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Abstract: The Ourika River is an important tributary of the Tensift River in the water-stressed region
of Marrakesh (Morocco). The Ourika river flow is dominated by the snow melt contribution from
the High Atlas mountains. Despite its importance in terms of water resources, the snow water
equivalent (SWE) is poorly monitored in the Ourika catchment. Here, we used MERRA-2 data to
run a distributed energy-balance snowpack model (SnowModel) over 2000–2018. MERRA-2 data
were downscaled to 250-m spatial resolution using a digital elevation model. The model outputs
were compared to in situ measurements of snow depth, precipitation, river flow and remote sensing
observations of the snow cover area from MODIS. The results indicate that the model provides an
overall acceptable representation of the snow cover dynamics given the coarse resolution of the
MERRA-2 forcing. Then, we used the model output to analyze the spatio-temporal variations of the
SWE in the Ourika catchment for the first time. We suggest that MERRA-2 data, which are routinely
available with a delay of a few weeks, can provide valuable information to monitor the snow resource
in high mountain areas without in situ measurements.

Keywords: snow water equivalent; semi-arid climate; MODIS; MERRA-2

1. Introduction

The snowpack is an important resource in many semi-arid and Mediterranean catchments, mostly
because it provides meltwater runoff for irrigation during the crop growing season. Snow melt is
also important to replenish reservoirs before the dry summer season and contributes to the natural
recharge of the groundwater in the lowlands [1,2].

The Tensift basin is a major basin in Morocco covering 20,450 km2 around the city of Marrakesh
from the High Atlas mountains to the Atlantic coast. In this semi-arid region of Morocco,
the precipitations are scarce, while the evaporative demand is high [3]. In the center of the basin,
the Haouz plain (6000 km2) is extensively cultivated, and many farmers rely on irrigation to grow their
crops. In Marrakesh, where the urban population is approximately one million inhabitants and rapidly
growing (+2.5% per year) [4], the mean annual precipitation is only 250 mm and is concentrated
between November and April [3]. By contrast, due to the orographic enhancement of the precipitation,
the mean annual precipitation measured at Oukaimeden-club alpin francais (CAF) (2650 m.a.s.l.) in
the High Atlas region of the Tensift basin ranged between 300 mm and 900 mm over 1989–2007 [5].
This precipitation pattern drives the hydrology of the Tensift basin: most of the streamflow in the
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Tensift River originates from five main tributaries, which have their headwaters in the northern slope
of the High Atlas mountains [6]. These tributaries are (from east to west) the N’fis, Rheraya, Ourika,
Zat and R’dat rivers (Table 1, Figure 1). The estimated contribution of snow melt to streamflow in
these catchments over the period 2002–2005 ranged between 2% for the R’dat catchment in 2004 to
51% in 2003 for the Ourika catchment [6]. Previous studies about the hydrological processes in the
High Atlas have focused on the Rheraya catchment because this catchment was selected as a pilot
site in the SUDMED program and Laboratoire Mixte Internationale de Télédétection et Ressources
en Eau en Méditerranée semi-Aride (LMI-TREMA) [3]. These studies highlighted the importance of
snow melt to the hydrological regime of the Rheraya River [6,7] and the large interannual variability
of the snow accumulation over the last few decades [5]. In contrast, the snow regime in the Ourika
catchment is largely undocumented, although this catchment arguably has a greater importance in
terms of water resources due to its larger size. In addition, discharge measurements indicate that
the Ourika catchment has the highest mean specific discharge among these five catchments (Table 1),
which highlights its significance as a runoff production area.

Table 1. Characteristics of the five main tributaries of the Tensift River in the High Atlas. z0: elevation
of the river gauge station; z̄: mean elevation of the catchment; Q: mean annual discharge; QS: mean
annual specific discharge; FS: mean annual fraction of snow melt in the discharge. The discharges are
reported for the period 1970–2003 [8]. The fraction of snow melt was computed over 2002–2005 [6].

Catchment Area (km2) z0 (m) z̄ (m) Q (Mm3) QS (mm) FS

N’fis (at Lalla Takerkoust) 1288 750 2069 175 136 19
R’dat (at Sidi Rahal) 557 645 2091 72 129 7

Zat (at Tafriat) 540 720 2293 104 193 22
Ourika (at Aghbalou) 507 974 2438 156 308 41

Rheraya (at Tahanaout) 225 1036 2577 48 213 36

Figure 1. Location of the catchments of the five main tributaries of the Tensift River in the High Atlas.
SD: Oukaimeden station snow depth measurements.
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Previous studies have analyzed the interannual variability of the snow cover area (SCA) in
the Ourika catchment (among other catchments) using MODIS data [9], but the SCA is not a direct
indicator of the water resources that are brought by the snowpack. The main variables of interest for
water managers are the snow water equivalent (SWE) and snow melt.

There are different approaches to simulate SWE and snow melt in mountain catchments.
Degree-day models are practical to implement since they require only the daily precipitation and
temperature data [10]. On the other hand, physically-based distributed snowpack models solve the
snowpack energy balance equation [11]. They offer a more realistic representation of the snow cover
evolution especially in Mediterranean semi-arid areas where the solar radiation is a key forcing of the
snowpack energy budget, and the sublimation can represent a significant part of the ablation [2,12,13].
Unlike degree-day models, energy balance models do not require the calibration of the model
parameters, but they require more meteorological forcing data (precipitation, air temperature, air
humidity, solar shortwave radiation, atmospheric longwave radiation, wind speed, air pressure).
In many mountain regions like the High Atlas, these measurements are generally not available, and
there is no direct way to measure the SWE in mountains by satellite remote sensing to this date [14];
therefore, a solution is to use atmospheric model outputs as forcing to run a snowpack model [15–17].
In particular, climate model reanalysis like NASA modern-era retrospective analysis for research and
applications data (MERRA-2) provides an optimal reconstruction of the meteorological variables at
the global scale by assimilation of available in situ and satellite observations into a climate model.
Previous studies showed that MERRA-2 can provide a realistic representation of the precipitation
for snow and hydrological studies [18]. In Africa, the MERRA-2 precipitation correction algorithm
uses a specific configuration, which has been introduced to improve deficiencies in MERRA-Land [19].
This configuration has improved the simulation of the terrestrial water storage in Africa at coarse
resolution as observed by GRACE, but MERRA-2 skills were not specifically evaluated in North
Africa [18].

The objective of this study is to evaluate the combination of MERRA-2 data with a distributed
snowpack model to simulate and analyze the spatio-temporal variability of the snow water equivalent
(SWE) in the Ourika catchment from 1 November 2000–1 April 2018. The study period (2000–2018)
was chosen because it corresponds to the observation period of the MODIS sensor, which we use as
validation data to evaluate our SWE simulation.

We use SnowModel [20], a distributed energy-balance model to simulate the snowpack evolution.
A key asset of SnowModel is its MicroMet (meteorological data interpolation) subroutine, which
spatially interpolates the meteorological forcing over the domain using the digital elevation model.
In addition, SnowModel accounts for the effect of the terrain slope and aspect on the incoming solar
radiation, which can be significant in this semi-arid mountainous region. The MERRA-2 forcing was
downscaled to 250-m using a digital elevation model to account for the effect of the topography on the
temperature, humidity, wind, precipitation and solar radiation [16].

Finally, we take advantage of the availability of the MERRA-2 forcing in near real time until April
2018 to analyze the snow condition during the winter 2017–2018. According to a local newspaper, this
winter was characterized by heavy snowfall events in the High Atlas above 1000 m in the middle of
January and the beginning of February [21]. A rare snowfall event in the lower elevation areas also
made the headlines in various media outlets [22].

2. Data and Method

2.1. Study Area

The simulation domain covers the Ourika catchment at Aghbalou (982 m). The catchment is
centered at 31◦10 N, 7◦40 W between the semi-arid Haouz plain and the northern slope of the High
Atlas (Figure 1).
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The Ourika river provides water resources to the rural communities living in the valleys of
the High-Atlas (e.g., Setti-Fatma, Ourika). Meltwater is used to irrigate croplands and gardens
(e.g., Paradise of saffron, Ourika Organic Aromatic Garden) and feeds many irrigation systems in the
High-Atlas foothills and the Haouz plain until its confluence with the Tensift River near Marrakech.

The catchment elevation ranges between 974 m and 4001 m.a.s.l. (Jebel n’Tarourt). The fraction
of the catchment area above 3000 m.a.s.l. is 25%. Winter precipitation mainly falls as snow in these
high-elevation areas, but snow is also present above 2000 m more intermittently [9].

The catchment is sparsely vegetated, except for the valleys’ bottoms. The catchment geology
favors the rapid runoff of snow melt and rainfall since two thirds of the catchment are occupied by
Precambrian magmatic rocks characterized by a low infiltration rate [23].

The Ourika River regime at Aghbalou is dominated by the snow melt contribution with a
maximum discharge in April (Figure 2). On average, 60% of the annual discharge occurs between
March and May [8] (Figure 2). However, the hydrological regime is also influenced by the high annual
variability in the snowfall amount and melt-out date [6,9,24].

Figure 2. Mean monthly discharge of the Ourika River at Aghbalou (1970–2003 [8]).

2.2. Data

2.2.1. Meteorological Data

Despite the importance of the snow cover and its high interannual variability, there is only one
automatic snow depth record at the western edge of the catchment at Oukaimeden (3200 m.a.s.l.)
nearly on the water divide with the Rheraya catchment (Figure 1). The snow depth was measured by
using an acoustic sensor every half-hour and aggregated to the daily time step for this study. There are
many gaps in the measurements, but they still enable one to evaluate the model. The available data
cover six snow seasons (2004–2005, 2005–2006, 2008–2009, 2010–2011, 2013–2014 and 2014–2015).

The meteorological forcings to run SnowModel were derived from the Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), available at 0.5◦× 0.625◦of spatial
resolution. Each new month of MERRA-2 reanalysis is available approximately between the 15th
and the 20th of the next month. The extracted variable are listed in Table 2. Each MERRA-2 pixel is
characterized by its latitude and longitude and surface geopotential height (named as PHIS in the
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data file), which were converted to (x, y, z) coordinates in the WGS-84 UTM-29N projection system
(see Section 2.3).

Table 2. MERRA-2 variables used in this study.

Variable Name Description Unit

PHIS Geopotential height m2/s2

LON Longitude ◦

LAT Latitude ◦

T2M Temperature at 2 m K
QV2M 2-m specific humidity kg·kg−1

U2M 2-m eastward wind m·s−1

V2M 2-m northward wind m·s−1

PRECTOTCORR Precipitation rate kg·m−2·s−1

2.2.2. DEM

A digital elevation model (DEM) is required to downscale the meteorological forcings and run
the energy balance model (Section 2.3). Here, we used the Shuttle Radar Topography Mission Void
Filled (SRTM-Void Filled Version 4.1) [25]. It was resampled with the bicubic method to 250-m
spatial resolution to limit the computational cost of the simulation. This resolution was found to be a
good trade-off between the computational cost and the accuracy of the simulation, because it allows
capturing the main snow cover heterogeneities caused by the different radiative energy at the hillslope
scale [26].

2.2.3. Land Cover

The catchment land cover was obtained from the European Space Agency Climate Change
Initiative (ESA-CCI) classification map (Figure 3) [27]. The majority of the region (especially the high
elevated areas) is classified as bare soil.

Figure 3. Ourika land cover map.
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2.2.4. Snow Cover Area

We used 18 years of daily MODIS data at a 500-m spatial resolution to validate the simulation.
These data provide the snow cover fraction (SCF) within each MODIS pixel. The cloud pixels were
interpolated using the algorithm of Marchane et al. [9], which was specifically developed for the High
Atlas. The accuracy of the algorithm was evaluated by comparison to snow depth measurements and
a high-resolution snow mask derived from the Formosat-2 observations over the Rheraya catchment.
The results showed that the algorithm allowed a reduction of the cloud coverage to less than 1% with
an overall accuracy of 89% [9]. The MODIS data were produced from the Collection 5 MOD10A1 snow
product. However, Collection 5 has been discontinued since 1 January 2017; therefore, the entire time
series was reprocessed using Collection 6 MOD10A1. Since Collection 6 no longer provides the SCF,
and only the normalized difference snow index (NDSI) of snow-covered pixels, we applied the same
NDSI-SCF relationship that was used in collection 5 [9,28]:

SCF = −0.01 + 1.45 × NDSI (1)

Then, we applied the cloud-removal algorithm to generate a continuous time series of the SCF
from 1 September 2000–1 April 2018 in our study area, which is fully consistent with the data presented
by [9].

2.2.5. Ourika River Discharge

We used monthly river discharge data at the Aghbalou River gauge (982 m, Figure 2) from the
Tensift basin agency from 2000–2017 during the melt season (January–May). The daily discharge data
were only available for seven years in this period. We used the daily data to compute the average
discharge over a 10-day time step during the melt season.

2.2.6. In Situ Precipitation Gauge

We used daily precipitation measurements from three automatic weather stations (AWS) in the
Ourika catchment (Figure 1) (Oukaimeden-CAF 2612 m.a.s.l., Agouns 2381 m.a.s.l. and Amenzal
2374 m.a.s.l.). These data are available from 2000–2009.

2.3. Methodology

2.3.1. Snow Energy and Mass Balance Model

To simulate the SWE, the melt and the discharge in the Ourika catchment, we fed
SnowModel, a distributed energy balance snowpack evolution model [20], with MERRA-2 reanalysis.
The SnowModel has previously been tested with success in the Arctic, Antarctic and high mountain
regions, comparing simulated snow accumulation, distribution and ablation processes with
observations [29–38]. SnowModel is composed of four sub-models: MicroMet (meteorological
data interpolation), EnBal (energy balance computations) [20], SnowPack (snow depth evolution)
and SnowTran-3D (wind transport) [39]. Given the lack of in situ meteorological observations,
SnowTran-3D was not activated. We set all the SnowModel parameters to default values because
we have a limited observations’ dataset in the study area. By using only default parameters, we can
evaluate the accuracy of the model if it should be transposed to other catchments in the High Atlas
without calibration.

MicroMet is the key interface between the MERRA-2 data and the snowpack model, since
it enables distributing all meteorological data that are required to run the EnBal and SnowPack
sub-models over the study area at the resolution of the DEM. These variables are precipitation, air
temperature, relative humidity, wind speed, incoming solar radiation and incoming longwave radiation
at the hourly time step. MicroMet was originally designed to interpolate station data onto a regular
grid, but it can also be applied to downscale large-scale, surface-level forcing from climate model or
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reanalysis such as MERRA-2 [16]. In this case, each MERRA-2 grid cell intersecting the study domain
is considered as a virtual station, which is located at the center of the cell.

To distribute the meteorological data from (virtual) station data, MicroMet performs a horizontal
interpolation using the Barnes objective analysis scheme, which applies a Gaussian distance-dependent
weighting function to interpolate the station data to the model grid resolution. Topography-dependent
functions are applied to account for the effect of elevation, slope and aspect on the gridded
meteorological forcing. In the case of air temperature, a linear lapse rate correction is used:

Tx = Tstn − τ(Zx − Zstn), (2)

where Tstn (◦C) is the air temperature at elevation Zstn (m), Tx (◦C) refers to the temperature at a given
elevation Zx (m) and τ is default monthly lapse rate (◦C·m−1) [40]. A non-linear function is used for
the precipitation:

Px = P0 ×
[1 + χ(Zx − Z0)]

[1 − χ(Zx − Z0)]
, (3)

where Px (mm) is the precipitation at Zx, P0 (mm) is the interpolated precipitation, Z0 (m) is the
interpolated station elevation and χ (km−1) is the monthly precipitation correction factor, which
we set to default values [40]. The distributed relative humidity is derived from similar rules, while
the distributed wind speed is generated by accounting for the deflection of the wind field by the
terrain. The longwave and shortwave radiations are interpolated using the Barnes scheme, but the
shortwave radiation is modified according to the slope and orientation. For further details, the reader
can refer to [20].

2.3.2. Pre-Processing of MERRA-2 Variables

SnowModel takes as input the coordinates of the stations. However, a pre-processing of MERRA-2
variables was developed to make them compatible to SnowModel input. LON and LAT were projected
to X, Y coordinates in the WGS-84 UTM 29N projection system. The elevation of the MERRA-2 grid
cell was computed from the geopotential height (m2/s2) by dividing it by the Earth’s gravity (m/s2).

The relative humidity RH was retrieved from QV2M as follows:

RH =
QV2M

0.62es(T)
(4)

where es(T) is the water vapor saturation pressure, which is a function of temperature and
approximated by the Magnus–Tetens formula es(T) = 0.61exp( 17.625T

T+243.04 ).
Eastward (u) and northward (v) wind components were converted to wind speed (WS) and wind

direction (WD) using:
WS =

√
u2 + v2 (5)

WD = arctan(v/u) (6)

2.3.3. Model Evaluation

The validation of the model outputs is challenging due to the lack of SWE measurements in
Morocco and the difficulty of getting them otherwise (e.g., the cost of light detection and ranging
(LIDAR) campaigns [41,42] is very high, and the use of unmanned aerial vehicles (UAV) to estimate the
snow depth [43] is limited by its spatial coverage, on the one hand, and the complicated legal procedure
to use it in Morocco, on the other). To deal with this, we have combined different hydrometeorological
datasets and remote sensing observations. The simulated snow depth (SD) was extracted at the
Oukaimeden station (3200 m.a.s.l.) to assess the model performance using the root mean square error
(RMSE). We also evaluate the cumulative precipitation over the snow season (from 1 December–1 April
from 2000–2009 by using in situ precipitation). The model was further evaluated at the catchment
scale using the daily snow cover area of the Ourika catchment (SCA) from MODIS data (Figure 4).
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The simulated SCA was computed from the simulated SWE by computing, for every day of the
simulation period, the number of grid cells where the simulated SWE exceeded a fixed threshold of
20 mm [44]. Then, the snow covered area of the catchment was computed and compared to the MODIS
data using the coefficient of determination (R2) for each hydrological year from 1 September–31 May.
We excluded the period from 1 June–31 August, because the snow is absent during these months,
which could artificially increase the R2. We verified that varying an SWE-SCA threshold between
20 mm–50 mm did not significantly change the results. We also used the Ourika discharge to evaluate
the simulated runoff. SnowModel does not have a soil reservoir and only computes for each grid cell
a “runoff”, which is the total liquid water that leaves the snowpack or the rainfall if there is no snow
cover. The liquid water in the snowpack comes from the snow melt or the rain-on-snow. It is released
when the liquid water content exceeds the snowpack maximum storage capacity. Given the lack of
hydrological routing in the model, we compared the modeled runoff with the observed discharge
using monthly averages only.

Figure 4. Summary of the methodology. SCA, snow cover area; SD, snow depth; SWE, snow water
equivalent.

3. Results

3.1. Validation

3.1.1. Snow Depth at Oukaimeden

In general, the model simulated reasonably well the snow depth at Oukaimeden station (Figure 5).
The model failed to properly simulate the evolution of the snow depth in 2004–2005 because of
inconsistent precipitation events. The accumulation was underestimated in 2013–2014, but otherwise,
there is no clear tendency to overestimate or underestimate the snow depth at this point (Table 3).
The melting rates were correctly reproduced in 2005–2006 and 2008–2009.

Figure 5. Time series of the simulated (blue) and observed (red) daily snow depth (SD) at Oukaimeden.
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Table 3. RMSE, bias and correlation between simulated and observed snow depth at Oukaimeden (m).

Year 2004–2005 2005–2006 2008–2009 2010–2011 2013–2014 2014–2015

RMSE 0.21 0.19 0.22 0.15 0.33 0.17
Bias 0.06 −0.07 0.08 0.03 −0.11 0.01
R2 0.37 0.88 0.82 0.49 0.66 0.92

3.1.2. Snow Cover Area

The comparison with MODIS data shows that the model was able to produce a reasonable
simulation of the snow cover area in the catchment (Figure 6). We found a R2 greater than 0.70 for the
majority of the hydrological years (Table 4).

Figure 6. Time series of the simulated (blue) and observed (red) snow cover fraction of the
Ourika catchment.

Table 4. R2 between the simulated and observed snow cover area (SCA) and discharge (Q) in the
Ourika catchment for every hydrological year of the study period. The R2 was computed at the daily
time step from 1 September–31 May for SCA and at the monthly time step from January–May for Q
(NA: no measurements available for this year).

Years 2000–2001 2001–2002 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007 2007–2008 2008–2009

SCA 0.32 0.52 0.68 0.62 0.57 0.71 0.73 0.61 0.89
Q 0.32 0.02 0.81 0.48 0.48 0.68 0.71 0.62 0.85

Years 2009–2010 2010–2011 2011–2012 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 2017–2018

SCA 0.87 0.87 0.81 0.80 0.77 0.90 0.88 0.90 0.73
Q 0.25 0.72 0.85 0.16 NA 0.78 0.39 0.01 NA

However, the SCA was poorly simulated in 2000–2001, 2002–2003, 2005–2006 and 2006–2007.
We note that the model performance tends to increase over the study period. In particular, all R2 are
higher than 0.77 between 2009–2010 and 2016–2017. The R2 is slightly lower in 2017–2018 (R2 = 0.73),
but the snow season was not completely over at the time of writing this study.
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3.1.3. In Situ Precipitation

The simulated precipitation at Oukaimeden-CAF is poorly correlated with the observations
(R2 = 0.22), expect for the most recent months (Figure 7). At Amenzal and Agouns stations,
the simulated precipitation does not agree with the observations, and contrary to Oukaimeden-CAF,
the model largely overestimates the precipitation in the recent months (Figure 7). The model strongly
overestimates the precipitation in 2002–2003 at the three stations. The model simulated a high
precipitation total in 2005–2006, which was not recorded at Amenzal and Agouns stations, but it
was recorded at Oukaimeden.

Figure 7. Evolution of monthly precipitation between 1 December and 1 April from rain gauge
measurements (Obs: refers to observed) and MERRA-2/MicroMet (Mod: refers to modeled).

3.1.4. Ourika River Discharge

Figures 8 and 9 show the comparison between the simulated runoff and the observed discharge
at the outlet of the Ourika catchment. The mean R2 between the modeled runoff and the observed
discharge at the monthly time step from 2000–2017 is 0.55; 10 of 15 years have a R2 value higher than
0.5 (Figure 8). However, there remain large discrepancies between both datasets, in particular the low
R2 in 2000–2001, 2001–2002, 2003–2004 and 2004–2005 are consistent with the lower R2, which were
obtained for this year for the SCA. However, this is not always the case, as for instance, a low R2 in
discharge was obtained in 2012–2013 despite the correct simulation of the SCA for this hydrological
year (Figure 6). Figure 9 suggests that at the finer 10-day time step, the model can capture peak
discharges; however, the discharge regime is generally poorly represented except in 2012 and 2015.
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Figure 8. Time series of the monthly simulated runoff in m3/s (blue) and observed discharge in m3/s
(red) at Aghbalou between January and May from 2000–2017.

Figure 9. Time series of 10-day step simulated runoff in m3/s (blue) and observed discharge in m3/s
(red) at Aghbalou between January and May from 2008–2017.



Water 2018, 10, 1120 12 of 18

3.2. Variations of the Simulated SWE

3.2.1. Variations of the Simulated SWE from 2000–2017

The simulated SWE was averaged over the catchment area and is plotted in Figure 10.
The catchment SWE typically ranged between 80 and 120 mm we during the winter (Figure 10).
However, this range was largely exceeded (e.g., in 2006–2007 and 2014–2015), with values reaching
300 mm and 400 mm. Figure 10 indicates that the melt season generally starts in March since the slopes
of the SWE time series are generally negative after March. However, again, there is a large variability.

Figure 10. Evolution of the simulated SWE in the Ourika catchment from September 2000–April
2018. Each snow season from 1 September 2000–31 May 2017 was plotted at the daily time step as an
individual gray line. The blue line shows the mean of these values, and the gray envelope indicates
their first and third quantiles. The red line corresponds to the hydrological year 2017–2018. The year
2014–2015 is the green one, 2006–2007 pink and 2004–2005 black. Doted lines represent the interval
80 mm–100 mm.

Indeed, Figure 11 (top panel) indicates that the annual maximum SWE, an indicator of the
maximum water reserve in the catchment, varied between 290 mm we and 1100 mm we over the
study period. The date of the peak SWE also exhibited a large variability, from early March-mid-May
(Figure 11, middle panel). The date of the snowpack snow disappearance date has the same range of
variability from mid-March–late May (Figure 11, lower panel). Using the Mann–Kendall test, we did
not find any significant trend in these indicators at the 5% confidence level.

In order to visualize the spatial distribution of the simulated SWE within the catchment,
we extracted the 1 April SWE for every year (Figure 12). The SWE on 1 April is commonly used as an
indicator of the annual SWE before the melt season in the Northern Hemisphere [45]. In contrast with
the large temporal variability of the SWE, there is a consistent pattern in the SWE spatial distribution
at the scale of the catchment. Again, we did not find any significant trend at the resolution of the grid
scale in the 1 April SWE. The model suggests that the SWE can reach 1000 mm we on 1 April in the
highest part of the catchment during the wettest years (2005–2006, 2008–2009, 2014–2015). However,
the SWE can be almost null in other years (Figure 12).
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Figure 11. From top to bottom: annual values of the maximum simulated SWE, the date of maximum
SWE and D.date, representing the snow disappearance date (first day after 1-March that has SWE = 0).

Figure 12. Maps of the simulated 1 April SWE for every year of the study period.

3.2.2. Variations of the Simulated SWE over the 2017–2018 Snow Season

In the beginning of the 2017–2018 snow season, the simulated SWE in the Ourika catchment was
amongst the lowest values since 2000 (Figure 10). However, after the large snowfall events in January
and February, the SWE exceeded the mean value of the previous 17 years. Despite this high SWE value
in mid-February, the snowpack returned to a record low value on 1 April after one month of intense
melt. The SWE was very low even at high elevation on 1 April (Figure 10).
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4. Discussion

The evaluations of the simulation at the point-scale and at the catchment scale indicate that the
model performs rather well given the coarse resolution of the MERRA-2 input data. The point-scale
comparison with the observed snow depth at Oukaimeden gives correct results except for 2004–2005.
A single station has a limited spatial representativeness at the scale of the catchment, but it is the
only direct measurements of the snow depth in the area and provides a robust reference to evaluate
the temporal variations of the simulated snow depth. The model outputs do not agree as well with
the precipitations. The simulated precipitations are more consistent with observations at the high
elevation station of Oukaimeden than with observations at Agouns and Amenzal stations. We think
this is due to the fact that Agouns and Amenzal stations are located in valleys bottoms, while the
Oukaimeden-CAF station is located in an open area. This station is probably less influenced by the
local scale effects. Local atmospheric effects like orographic precipitation shadows are not resolved by
a large-scale atmospheric model such as MERRA-2 and are not represented in MicroMet either, since it
relies on a standard precipitation lapse rate to distribute the precipitation [40].

The validation of the simulated gridded precipitation with point-scale precipitation measurements
remains challenging because the precipitation gauges are influenced by local wind turbulences, which
can cause snow under-catch [46]. MODIS data suggest that the model performances at the catchment
scale are better than what could be inferred from the precipitation measurements alone (Figure 6).
The simulated runoff is also relatively consistent with the river discharge for the majority of years.
This indicates that the mean SWE in the catchment is generally well simulated.

MODIS data enable one to better understand the causes of the model errors during those snow
seasons, which exhibit the largest errors in the runoff simulation.

• In 2000–2001, the model produces high runoff values, while the discharge was low. In the same
period, large variations in the SCA were simulated, while MODIS data indicate that the SCA was
close to zero (Figure 6).

• In 2003–2004, the simulated SCA is well correlated to the MODIS SCA during the melt season,
although the model overestimates the runoff from May–April. This suggests that there is an
excess of liquid precipitation in the model forcing.

• In 2008–2009, the runoff simulation is completely anti-correlated with the discharge measurements.
Given that the snow depth at Oukaimeden and the SCA over the catchment are properly simulated
(Figures 5 and 6), we conclude that the simulated rise in runoff in spring is due to erroneous
rainfall events in MERRA-2.

We have used the runoff as an indicator of the discharge since the model does not simulate the
water routing and storage in the river network, subsurface flow and evaporation. Additional work is
needed to account for the hydrological routing of the snow melt and rain runoff within the catchment
to explore the model performance more deeply. However, modest performances with a calibrated
hydrological model were reported by [7] in the neighboring catchment of the Rheraya River, although
the Rheraya catchment is better monitored with several weather stations. The validation of discharge
in the High Atlas catchments is difficult, due to the frequent occurrence of flash floods, which modify
the river bed and cast doubt on the rating curve accuracy.

The simulation yielded better results over the last decade, which suggests that the MERRA-2
reanalysis was improved over the Ourika region, by incorporating additional measurements in the
recent years [47]. This confirms that this SWE simulation is not adapted for trend analysis, since
the number of observations in the MERRA-2 assimilation scheme is not guaranteed to be constant.
Therefore, we cannot firmly conclude that there is no trend in the snow cover in the Ourika catchment
from our analyses. In addition, any trend might be extremely difficult to detect given the large
interannual variability of the snow cover in the Ourika catchment.

The model outputs highlight the large interannual variability of the SWE in the Ourika catchment,
in agreement with previous studies in the High Atlas [6,9,12,48]. This variability is typical of semi-arid
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catchments and is much higher than what is observed in other Mediterranean mountains like the
Pyrenees [44] or Mount Lebanon [2].

Regarding the snow conditions in 2017–2018, the model indicates that this snow season was
characterized by a series of extreme events. The winter started like a snow drought, with a long period
without snow accumulation in November and December. The SWE rose drastically in January and
February after two major snowfall events, but melted rapidly afterwards (Figure 10). The analysis
of the air temperature over the Ourika catchment suggests that November 2017 was the hottest
November since 2000, while February 2018 was the third coldest February since 2001. This low
temperature in February 2018 explains the exceptional presence of snow in the low elevation areas.
The rapid melt thereafter can be explained by a succession of hot days; for instance, in March 2018,
the spatially-averaged maximum temperature was 8.5◦, while the average for the period 2000–2018
was 8.0◦ with a standard deviation of 1.2◦.

5. Summary and Conclusions

We showed the application of a distributed snowpack model in the snow-dominated Ourika
catchment in the High Atlas. We focused on the Ourika catchment because there is a lack of knowledge
regarding the snow dynamics in this catchment although snow melt is an essential water resource
to sustain irrigation in the semi-arid Haouz plain. To our best knowledge, this study is the first to
evaluate and analyze a spatially-distributed simulation of the SWE in the High Atlas mountains for a
period covering almost the last two decades.

To cope with the lack of weather station measurements in the High Atlas, we used the MERRA-2
reanalysis and the MicroMet model to generate a distributed meteorological dataset, taking into
account the main effects of topography on the meteorological variables. The model outputs were
compared to a snow depth record and the time series of the catchment snow cover area from MODIS.
The results suggest that the model gave a reasonable estimation of the snowpack evolution over the
period 2000–2018, despite the coarse resolution of the MERRA-2 forcing. We have used SnowModel
in its default configuration without calibration, which suggests that similar performances could be
expected if the model were applied to other ungauged catchments in the High Atlas.

The simulated SWE exhibited a significant interannual variability, both in terms of amplitude
(maximum amount of water stored in the snowpack) and duration of the snow season. The model also
gave clues about the snow conditions during the hydrological year 2017–2018, which was characterized
by different extreme meteorological events.

The model outputs, however, are still subject to large uncertainties. These results should be taken
with caution since we could not use direct SWE measurements to validate the model, but only indirect
observations of the snow cover dynamics. We suggest to conduct SWE measurement campaigns in the
following years to better validate the SWE simulation over the catchment. Further work is required to
evaluate the simulated SWE against discharge measurements at finer temporal timescales. The biases
in the MERRA-2 forcing could also be reduced by assimilating snow cover maps retrieved from remote
sensing data [49,50]. Satellite-derived snow cover maps are usually available with a shorter delay
than MERRA-2 (less than a week). Therefore, it should be possible to develop a near-real-time data
assimilation scheme to produce more accurate SWE maps. This is the focus of our ongoing work.

Yet, we think that the simple approach shown here could already be useful for water managers.
The availability of the MERRA-2 forcing with a short delay (about one month) now enables producing
interesting diagnostics regarding the state of the snowpack, over the course of the snow season, without
ground measurements. These data could help assess the snow water resource in the Ourika catchment,
and in other catchments in the High Atlas, to optimize the planning of the irrigation during the spring.
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