influx of energy
if the conditions discussed above are satisfied.

4.5. Summary

In this section we have shown how vortex-sheet impedance is a key parameter for the
dynamics of acoustic modes. Analysis of the acoustic energy budget shows how outflux
(respectively influx) of acoustic energy associated with a real, positive (respectively
negative) vortex-sheet impedance is the key to stabilisation (respectively destablisation).
We see how this can explain the stabilisation of acoustic modes in a compressible wake,
and, perhaps more importantly, the appearance of unstable modes in supersonic jets
(Tam & Hu 1989b).

In the next section impulse responses are computed. The goal is two-fold: by con-
structing DVS impulse response we confirm the statement made in §3.3 regarding the
stabilisation of jets, but not of wakes, that occurs on account of compressibility effects.
And by constructing wave-packets for finite-thickness shear layers we show that the
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Figure 16: Absolute values of impedance for α+ duct modes as a function of Mach number
(left) and of duct-mode phase speed (right). Impedance peaks, found at different M for
each harmonic, occur when the phase speed of the mode is sonic. Results are for ω = π,
with the blue region indicating subsonic phase-speeds.

transition to absolute instability associated with saddles formed by KH and upstream-
travelling acoustic modes, presented in §3.2, also exists when finite-thickness shear layers
are considered.

5. Impulse Response

5.1. Impulse response of DVS

The long-time impulse response is dominated by the dispersion relation dominant
saddle point (Huerre & Monkewitz 1985). The saddle points are identified by a null
generalized group velocity

∂ω

∂α
= −∂Ddvs

∂α
/
∂Ddvs

∂ω
= 0, (5.1)

with Ddvs given by equations 2.11. The ill-posed nature of the vortex-sheet model has
been evoked in §3.2: vortex sheets possess unbounded growth rates with increasing ω; the
inclusion of a small shear-layer thickness regularises the problem. The absolute stability
analysis thus amounts to a search for modes scaling with jet or wake width in the limit
of small shear-layer thickness, as in Yu & Monkewitz (1990). Because of this, we choose
to refer to the DVS wavepacket (impulse response) as a pseudo wavepacket, calculated
by mapping the dispersion-relation saddle points for each Vref . The wave-packets so
obtained can be used to infer the impulse response of any of the DVS base flows by a
simple change of reference frame: for any Vref the maximum growth rate for a space-
time ray, x/t = v∗, is obtained from the saddle point with maximum ω0,i, of a flow with
V ∗ref = Vref + v∗. Details of the computation are provided in §B.1.

The pseudo wavepackets, whose growth rates are shown in figure 19, present two
distinct regimes: the jet-like regime (Vref > 0.5) is dominated by symmetric modes, and
compressibility has a strong stabilising effect, while the wake-like regime (Vref < 0.5)
is dominated by antisymmetric modes with small sensitivity to compressibility. The
large stabilisation effect in the jet regime is attributed to the presence of total internal
reflection, as shown in figure 10.
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(a) M=1.2 (b) M=2.0

(c) M=2.1 (d) M=2.2

Figure 17: Instability of supersonic α+ and stability of supersonic α− modes for a left
pointing jet. Results are plotted in terms of −α. All subsonic modes are neutrally stable,
all supersonic modes being either stable (−αi > 0) or unstable (−αi < 0). Coloured
markers indicate DVS modes, black markers indicated duct modes, with the n = 0
mode identified by a square marker: this mode is not present in the soft-walled limit,
appearing only at the transition to hard-walled behaviour. The blue region indicates
supersonic phase speeds with respect to the outer region. Mach numbers 1.2, 2.0, 2.1, 2.2
from left to right, top to bottom. The plot is for constant Helmholtz numbers, ω = π,
and ρr = Tr = 1.

Figure 18: Pressure support for the first, second and seventh α+ duct-like modes in a
M = 2.0 jet. Lower harmonics, which have near-sonic phase velocities with respect to
the outer flow, resemble hard-walled duct modes; a transition to soft-duct behaviour is
observed as the harmonic number increases. Results are for Vref = 1 and ω = π.
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Figure 19: Growth rates of pseudo wave-packets of the DVS flow, for Tr = 1.
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Figure 20: Illustration of a finite shear-layer jet obtained with Equation 5.2.

5.2. Impulse response of finite shear-layer flows

We extend the foregoing results to base flows with finite-thickness shear layers. We
consider a profile modelled as,

U(y) = (Uin − Uout)

(
tanh

(
y+1
δ

)
+ tanh

(
−y−1δ

)
2 tanh

(
1
δ

) )
+ Uout, (5.2)

where δ controls the shear-layer thickness, as illustrated in Figure 20. The DVS model is
recovered when δ → 0. We restrict our study to the incompressible regime. The modes
were obtained by a discretisation of the Rayleigh equation using Gauss-Lobatto points. A
pseudo-spectral code based on Chebyshev polynomials was used to obtain the derivatives
at each point and standard generalised eigenvalue routines were used, as in Ormonde et al.
(2018). Details of the procedures used can be found in Appendix B.2.

Figure 21 shows wavepacket growth rates for different values of δ. For jets and wakes
with small backflow, the instability scales with the distance between the vortex-sheets,
corresponding to the DVS saddle points studied in the previous sections, slightly altered
by shear-layer thickness. We refer to this saddle point as the column saddle, following
Lesshafft & Huerre (2007); it corresponds to mode II in Jendoubi & Strykowski (1994).
For large reverse flows (0.2 < Vref < 0.8) the instability scales with δ−1 and we refer to it
as the shear-layer saddle, again following Lesshafft & Huerre (2007); it corresponding to
mode I of Jendoubi & Strykowski (1994). This saddle point is characterised by large values
of |αr|, suggesting negligible interaction between the vortex-sheets; it thus corresponds
to the saddle point studied by Huerre & Monkewitz (1985).

Although the shear-layer saddle point dominates most of the wavepacket, it is the
column saddles that, due to backflow, first exhibit temporal growth, showing how acoustic
modes are associated with the primary destabilisation mechanism of wakes and jets with
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Figure 21: Wave-packets growth rates for δ = 0.05, 0.10 and 0.20 (solid, dashed and
dotted lines, respectively). Blue and red lines correspond to symmetric and antisymmetric
modes, respectively. (a) Growth rates based on shear-layer separation; (b) Growth rates
rescaled using the shear-layer thickness δ.

finite-thickness shear layers. We also see that wakes are more sensitive to shear-layer
thickness than jets, becoming unstable even in the absence of reverse flow due to finite-
thickness shear layers, while jets remain marginally stable.

A more complete investigation of the effects of shear layer thickness effects on com-
pressible jets can be found in Tam & Hu (1989a), where it is shown that subsonic modes
may become unstable due to finite shear layer thickness; and in Parras & Le Dizès (2010),
where asymptotic expansions show that the presence of critical points (where c = U(y))
are related to the instability of the acoustic modes.

6. Conclusion

Modes of an acoustic nature have been identified in both compressible and incom-
pressible double vortex-sheet (DVS) flow models, which we have configured in order
to describe the behaviour of both jets and wakes. An analogy between these modes
and acoustic modes found in ducts has been formulated, and it requires one of two a
priori conditions for its validity: (1) limiting values of vortex-sheet impedance, which
are required to be either much larger or much smaller than a reference value; or, (2) the
presence of total reflection, with evanescent wave dynamics in the outer flow. Duct-like
modes are found in both jets and wakes over an extensive parameter space, generalising
the analysis of Towne et al. (2017) for a broader class of flows; and, in particular, in the
incompressible limit, where acoustic waves become evanescent pressure modes.

We show how upstream-travelling acoustic modes are central for a complete under-
standing of absolute instability. Specifically, deterioration of their duct-like behaviour
appears as a necessary condition for the onset of instability. When the acoustic modes
are duct-like, jets and wakes behave as waveguides, and upstream-travelling modes
have negligible interaction with Kelvin-Helmholtz modes. A departure from duct-like
behaviour enables interaction between acoustic and KH modes, a neutral saddle point
eventually forming between the two and marking the onset of absolute instability. This
scenario was verified to hold in both incompressible and compressible regimes.

The mechanisms we discuss are similar in some respects to those discussed by Healey
(2009), where confinement effects were shown to lead to absolute instability due to
the action of acoustic modes. Healey’s acoustic modes scale with the distance between
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confining walls, which are imposed. In our work they scale with the distance between
vortex-sheets, and the “wall” behaviour is an intrinsic part of the flow dynamics.

The phenomena we consider are also relevant for global instabilities, as for slowly-
diverging base flows, global modes may be built using the WKB method (Monkewitz
et al. 1993; Siconolfi et al. 2017), which shows the global instability to arise on account
of local pockets of absolute instability. Investigating of these modes in non-parallel
systems would thus appear worthwhile, as the global stability of a given system might
be modified/controlled via an appropriate manipulation of the acoustic mode.

The departure from duct-like behaviour was explored via an energy balance analysis,
derived in §4. Energy fluxes through the vortex-sheets are associated with spatial growth
or decay of the acoustic-mode amplitude. Energy outflow and inflow were shown to
underpin, respectively, the stabilisation and destabilisation of acoustic modes, and it was
shown how this behaviour is associated with the unstable supersonic modes identified by
Tam & Hu (1989b). First order corrections were derived in order to described acoustic-
mode amplitude variations close to the duct-limit conditions.

Impulse responses of jets and wakes with vanishing and finite-thickness shear layers
were computed, supporting previous results and showing that the main conclusions of our
analysis also hold for flows with finite-thickness shear layers, and are not an artefact of the
vortex-sheet model. The saddle points associated with finite-thickness shear-layer flows
are most relevant for absolute instability when strong reverse flow exists. For jets and
wakes with little or no reverse flow, the absolute/convective stability behaviour is found
to be dominated by interaction between Kelvin-Helmholtz and the upstream-travelling,
acoustic modes we consider.

The analysis opens up new possibilities for the study of global instability in free-shear
flows. Clarification of the role played by acoustic modes has permitted a unified expla-
nation of known, but previous unconnected, trends found in the literature: (1) transition
from convective to absolute instability due to backflow, wake cooling (Monkewitz 1988)
and jet heating (Monkewitz & Sohn 1988); (2) the differing symmetries of unstable wakes
and jets (Yu & Monkewitz 1990); (3) acoustic wave trapping (Schmidt et al. 2017; Towne
et al. 2017); and, (4) the unstable supersonic jet modes of Tam & Hu (1989b).

Perhaps more interestingly, the fact that acoustic phenomena are central in the
destabilisation of wakes (leading to the well-known von Kármán vortex street in the
saturated limit) and hot jets, suggests the possibility of novel approaches for flow-
control. Instead of targeting the classical Kelvin-Helmholtz instability, one may consider
modifying the behaviour of a flow by changing its acoustic properties.
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Appendix A. Review of duct acoustics

Given a duct containing a uniform, two-dimensional flow of velocity U , the linearised
Euler equations can be simplified, leading to the convected wave equation,(

∂

∂t
+ U

∂

∂x

)2

p′ − a2
(
∂2

∂x2
+

∂2

∂y2

)
p′ = 0, (A 1)
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where t denotes time, (x, y) streamwise and wall-normal Cartesian coordinates, p′ pres-
sure fluctuations and a the speed of sound. We assume hard walls at y = ±1, and
associated boundary conditions ∂p′/∂y(±1) = 0.

Using the Ansatz

p′(x, y, t) = ei(αx−ωt) (A sin(βy) +B cos(βy)) , (A 2)

where α and β are streamwise, x and wall-normal, y, wavenumbers, and ω is frequency,
the dispersion relation,

(ω − Uα)
2

= a2
(
α2 + β2

)
, (A 3)

is obtained. Boundary conditions enforce β = πn/2, where n is an integer harmonic
number. Odd values of n imply B = 0, leading to antisymmetric pressure distributions,
while even values imply A = 0, and symmetric pressure distributions. Solving for the
horizontal phase speed, c = ω/α, as a function of α and β, leads to modes corresponding
to a temporal stability analysis, given by,

c = U ± a
√

1 +
β2

α2
, (A 4)

and with group velocity,

vgroup =
∂ω

∂α
= U +

a

(c− U)
a. (A 5)

For U = 0, the roots of equation A 4 correspond to waves travelling to the right (plus
sign) and to the left (minus sign). For non-zero U the modes are convected by the mean
flow, as illustrated in figures 22 (a) and (b), where the phase velocity for a given α and
β is shown. We note that for U = 0, modes have phase and group velocities of the same
sign, whereas for U = 0.9 in some cases we have a mode with negative phase-speed and
positive group velocity. Solving for α, assuming fixed ω and β,

α =
−Uω ± a

√
ω2 − (nπ/2)2(a2 − U2)

a2 − U2
, (A 6)

giving modes that would be consistent with a spatial stability analysis.
Different scenarios emerge for real or complex α. If α is a purely real number it

represents propagative modes, whose amplitudes are constant along the duct. They are
found for,

ω2 > (nπ/2)2(a2 − U2). (A 7)

At lower frequencies, α has a non-zero imaginary part and the modes are evanescent,
presenting exponential spatial decay in amplitude. For U < a, the threshold between
evanescent and propagative modes is given by the cut-on frequency,

ωcut on = n
π

2

√
a2 − U2, (A 8)

while for U > a (supersonic flows) all acoustic modes are propagative and downstream-
travelling. Only evanescent modes are present in the incompressible limit (a→∞).

Figure 22 (c) and (d) show phase and group velocities for a fixed β = π/2 (first
harmonic), showing that in the presence of a mean flow and for frequencies slightly
above the cut-on value, modes with both signs can have subsonic phase speeds. These
are modes that are evanescent for U = 0 but become propagative when flow is present,
or equivalently, when the observer’s frame of reference changes (Rienstra & Hirschberg
2018).
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(a) U = 0.0 (b) U = 0.9

(c) U = 0.0 (d) U = 0.9

Figure 22: Behavior of phase (solid) and group (dashed) velocities for the positive (red)
and negative (blue) signs for propagative modes. Shaded regions indicates the subsonic
velocities on the laboratory reference frame. For figures (a) and(b) a = 1, ω = 1
and α(ω, β), while for (c) and(d) a = 1 and β = π/2 were used, with ω(α, β). The
interdependency of α, β, ω are given by equation A 3. Note that the boundary conditions
limit the allowable values of β to multiples of π/2, nevertheless we keep all values of β
for a clearer visualization of the trends.

Ducts with acoustically soft, or pressure-release, walls have as boundary conditions,
p(±1) = 0. Modes in these ducts share the same properties and dispersion relation as
the hard duct discussed above, differing in that the plane-wave mode (n = 0) only
satisfies the boundary conditions for the hard-wall case, and in that modes have opposite
symmetries in soft and hard ducts: odd modes (n = 1, 3, 5, ...) are antisymmetric and
symmetric for hard and soft ducts, respectively, and the opposite being true for even
modes (n = 2, 4, 6, ...).
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Figure 23: Locus of eight DVS saddles point with increasing Vref . Symmetric and
antisymmetric mode saddles in red and blue. The triangle, square and circle markers
correspond to Vref = 0, 0.5 and 1.0.

Appendix B. Impulse response

B.1. DVS pseudo wave-packets

Approximate DVS saddles were found by tracing root loci with increasing ωr for
different values of ωi. Results were then refined by numerically solving

Ddvs(α, ω) = 0, and
∂ω

∂α
=
∂Ddvs

∂α
/
∂Ddvs

∂ω
= 0, (B 1)

where Ddvs is the dispersion relation of the DVS. The saddles loci with Vref were obtained
by making small increments on it and using previous results as initial guesses. As in
Jendoubi & Strykowski (1994), many of saddle points were found, each comprising the
KH branch and an acoustic-mode branch. The locus of eight of these saddles with Vref ,
defined in equation 2.2, are shown in figure 23. For all parameters studied the dominant
saddle was formed by the first harmonic acoustic mode.

Saddles in the first and third quadrant were found to be formed by a pair of upstream-
or a pair of downstream-traveling modes, and thus are not relevant in the impulse
response calculation (Huerre & Monkewitz 1990; Huerre et al. 2000). Saddles of the
second and fourth quadrants are the relevant ones, showing a more complex behavior.

For Vref < 0.5 fourth quadrant saddles are formed by an upstream and a downstream
mode. However when Vref = 0.5 the downstream mode becomes an upstream mode, thus
the saddle is suddenly not “valid” anymore. This process is illustrated in figure 24. A
similar but opposite behavior is found in the second quadrant, for Vref < 0.5 the saddles
are all formed by two upstream modes, with one upstream mode becoming a downstream
mode at Vref = 0.5.

This phenomena is connected to KHs mode group velocity, which can be related to the
mean of inner and outer flow speeds. Clearly, for Vref = 0, the KH mode travels towards
positive x for the ideal wake, but for Vref = 1 the same mode travels towards negative
x for the left-pointing jet. At Vref = 0.5 the KH transitions from a upstream- to an
downstream-traveling mode, invalidating one saddle and validating the other. This leads
to a discontinuities in growth rates of both symmetric and antisymmetric pseudo wave-
packet, as seen in figure 19. This discontinuities are a consequence of the zero thickness
shear layers, disappearing when finite shear layers are considered, as explored in section
5.2.
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Figure 24: Briggs criteria for 4th quadrant saddle points for different Vref . Red line
represents the saddle point locus, black dashed lines show the path for both of the saddle
roots with increasing ωi, with arrows indicating direction of increasing ωi.

B.2. Finite shear-layer thickness wave-packet

Finite shear-layer effects are studied with profiles given by

U(y) = (Uin − Uout)

(
tanh

(
y+1
δ

)
+ tanh

(
−y−1δ

)
2 tanh

(
1
δ

) )
+ Uout, (B 2)

where δ controls the thickness of the mixing layer. The DVS model is recovered by
when δ → 0. Pseudo-spectral methods using Chebyshev polynomials and Gauss-Lobatto
points in order to obtain the derivatives ot each point and standard generalized eigenvalue
routines were used, as in Ormonde et al. (2018). Two consecutive mappings were used in
order to improve vortex-sheet resolution,

f1(y) =L
y√

1− y2
(B 3)

f−12 (y) =y + a2

(
tanh

(
y − 1

a1

)
+ tanh

(
y + 1

a1

))
, (B 4)

with L = 2 , a1 = 1.2δ, a2 = 2. The mapping given by f1 corresponds to the trans-
formation from Chebyshev to rational Chebyshev polynomials, and by f2 concentrates
collocation points around the vortex-sheets. The impulse response was obtained by
looking for saddle points in the complex α plane. Different runs were made varying
ω(r,i) between ωg,(r,i) ± 0.05, where ωg is the approximate saddle location. Saddles wave
number (α0) and frequency (ω0) were estimated by a second order fit of ω and α values
of the roots closer to the estimated saddle position.

The locus of saddle points as a function of Vref for two shear-layer thicknesses, δ = 0.05
and 0.1, is shown in figure 25. Two types of saddle can be observed. Column saddles
occurs for low |α| on both thicknesses and scale with the distance between shear layers.
Shear-layer saddles scales with shear-layer thickness, occurring for larger values of |α| for
thin layers.

The shear-layer saddles corresponds to finite-thickness single vortex-sheet saddles, first
studied by Huerre & Monkewitz (1985): when δ � 1 , they occur for |<(α)| >> 1, and
thus the wavelength is much smaller than the distance between shear layers, effectively
decoupling their behavior and recovering single vortex-sheet results, which is reflected by
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(b) δ = 0.10

Figure 25: Saddle locus in the complex α-plane with Vref . Blue and red lines indicate
“valid” (saddle formed by upstream- and downstream-traveling modes) symmetric and
antisymmetric modes. Black lines indicate invalid saddles. For small values of δ theres a
clear distinction between columns and shear layer saddles.

similar growth rates of symmetric and antisymmetric asbolute instabilities. The range of
Vref where the shear-layer saddle dominates has counterflow in the shear layer, and thus
corresponds to the cases of absolute instability of shear-layers due to backflow. Lesshafft &
Huerre (2007) shear-layer saddles scales with round jets shear-layer thickness, equivalent
to results seen in figure 21 for the DVS model.

Appendix C. Free vibration of a string with discontinuous density

A vibrating string obeys the following equation

∂2f

∂t2
(y, t) +

T

ρ(y)

∂2f

∂y2
(y, t) = 0, (C 1)

where f is the string displacement and T is the string tension, which is constant in the
absence of external forcing. We consider here a model where

ρ(x) =

{
ρout , |y| > 1

ρint , |y| < 1
(C 2)

We can solve the equation on each of the three domains (y < 1, |y| < 1 and y > 1) and
then patch the solutions using as interface conditions the continuity of string displacement
and force balance,

f(+1+, t) =f(+1−, t)
T

ρout

∂f

∂y
(+1−, t) =

T

ρin

∂f

∂y
(+1+, t) (C 3)

f(−1+, t) =f(−1−, t)
T

ρout

∂f

∂y
(−1−, t) =

T

ρin

∂f

∂y
(−1+, t). (C 4)

As boundary conditions we use that for |y| → ∞ we retain only waves moving away
from the origin. Assuming symmetric disturbances around y = 0 we have as solutions in
each domain
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f(x, t) =

{
Ae−iαouty−iωt, y > 1

cos(αiny)e−iωt, 0 < y < 1
, (C 5)

where αin = ω
√
T/ρin and αout = ω

√
T/ρout. Using the interface conditions we arrive

at the dispersion relation

tan(αin) =i

(
ρout
ρin

)3/2

αin = tan−1

(
i

(
ρout
ρin

)3/2
)

+ nπ (C 6)

αout =

(
tan−1

(
i

(
ρout
ρin

)3/2
)

+ nπ

)√
ρin
ρout

(C 7)

A similar equation is found for the antisymmetric mode, but with a cotangent instead of
the tangent function in equations C 6 and C 7.

The amplitude of the outgoing wave is

A =
cos(αin)

e−iαout
. (C 8)

In the limit when ρin/ρout → 0, αin tends to (n + 1/2)π, and A → 0, while
when ρin/ρout → ∞, |A| → 1. Interesting aspects of these limits is the emulation of
displacement constrains or of force relief constrains at x = ±1, as seen in figure 11. For
finite values of ρin/ρout, ω has a negative imaginary part, indicating a decay of amplitude.
When the density ratio is large, the amplitude decay is small because the amplitude of the
outgoing waves (A) is small, while on the limit of small density ratio even with unitary
amplitude of outgoing waves, the energy of those waves is small when compared with the
vibration energy of the inner string.
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