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2Département Fluides, Thermique, Combustion, Institut PPrime, CNRS–Université de
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Streaks have been found to be an important part of wall turbulence dynamics. In this
paper, we extend the analysis for unbounded shear flows, in particular a M = 0.4 round
jet, using measurements taken using dual-plane, time-resolved, stereoscopic particle
image velocimetry taken at pairs of jet cross-sections, allowing the evaluation of the
cross-spectral density of streamwise velocity fluctuations resolved into azimuthal Fourier
modes. From the streamwise velocity results, two analyses are performed: the evaluation
of wavenumber spectra (assuming Taylor’s hypothesis for the streamwise coordinate)
and a spectral proper orthogonal decomposition (SPOD) of the velocity field using PIV
planes in several axial stations. The methods complement each other, leading to the
conclusion that large-scale streaky structures are also present in turbulent jets where
they experience large growth in the streamwise direction, energetic structures extending
up to eight diameters from the nozzle exit. Leading SPOD modes highlight the large-
scale, streaky shape of the structures, whose aspect ratio (streamwise over azimuthal
length) is about 15. The data was further analysed using SPOD, resolvent and transient-
growth analyses, good agreement being observed between the models and the leading
SPOD mode for the wavenumbers considered. The models also indicate that the lift-up
mechanism is active in turbulent jets, with streamwise vortices leading to streaks. The
results show that large-scale streaks are a relevant part of the jet dynamics.

Key words: Authors should not enter keywords on the manuscript...

1. Introduction

The search for organised motion in high Reynolds-number turbulent flows has been an
important object of study since the 1960s. The identification of order in flows previously
considered to be entirely stochastic has broken old paradigms and established new ways of
analysing turbulence. Study of the turbulent jet led to the discovery of axially extended,
organised waves with amplitude modulation, referred to in the literature as wavepackets.
Despite their low energy, such structures are found to be a central element of the jet
dynamics, with amplitude growth related to the Kelvin-Helmholtz instability mechanism,
and are important for sound generation on account of their spatiotemporal coherence
(Mollo-Christensen 1967; Crow & Champagne 1971; Crighton 1975; Cavalieri et al. 2013;
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Jordan & Colonius 2013; Breakey et al. 2017). In supersonic jets wavepackets generate
sound through Mach-wave radiation (Tam & Burton 1984; Sinha et al. 2014), but in
subsonic jets sound radiation is associated with wavepacket jitter (Cavalieri et al. 2011;
Cavalieri & Agarwal 2014), which is postulated to be due to the interaction of wavepackets
of low amplitude and azimuthal wavenumber with the energy-containing eddies of the
turbulent field.

In wall-bounded flows, orderly structures have also been an object of study for some
time, and in particular those characterised by streamwise vortices coupled with elongated
streaks. Several such studies have been performed for boundary layers. Kline et al.
(1967) identified organised streaky structures in the viscous sub-layer of boundary layers,
with dynamics corresponding to a lift-up mechanism. Later, Smith & Metzler (1983)
explored some characteristics of these streaks, finding their spacing to be invariant with
Reynolds number; the spanwise spacing is λ+z = 100 for wall distances y+ < 5; here, the
+ superscript indicates non-dimensional distances with respect to the friction velocity
and the kinematic viscosity. Streaks located in the upper regions of the boundary layer
(y+ > 10) have increasing spacing as the Reynolds number Re is increased. The cited
works motivated several research directions, especially concerning regions of the boundary
layer responsible for turbulent kinetic energy production, and the role of streaks in this
process (Smits et al. 2011). More recently, Hutchins & Marusic (2007) performed PIV
and hot-wire experiments and compared their results with those of a model, showing
that the meandering motion of streaks can mask their real length: single-point statistics
may lead to results that do not correspond to the reality. In their analysis, Hutchins &
Marusic found very large streaky structures in the logarithmic region of high-Reynolds
number boundary layers, with streamwise extent larger than 20 times the boundary layer
thickness; these were labelled as superstructures. Similar structures have also been found
in turbulent channel and pipe flows by Monty et al. (2007).

The role of streaks and streamwise vortices in turbulence dynamics has been exten-
sively studied for wall-bounded flows. Seminal work by Ellingsen & Palm (1975) (later
completed by Landahl (1980)) considered the stability of linearly sheared flow, reaching
the conclusion that, though the flow may not support exponential growth of disturbances
(in the modal linear stability analysis framework), there may nonetheless be significant
disturbance amplification via a non-modal, linear mechanism. Streamwise vortices lead
to a large amplification of the streamwise velocity, forming streaks, in what is referred
to as the lift-up effect. This phenomenon was identified not only in Couette flow, but in
other canonical wall-bounded flows such as plane Poiseuille flow (Gustavsson (1991)) and
boundary layers (Hultgren & Gustavsson (1981)). The main signature of this effect is the
presence of streamwise elongated structures in the near-wall region of the turbulent flow.
Work by Hamilton et al. (1995); Waleffe (1995), later developed by Schoppa & Hussain
(2002); Farrell & Ioannou (2012), shows that these structures (streaks and streamwise
vortices) are an intrinsic part of the dynamics of a wall-bounded turbulent shear flow,
and constitute two of the building blocks that characterise the self-sustaining nature
of turbulence. As summarised by Waleffe (1995), this process would consist of three
main components: first, the occurence of (i) a spanwise modulation of the streamwise
velocity by streamwise vortices, which generates streaks; followed by (ii) a breakdown
of the streaks by an inflectional wavelike instability; finally, (iii) the streamwise vortices
are regenerated by a non-linear self-interaction of the streak instability, restarting the
process.

All of the studies discussed above consider wall-bounded shear flows. There are few
studies of similar structures for unbounded, free-shear flows, such as shear layers and
round jets. Bernal & Roshko (1986) performed flow visualisation in water using a
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Schlieren technique in two perpendicular sections of a plane mixing layer, revealing
the presence of Kelvin-Helmholtz vortices and streamwise streaks; such structures were
generated in the upstream region of the flow and sufficiently amplified in the downstream
region to be visible in the photographs. Later, Liepmann & Gharib (1992) found similar
structures in a transitional round jet of low Reynolds number (Re = 5500, based on
the jet diameter) using particle image velocimetry (PIV) measurements. Their analysis
concluded that streamwise vortices have a vital effect on the entrainment rate and in
the dynamics of the shear flow, which agrees with wall-turbulence research, as stressed
by Kozlov et al. (2002). Similarly, Jung et al. (2004) used 138 hot-wires to analyse the
radial structure of the most energetic modes in a low-Mach-number jet, performing a
slice-by-slice proper orthogonal decomposition at various axial stations. This was later
complemented by the analysis of Tinney et al. (2008), who performed PIV measurements
for a M = 0.85 jet. In both studies, the authors found that the most energetic structures
peak at non-zero azimuthal wavenumbers, with decreasing values of the peak wavenumber
as the PIV plane or the hot-wires device were moved downstream. However, no clear
association of such structure with the lift-up mechanism in wall-bounded flows was
made,and a characterisation of the streamwise extent of these structures was still lacking.

Interest in the role played by streaks in free-shear flows has increased in recent years.
Jiménez-González & Brancher (2017) studied the problem of the disturbances that
experience the largest temporal transient-growth in round jets, studying both static
and diffusing base flows. The optimal initial disturbance was found to take the shape
of streamwise vortices, leading to amplified streaks, with gains that scale with Re2

regardless of the diffusive nature of the base flow. Moreover, the different azimuthal
modes m appear to be underpinned by different mechanisms: while m > 2 appears to
be related to the lift-up mechanism (with growth rates that scale with 1/m3), m = 1
disturbances are more related to a shift-up mechanism, a dynamics that shifts the entire
jet in the radial direction. Finally, Marant & Cossu (2018) evaluated optimal transient-
growth in a hyperbolic-tangent mixing layer, reaching similar conclusions as Jiménez-
González & Brancher (2017): the growth rate scales with Re2 and the optimal initial
disturbances consist of streamwise vortices, which give rise to streamwise streaks as they
evolve in time. They also analysed how streaks can change the characteristics of the
Kelvin-Helmholtz instability, finding both stabilising and destabilising effects depending
on whether optimal sinuous or suboptimal varicose mode are considered in the analysis.
Both studies are theoretical, and to date conclusive evidence of the presence of large-scale
streaks in free turbulent shear flow is lacking. An identification of such structures would
be of considerable interest, since their effect on Kelvin-Helmholtz wavepackets may aid
in the modelling of turbulent jet noise.

The main objective of this paper is to show that streaky structures can also be found
in unbounded, free-shear flows of high Reynolds number using the same tools used
in wall-bounded turbulence, such as proper orthogonal decomposition, spatial Fourier
transforms, resolvent and transient-growth analyses. We analyse a M = 0.4 jet using
PIV measurements and the cited methods. Results show a high resemblance with what
is found for turbulent pipe flow and boundary layers, supporting the hypothesis that this
structure is a fundamental component of turbulence dynamics, not only in wall-bounded
flows, but in any shear flow.

The remainder of the paper is organised as follows. In § 2 we present the experimental
setup. In § 3 we describe the spectral proper orthogonal decomposition (SPOD), resolvent
and transient-growth analysis frameworks. Afterwards, in § 4 we present the main results
from the study, starting with a Fourier transform analysis, followed by the SPOD results
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and a comparison with the equivalent cases from resolvent and transient-growth analyses.
The paper is closed with summary of the conclusions in § 5.

2. Experimental setup

The present work uses the experimental database reported in Jaunet et al. (2017).
All experiments were conducted at the “Bruit et Vent” jet-noise facility of the PPRIME
Institute, Poitiers, France. The Mach number chosen for the analysis was M = 0.4
and the nozzle diameter D = 0.05m, leading to a diameter-based Reynolds number of
Re = 4.6× 105; the corresponding momentum-thickness-based Reynolds number Reθ is
4 × 103. The settling chamber contains a series of honeycombs structures and grids to
remove residual turbulence in the potential flow field. The flow is then accelerated into
a convergent-straight nozzle, where the boundary layer is tripped to ensure transition
to turbulence upstream the nozzle exit. Velocity measurements inside the nozzle confirm
that the boundary layer is turbulent. Details on the exit flow condition can be found in
Cavalieri et al. (2013) and Jaunet et al. (2017).

In order to decompose the field into azimuthal Fourier modes and build the cross-
spectral matrix, two time-resolved, stereoscopic particle image velocimetry (PIV) systems
were used, which could be moved independently, as illustrated in figure 1. The acquisition
frequency of the systems was 5kHz (10kHz for each PIV system), leading to a sampling
interval of ∆tUjet/D = 0.548, where Ujet is the jet velocity. A total of 19414 image
pairs was recorded for each acquisition point (x1;x2). The axial positions x1 and x2 of
the PIV planes varied between 1D 6 x1 6 8D and x1 < x2 6 8D with a spacing of
∆x = 0.5D; for each position, the first PIV system was kept fixed, while the second was
moved downstream until it reached the end of the domain.

Both the jet flow and the surrounding air were seeded by injection of pure glycerine
smoke particles in the pipe, upstream of the settling chamber. This ensures an homo-
geneous seeding with particles having diameters in the range of 1 − 2µm, responding
at frequencies up to St = fD/Ujet = 20, hence sufficiently small to follow the velocity
fluctuations of interest in this study. The particle-image velocimetry calculations were
carried out using a multipass iterative PIV algorithm (Scarano 2001). The first pass
interrogation window size was set to 32×32 pixels and decreased to 16×16 pixels with an
overlap of 50%. This led to a resolution of one vector every 0.85mm and PIV vector fields
containing 140× 110 velocity vectors. Outliers were detected using the universal outlier
detection technique on 3×3 interrogation grids. We used a residual threshold of 2, above
which vectors were considered spurious (Westerweel & Scarano 2005). Unexpectedly, no
sign of peak-locking was observed in the data. It is believed that this is due to the fact
that the particle images were dewarped (i.e. interpolated) prior to computation of the
cross-correlation. This has a blurring effect on the particle images which confines the
peak-locking effects beneath the PIV noise floor. In order to perform Fourier transform
in the azimuthal direction, the instantaneous velocity fields were interpolated onto a
polar grid of 32 points in the radial direction and 64 in azimuth for r/D 6 0.8 using
a bicubic interpolation. The spatial resolution of the interpolated field has been chosen
to match the original one in order to avoid any loss of information. More details can be
found in Jaunet et al. (2017).

In the following, we perform an analysis of the cross-spectral density (CSD) matrix of
the PIV data. The CSD is obtained using the Welch periodogram technique with blocks
of nfft = 128 samples, with overlap of 50%. The minimum resolved frequency, and
therefore the frequency resolution of the spectral content, is ∆St = 0.015. A standard
Hann tapering window was applied to all blocks of data to minimise spectral leakage.
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Figure 1. Experimental setup (left) and coordinate system adopted by the PIV planes (right).
Taken from Jaunet et al. (2017).

3. Analysis and modelling methods

The analysis and modelling methods employed are described in this section. These in-
volve spectral proper orthogonal decomposition, resolvent analysis and transient-growth
analysis.

3.1. Spectral Proper Orthogonal Decomposition

The experiment as it was performed allows us to build a cross-spectral matrix for
the streamwise velocity component. The data is decomposed into mean and fluctuating
components:

ũ(x, t) = U(x, r) + u′(x, t), (3.1)

where x = (x, r, θ), with the mean taken in time. The fluctuations are then Fourier
transformed in time and in azimuth so that:

u′(x, t) =

∫
ω

∑
m

u(x, r,m, ω)eimθe−iωtdω, (3.2)

where m is the azimuthal wavenumber and ω is the frequency.
Spectral proper orthogonal decomposition (SPOD) is used to identify the most ener-

getic coherent structures. Following Jung et al. (2004); Cavalieri et al. (2013), we can
write the SPOD integral equation as:∫

Ω

R(x, x′, r, r′,m, ω)ξ(x′, r′,m, ω)r′dr′dx′ = σ(m,ω)ξ(x, r,m, ω), (3.3)

where R is the two-point cross-spectral tensor of the streamwise velocity fluctuations, σ
is the eigenvalue and ξ is the corresponding eigenfunction. The integral is evaluated in
the whole experimental domain Ω.

The eigenvalue problem of eq. 3.3 leads to real, positive eigenvalues σ and orthonormal
eigenfunctions ξ. The expression as written in equation 3.3 relates structures extended
over the whole domain, given by the eigenfunctions ξ, with their respective energies
σ, allowing us to find the most energetic structures for each m − ω pair. The dual
PIV configuration used in the experiments only allowed accurate measurement of the
streamwise component u; thus, the energy represented by the SPOD modes refers solely
to the u component. Compared to previous works (Jung et al. 2004; Tinney et al. 2008;
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Cavalieri et al. 2013), which applied POD separately for a number of jet slices, the
present spectral POD modes are defined over the entire domain, thanks to the use of two
time-resolved PIV planes to obtain the azimuthally-resolved cross-spectral density.

3.2. Resolvent analysis

Resolvent analysis has been widely used in several kinds of flow, and is a useful tool to
analyse both laminar (focusing on identifying mechanisms of transition) and turbulent
flows, which is the present case. We follow the approach described by McKeon & Sharma
(2010), using the resolvent to identify optimal response structures in the jet and the shape
of the associated optimal forcing. In a locally parallel framework, we consider Fourier
transformed variables in the streamwise direction in addition to the Fourier series in
azimuthal wavenumber m and use the mean flow U(x1, r) at a given x1 station as base
flow. The Linearised Navier-Stokes equations in the input-output form can be written
as:

∂

∂t

(
H

[
φ

p

])
(kx, r,m, t) = L

[
φ

p

]
(kx, r,m, t) +

[
f

0

]
(kx, r,m, t), (3.4)

φu(kx, r,m, t) = C

[
φ

p

]
(kx, r,m, t), (3.5)

where φ = [u v w]T contains the velocity components (streamwise, radial and azimuthal,
respectively) and f = [fx fr fθ]

T is a forcing term (which is considered to gather the non-
linear terms in the momentum equation); the continuity equation is linear and thus has
no forcing term. The matrix L defines the evolution of the disturbances and C is a filter
matrix that isolates only the streamwise component of the velocity in the vector φu =
[u 0 0]T for consistency with the SPOD results, which account only for the amplitude
of the streamwise component; however, nearly no difference is found in the results if all
velocity components are considered in the analysis, since the flow response is dominated
by the streamwise component. All the matrix operators are described in Appendix A.
The radial discretisation is done using Chebyshev polynomials in r, following Trefethen
(2000), and in order to diminish the computational cost, we adopt the same mapping of
the radial domain used by Lesshafft & Huerre (2007) to concentrate Chebyshev nodes
at the shear layer and potential core of the jet; boundary conditions for the azimuthal
wavenumbers were implemented in the same fashion as the cited work. The base flow was
chosen to be a slice of the experimental mean flow U(x1, r) at x1/D = 2, but the choice
of other streamwise stations x1 was seen to lead to similar results. If the linear operator
L is stable one can define a frequency response function between input and output.
Assuming Fourier-transformed variables in time, as in equation 3.2, one can write:

[−iωH −L ]

[
φ
p

]
=

[
f
0

]
(3.6)

⇒
[
φ
p

]
= [−iωH −L ]−1

[
f
0

]
. (3.7)

Adopting a compact form for the forcing term via the matrix operator B, shown in
the Appendix, the previous equation leads us to

φu = C [−iωH −L ]−1Bf = Rf , (3.8)
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where the resolvent operator is given by R = C (−iωH −L )−1B. Finding the optimal
forcing and associated response of the problem involves solving the following problem:

s21 = maxf

{
〈Rf ,Rf〉φu
〈f , f〉f

}
, (3.9)

which can be achieved by performing a singular value decomposition of the operator R.
Usually, the inner products chosen in equation 3.9 are defined according to energy norms
for input f and output φu. In the present work we choose a norm 〈·, ·〉φu that weights the
problem so as to localise responses inside (r/D < 1) in order to avoid free-stream modes,
as reported by Dergham et al. (2013); using that formulation, we perform the analysis for
a weighted resolvent operator, isolating the optimal and suboptimals for each frequency
and wavenumbers leading to amplified responses in the jet region. The weighting function
Wφu is given as

Wφu = diag[0.5(1− b)(1 + tanh(rp/D − r/D)) + b]Wcheb, (3.10)

where b is a small parameter used to avoid singularities in the matrix inversion and
other problems with the Cholesky factorisation; rp/D = 1 is the position where the
function goes from 1 to 0, and Wcheb are the standard quadrature weights for Chebyshev
polynomials. With this choice of parameters, we can avoid modes related to the excitation
of free-stream disturbances and focus on the structures close to the shear region of the jet.
The inner products in eq. 3.9 become, in matrix form, 〈Rf,Rf〉φu = fHRHWφuRf and

〈f, f〉f = fHWf f, and the resolvent modes are obtained by taking the SVD of W
1
2

φu
RW

1
2

f ,
as in Tissot et al. (2017); Towne et al. (2018). For the present problem, we choose
Wf = Wcheb.

With the defined formulation, the output of the resolvent analysis is the optimal forcing
that would maximise streamwise velocity in regions where the turbulence intensity is
higher (r/D < 1). The most amplified response corresponds to turbulent structures most
likely to be excited by non-linear dynamics (Cavalieri et al. 2019). Moreover, if non-linear
terms in the Navier-Stokes system are modelled as white noise, the resulting SPOD modes
should be equal to response modes from resolvent analysis Towne et al. (2018).

3.3. Transient growth

While the resolvent analysis obtains the harmonic forcing that generates the maximum
response, transient growth shifts the analysis to the time domain. It focuses on finding
the initial disturbance that will experience the largest growth in time, in a linear non-
modal mechanism. Studies like Hanifi et al. (1996); Butler & Farrell (1992); Del Alamo
& Jimenez (2006); Pujals et al. (2009); Cossu et al. (2009) highlight the importance
of such analysis for both laminar and turbulent flows. Indications of the optimal paths
for transition to turbulence and even the optimal structures present in turbulent flows
can be found, and the latter is the focus of the present work (with optimal meaning
the structures related to the maximum amplification, which are thus more likely to be
found in the experimental data). Considering the problem without forcing (i.e. neglecting
non-linear terms), we can write the evolution of disturbances in the flow as:

∂

∂t

(
H

[
φ

p

])
(kx, r,m, t) = L

[
φ

p

]
(kx, r,m, t), (3.11)

an initial value problem with the solution
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[
φ

p

]
(kx, r,m, t) = eL t

[
φ

p

]
(kx, r,m, 0) (3.12)

Hence, the optimal growth curve is given by:

G(t) = maxφ(0) 6=0
||φ(t)||
||φ(0)||

, (3.13)

disregarding the pressure term in the energy norm calculation; || || refers to the euclidean
norm. The time in the growth curves is normalised by D/Ux, where Ux is the peak
of the mean velocity at the analised axial station. The equation above is then solved
using the eigenfunction expansion method described in Schmid & Henningson (2012),
considering nearly all eigenfunctions; only those with spurious eigenvalues were discarded.
The structure of the response at the time of optimal growth can be identified by this
computation, as well as the initial disturbance that generates that field. Also, since the
solution involves a singular value decomposition, the suboptimals at a given time can
also be obtained in the same calculation. Note that no turbulent viscosity was added to
the model for both resolvent and transient growth analyses.

4. Results

The results are divided into two distinct parts. In the first, we treat each cross-section
of the jet separately, transforming the time variable t into a pseudo-axial coordinate xt
using Taylor’s hypothesis, as in Marusic et al. (2017). Moreover, the azimuthal coordinate
θ is shown as a pseudo span z = rθ. We obtain thus (xt, z) fields, which are Fourier
transformed and compared to results of boundary layer experiments so as to evaluate
similarities between structures in a turbulent jet and the large-scale, elongated structures
seen in turbulent boundary layers. In the second analysis, we use all the pairs (x1, x2) of
the experiments to build the cross spectral matrix and obtain the SPOD modes for each
azimuthal mode, leading to a further characterisation of the jet structures.

We then analyse the radial shapes of these structures. Slices of the SPOD modes
are compared with the equivalent resolvent response modes at the same frequency and
azimuthal wavenumber. The same results are then compared with transient growth
responses at the time of optimal growth. In both analyses, the optimal forcing and optimal
initial disturbances are analysed, relating the phenomena present in the turbulent jet with
those found in wall-bounded turbulent flows.

4.1. Velocity fluctuations studied with Taylor’s hypothesis

Three representative PIV planes (x/D = 3, 5, 7) are selected, and the time coordinate
transformed using Taylor hypothesis, xt = tUref , where Uref is chosen to be the mean
velocity at the radial station analysed (r/D = 0.55). A pseudo-spanwise coordinate z
is obtained by rescaling azimuth θ as z = rθ. Axial velocity fluctuations at the planes
(xt, z) can be seen in Figure 2.

Looking closely at figure 2, one can identify elongated streaky structures, resembling
those found in wall-bounded flows, such as boundary layers (Hutchins & Marusic 2007),
pipes (Hellström et al. 2011) and channel flow (Monty et al. 2007), usually associated with
very large scale motions or superstructures in wall-bounded turbulence studies (Smits
et al. 2011). As is the case in turbulent boundary layers superstructures (Hutchins &
Marusic 2007), the streaks meander in the axial direction in this free shear flow. Also,
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(a) x/D = 3

(b) x/D = 5

(c) x/D = 7

(d) Turbulent Boundary Layer (y+ = 120)

Figure 2. Axial velocity fluctuations over a (xt, z) plane for a M = 0.4 jet for several axial
stations (x/D = 3, 5, 7, respectively) and r/D = 0.55 (a,b,c). The data was normalised by
the mean streamwise velocity at the given radial station. Colour ranges from −0.3 to 0.3.Axial
velocity fluctuations of large-eddy simulation results of a turbulent boundary layer at y+ = 120
and Reδθ = 4430 (Eitel-Amor et al. 2014) are also shown (d).

the pseudo-spanwise wavelength changes from small values at positions near the nozzle,
to larger values as the PIV measurement station is moved downstream; the streak width
for x/D = 3 is smaller than for the two other positions considered. This behaviour can be
expected since, moving downstream, the shear-layer thickness also increases; the scaling
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of streak sizes with the local thickness is explored next. To highlight the resemblance of
these streaks with the large scale structures from turbulent boundary layers, we show the
results from a large-eddy simulation performed by Eitel-Amor et al. (2014) at y+ = 120
and Reδθ = 4430 in figure 2(d). Visually, these structures, that scale with the boundary
layer thickness (δ99), show high similarity with the ones shown here for turbulent jets.

From the fields depicted in figure 2, a spatial Fourier transform is performed in both
pseudo-axial and spanwise directions for r/D = 0.42 and r/D = 0.55, using the mean
velocity at each radial station as the reference velocity for Taylor’s hypothesis. The
wavenumber spectra are shown in figure 3, from which some characteristics of the flow
can be educed.

The first is that, for r/D = 0.42, the peak wavenumber is always located at kx 6= 0: it
is already known that organised structures in the shape of axially extended wavepackets,
with spatial evolution characterised by the Kelvin-Helmholtz instability, are present
in this kind of flow (Cavalieri et al. 2013; Jordan & Colonius 2013). Nevertheless,
considerable energy is also located at kz 6= 0, which constitutes the signature of the
streaky structures described above. As the streamwise position of the PIV plane is moved
downstream, the energy spectrum becomes progressively concentrated around a specific
spanwise wavenumber (kzδθ ≈ 1). The main cause of this change in the wavenumber peak
is the growth and decay mechanism of wavepackets, the structures related to kx 6= 0 and
low kz: for regions near the nozzle, these structures have high amplitudes due to the high
growth rate of the Kelvin-Helmholtz mode in regions of higher shear. These structures
saturate and decay further downstream, causing their energy to decrease. On the other
hand, the energy of the structures related to kx = 0 seem to grow as we move downstream.
One important fact is that there is significant energy for kx → 0 and kzδθ ≈ 1 for all
positions considered. Figures 3(b,d,f) show the same spectrum for r/D = 0.55, a region
where wavepackets have lower amplitudes; one can see that the peak wavenumber in the
spanwise direction remains around kzδθ ≈ 1, but now for kx = 0. This is a sign that this
region is not dominated by the wavepacket dynamics, but by the streamwise elongated
structures seen in figure 2. Also, this result relates to what is visually perceived in figure
2: streaky structures have wavenumbers scaling with the local momentum thickness, and
thus when plotted as a function of jet diameter one observes larger streaks at downstream
stations.

To further highlight the relationship of these structures to those found in wall-bounded
flows, we compare, in figure 3, the wavenumber spectrum of this flow with that of
the turbulent boundary layer studied by Tomkins & Adrian (2005). Even though the
Reynolds number of the experiments differs (Reθ = 92542 at x/D = 7 for the present
experiment and Reθ = 1015 for the boundary layer), the peak position in the low kx
region is very similar for both cases (around kzδθ = 1), confirming that the structures
found experimentally in the present case are similar to those that are ubiquitous in
boundary layers, having even a comparable energy spectrum. Previous work (Bogey et al.
2011; Cavalieri et al. 2013) has highlighted this resemblance in the energy distribution
via azimuthal Fourier-mode decomposition, showing similar peaks in the wavenumber
spectrum with the proper scaling.

Finally, the premultiplied spectra for several axial positions of the PIV measurement,
kx = 0 and r/D = 0.55 can be seen in Figure 4(a). The energy amplitudes of the streaks
increase monotonically as we move the plane downstream, giving evidence that these
structures are present with a higher amplitude in regions even further away from the
nozzle, always peaking at the same value of kzδθ. The behaviour of the peak energy with
the streamwise position of the PIV plane is shown in figure 4(b).
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(d) x/D = 5, r/D = 0.55
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(f) x/D = 7, r/D = 0.55

Figure 3. Energy spectrum (colours, full contours) in the (kx, kz) domain for a M = 0.4 jet
for several axial stations (x/D = 3, 5, 7, respectively) and r/D = 0.42, 0.55. A comparison
with results from Tomkins & Adrian (2005) is also shown (dotted contours). Spectrum axes are
normalised by the momentum thickness δθ
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Figure 4. Spectra for kx = 0 and r/D = 0.55.

4.2. Spectral Proper Orthogonal Decomposition

Solving the eigenvalue problem defined by equation 3.3 using standard methods, we
can obtain the energy of each SPOD mode σn(m,ω) and the respective eigenfunction
ξ(n)(x, r,m, ω). Figure 5(a) shows the leading SPOD-mode energies for several Strouhal
numbers St = ωD/(2πUjet) and azimuthal modes m. The high-energy region for m = 0
was shown to be related to a coherent wavepacket structure, as analysed by Semeraro
et al. (2016); Lesshafft et al. (2018), and is not the focus of the present work. Instead,
we consider the m > 1 region of the spectrum, where the reported streaky structures
occur; in this region, the highest energies are found for St = 0 (except for m = 1 and 2),
meaning that the structures are nearly steady in time, being related to a slow dynamic
of the flow; here, SPOD modes for St = 0 should be interpreted as the St → 0 limit,
with structures whose time scale is larger than the segment size used in Welch’s method.
Even for m = 1 and 2 the peak still occurs at low Strouhal numbers, supporting the
hypothesis of a single mechanism. The energies of the first 4 SPOD modes for several
azimuthal wavenumbers m and ω = 0 can be seen in Figure 5(b). As can be seen, a peak
in m = 3 arises for n = 1 (which matches with the POD analysis performed by Hellström
et al. (2015) for turbulent pipe flow) with a substantial separation between mode 1 and
the suboptimals at the low m region.

Following the analysis performed by Hellström et al. (2016), we define the azimuthal
wavelength as λθ = 2π/m, which leads to a characteristic length of λθR, where R =
D/2. To obtain the characteristic streamwise development of the first SPOD mode, the
eigenfunctions were radially integrated (Ξ(x) =

∫
|ξ(1)|rdr) and then the axial coordinate

was normalised using this new characteristic length. Normalising also the amplitude
of each mode by its maximum, we find a collapse for these radially integrated first
SPOD modes for azimuthal wavenumbers m > 3. This underlines the fact that λθ is the
important length for the most energetic structures in this flow, highlighting the similarity
with what is found for turbulent pipe flow in Hellström et al. (2016). However, the present
analysis differs from the cited work mainly in the direction where this similarity was
found: Hellström et al. (2016) found the disturbances in pipe flow to be self-similar in
the radial direction, whereas we found a similarity and a characteristic length in the
streamwise direction.

A striking feature of Figure 6(a) is that the leading modes are very large scale motions,
extending several jet diameters in x. For instance, m = 10 structures have length of
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Figure 5. First SPOD energy for several Strouhal numbers and azimuthal modes (a) and
SPOD energies for each azimuthal mode for ω = 0 (b).
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Figure 6. Shape of the first SPOD mode for several azimuthal modes.

about 5 jet diameters, and lower-m modes are even larger than that. The aspect ratio of
structures can be estimated through the collapse found in Figure 6(b), and corresponds,
for m > 3, to a ratio of axial over azimuthal length equal to about 15, highlighting again
the streaky shape of these modes.

The shapes of the first and second SPOD modes for St = 0 and several azimuthal
wavenumbers can be seen in Figure 7 and 8. The main behaviour is similar for all modes:
the structures start to grow from the near-nozzle region, at radial locations close to
the shear layer, where linear mechanisms are expected to be relevant, and experience
a substantial growth in space, with high amplitudes in different regions of the flow. As
a consequence, we can identify the regions where each azimuthal mode is acting more
effectively. For instance, m = 1 and 2 are related to disturbances more concentrated at
regions with r/D < 0.5 and higher x/D. The oscillations in the streamwise direction
of the second SPOD mode for higher azimuthal wavenumbers, shown in figure 8, also
support the idea that these modes are related to streaky structures, representing their
meandering motion observed in figure 2 by the phase opposition between upstream and
downstream positions. One can see that the first and second SPOD modes do not decay
within the region covered by the measurements for m = 1; 2. Figure 7 also shows that
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Figure 7. Streamwise velocity fluctuations of the first SPOD mode for several azimuthal
modes.
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Figure 8. Streamwise velocity fluctuations of the second SPOD mode for several azimuthal
modes.

all modes are located close to the nozzle as we increase the azimuthal wavenumber; this
information, combined with the fact that streaks have higher amplitudes at downstream
positions, which was inferred from figure 4(a), explains what is seen in the energy
distribution of the SPOD modes: since lower azimuthal modes are related to more
elongated structures, modes related to lower m should be more energetic than the others
at downstream positions.

On the other hand, for m > 3, the modes have higher amplitudes close to the lipline,
highlighting their action in the region of maximum shear. The axial support of the
modes decreases with increasing m, following the decrease of λθ, as seen in Figure 6,
approaching progressively the nozzle. The fact that the peak position of these high
azimuthal wavenumber streaks is in the upstream region indicates that these modes
may well be captured by linear analysis. Particularly, the first SPOD mode for m = 10
has a high amplitude at x/D = 2; figure 9 shows a sketch allowing this mode to be
visualised with an instantaneous field at that position. It can be seen that the flow also
possesses the oscillatory behaviour in azimuth, displaying an instantaneous cross-section
of the streaky structures at that position with the correct radial support. Looking at
lower radial positions, the signature of an m = 1 streaky structure can also be identified,
albeit with smaller amplitudes, which again agrees with the analysis of figure 7, since
low-m modes are more relevant for higher x/D. The similarities between the structure of
this mode and the instantaneous velocity field are clear, showing that these streaks are
indeed present in snapshots of the turbulent jet.
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Figure 9. Isosurfaces of 40% of the maximum amplitude of the first SPOD mode (positive
values in red and negative ones in blue) and m = 10; contours rended for 0 < φ < π for clarity.
An instantaneous field from the experiments at x/D = 2 is also depicted.

In the present manuscript, we attempt to evaluate the correlation (or coherence) length
of streaky structures using SPOD. It is also possible to use the cross-spectral density to
evaluate lengthscales, similar to what is done by Jaunet et al. (2017); however, this
requires taking specific choices for streamwise and radial positions, and a complete
analysis for all possible positions becomes cumbersome. The use of SPOD circumvent
these problems, as the dominant spatial structure in the whole cross-spectral density field
is obtained in the leading eigenfunction. This allows a global estimate of lengthscales of
dominant turbulent structures.

4.3. Comparison with linear models

We now focus on analysis of the radial shapes of the most energetic disturbances in the
flow for St = 0 and azimuthal wavenumbers m = 3, m = 7 and m = 10 at x/D = 2, a
region where linear mechanisms are expected to be more relevant due to the higher shear.
Cross-sections of the leading SPOD modes are shown in figure 10(a,c,e) and, for these
azimuthal wavenumbers, it can be seen that most of mode dynamics is concentrated in
the sheared region, especially around the lipline, with low amplitudes in the central region
where the mean velocity is approximately uniform. As previously mentioned, the shapes
of the SPOD modes are similar to what is found for turbulent pipe flow (Hellström et al.
2015, 2016); the main difference in the present flow is the absence of the wall, showing
that this is not a sine qua non condition for the appearance of streaky structures in a
flow and that the sheared mean flow of the jet alone supports their emergence, consistent
with the analysis of Ellingsen & Palm (1975). Another conclusion is that the radial decay
of the structures is also fast. However, one should be careful in the analysis of the radial
decay of the structures; since the PIV window covered the interval 0 < r/D < 0.8,
structures with a radial support larger than that would be suppressed. Further analysis
of the SPOD modes will be performed in the following sections, where a comparison
between the most energetic structures with results from other tools (mostly used in wall-
bounded turbulence analysis) will be performed. All analyses were performed using the
experimental Reynolds number, considering the molecular viscosity.
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(a) First SPOD mode; m = 3 (b) First resolvent mode; m = 3

(c) First SPOD mode; m = 7 (d) First resolvent mode; m = 7

(e) First SPOD mode; m = 10 (f) First resolvent mode; m = 10

Figure 10. First SPOD and resolvent modes for azimuthal wavenumbers m = 3, m = 7 and
m = 10 (real part). Optimal responses from resolvent analysis are shown for the same radial
interval of the experiments for comparison (r/D < 0.8). The dashed lines indicates the position
of the lipline.
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4.3.1. Resolvent analysis

Using the formulation described in section 3.2, we obtain resolvent modes for the same
frequency ω = 0 and wavenumbers m = 3; 7; 10 for the M = 0.4 jet at x/D = 2. The
structures of the first mode can be seen in figure 10(b,d,f). We note that these plots
retain the key characteristics of the SPOD modes, suggesting that these structures can
be obtained via resolvent analysis of the turbulent mean. Comparing figures 10(b,d,f)
and 10(a,c,e), we see a good agreement in terms of both the position of the peak for
m = 7 and 10, using the lipline as reference point, and the radial support of these modes.
For m = 3, however, only the position of peak amplitude is captured by the resolvent
analysis, which resulted in modes with radial shape that differ in width from the SPOD
results. One of the reasons for that is the axial structure of the mode: as seen in figure
7, amplitudes of the leading m = 3 SPOD mode at x/D = 2 are rather low, and become
more relevant only further downstream. The local resolvent analysis is expected to better
match the SPOD results if these do not vary considerably in x, since in the local resolvent
analysis it is assumed that kx = 0, which leads to constant amplitudes in x. Still, even
with this assumption, the local resolvent analysis is, on the whole, able to predict the
shapes of the leading SPOD modes, particularly for higher azimuthal wavenumbers.

Another conclusion can be drawn from this analysis. It was shown by Semeraro et al.
(2016); Towne et al. (2017) that resolvent and SPOD modes should be identical if the
non-linear terms in the Navier-Stokes system were white in space. With that in mind,
the resemblance between SPOD and resolvent modes in the present work suggests that
the non-linear terms at that position (considered as forcing herein), may be related to
uncorrelated structures, that behave in the manner of white noise, at least for high
azimuthal wavenumbers.

Information about the optimal forcing shape is also of interest. One should recall that,
for wall-bounded flows, the growth of streaks via the lift-up effect plays an important role
(Schmid & Henningson 2012; Brandt 2014), and is one of the dominant phenomena in the
flow dynamics. These streaks are forced by streamwise vortices (or rolls) in a particular
manner: positive streaks are related to forcing that advects flow from faster to slower
regions, with the opposite happening for negative streaks. This roll-streak dynamics is
also suggested to be one of the building-blocks that allows turbulence to self-sustain, as
shown in Waleffe (1995); Hamilton et al. (1995); Hwang & Bengana (2016). The optimal
forcing from the resolvent analysis, and that leads to the streaky responses in figure
10(b,d,f), is shown in Figure 11. The optimal forcing is seen to consist mainly of radial
and azimuthal fluctuations; the streamwise component is negligible for the azimuthal
wavenumbers studied here. We can see that the same lift-up mechanism occurs for the
present case: whenever a positive streak occurs in the response mode, it is always related
to the movement of fluid from fast to slow regions (or from the inner part of the jet
to the outer region). The presence of these vortices in the forcing modes supports the
hypothesis that the lift-up mechanism is also relevant for turbulent jets.

4.3.2. Transient growth

A transient growth study of Michalke’s velocity profiles for jets and slowly diffusing jet
flows was performed by Jiménez-González & Brancher (2017). In the present work, we
extend the analysis to the turbulent jet, considering as base flow the experimental mean
flow at x/D = 2, using an implementation similar to the resolvent analysis described
in the previous section. We are thus not looking for initial disturbances in a laminar
flow that will generate the largest growth, triggering transition, as in the cited work; we
focus, rather, on turbulent structures with the largest transient growth in time, and which
would then naturally emerge as large-scale structures. This amounts to an identification
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Figure 11. Radial and azimuthal components of the optimal forcing (arrows) and normalised
streamwise component of optimal response (grayscale) from resolvent analysis for m = 3, m = 7
and m = 10.

of the responses that predominate in the flow and the initial disturbances that lead to
them. Also, using transient growth analysis, we obtain an idea of the time development
of these disturbances, giving relevant information about the time scales over which this
dynamics takes place.

The response at time of optimal growth for the transient growth analysis is similar
to what was obtained by the resolvent analysis, with streaky structures concentrated
close to the lipline. Figure 12 shows a comparison between the modes with optimal
transient growth, those obtained by resolvent analysis and a cross-section of the global
SPOD at x/D = 2. These plots emphasize the conclusions drawn in the previous section:
the transient growth analysis captures well the peak position of the streaks for the cases
studied and even the radial support of the modes is well represented for higher azimuthal
modes (m = 7; 10). It can also be seen that the structure of m = 3 SPOD mode at this
position has a much more experimental noise than in the other ones, which is probably due
to its low relative amplitude at x/D = 2. Still, the optimal responses from both resolvent
and transient growth analyses match the SPOD modes for the azimuthal wavenumbers
studied, with improving results as m increases.

One should recall that resolvent and SPOD modes were calculated for ω = 0, focusing
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Figure 12. Comparison between SPOD modes (ω = 0), response modes from resolvent analysis
(ω = 0, kx = 0) and response at the time of optimal growth from transient growth analysis
(kx = 0). The optimal is shown for m = 3, m = 7 and m = 10.

on structures that have a very slow evolution (not to say invariant) in time. On the
other hand, transient growth involves a different approach: the non-linear terms are set
aside (there is no forcing) and we investigate initial disturbances that would have the
highest growth for a given wavenumber. The fact that the present analysis shows a good
agreement with resolvent modes is an indication that the dominant dynamics in this flow
occurs in a low frequency, low wavenumber range, and is thus a long-time behaviour.
This suggests the possibility of using non-modal stability methods for turbulent jets not
only for the low-energy wavepackets, but also for the high-energy structures, similar to
the approaches used for wall-bounded flows.

The slow dynamics of the phenomenon is supported by the growth curves for each
case, depicted in figure 13(a). The large values of time for peak transient growth are also
in accordance with the behaviour found by Jiménez-González & Brancher (2017), who
showed that the time of maximum growth scales with the Reynolds number; their results
highlight a monotonic reduction of the optimal time of growth with increasing m, which
also agrees with the trend identified in figure 13(a). One should nonetheless bear in mind
that, since this analysis is restricted to a slice of the jet, this timescale is not related to
a streamwise vortex generated close to the nozzle, which would evolve in time and space
and become the resulting streak. In the locally parallel framework, the time is related
to a vortex initially generated at the same position as the resulting streak, clouding the
link between this result and the real time evolution of the structure.

Figure 13(b) shows how the growth curve changes with the axial station of the base
flow chosen for the calculation for m = 7, an azimuthal wavenumber whose first SPOD
mode extends through the entire domain. This results shows that this linear mechanism
is more relevant in regions closer to the nozzle, supporting our previous hypothesis. This
behaviour is also similar to what was found by Jiménez-González & Brancher (2017),
who found smoother growth curves with lower optimal gains and higher optimal times
for increasing shear layer momentum thickness; in our case, the momentum thickness of
each axial section increases as we move downstream, leading to growth curves that have
the same behaviour.

The initial disturbance that generates the optimally-growing streaks can be seen
in figure 14. The similarities with results from Jiménez-González & Brancher (2017)
and with the optimal forcing from the resolvent analysis confirms that the streaks are
generated via the lift-up mechanism. Initial perturbations in the shape of streamwise
vortices are those that will suffer the largest growth, evolving into streamwise elongated
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Figure 13. Growth curves from transient growth analysis (kx = 0).

streaks, resembling those found by Cossu et al. (2009). These vortices are also related to
those found by Tinney et al. (2008); the main novelty in the present study is their
connection with the dominant streaks. Once again, the presence of these structures
concentrated in the shear region, close to the lipline, is a suggestion that this, the lift-up
mechanism, is related to any shear flow, not necessarily with the presence of a wall.

4.3.3. Streaks downstream of the potential core

In the previous sections we have chosen to perform the numerical analysis in regions
closer to the nozzle, since the linear mechanisms we consider are expected to be stronger
in this region due to the higher mean shear. Still, as shown in figure 6 and 7, these
structures reach positions downstream of the potential core (x/D > 5.5 for this jet),
especially for low azimuthal wavenumbers; we here evaluate if linear models are able to
predict streak shapes in downstream locations. Figure 15 shows the comparison between
the radial dependency of the SPOD modes at x/D = 7 for m = 3; 4; 5 (wavenumbers
for which the streaks have relevant amplitudes in this position) and the linear models
using the base flow at this axial station, keeping the experimental Reynolds number in
the analysis. At this position, the SPOD results show that the radial support of the most
energetic structure considerably exceeds the measurement window, not only showing that
streaks are larger in this region, but also making the analysis problematic, since about
half of the radial information is lost. However, the models were able to qualitatively
reproduce the sharp radial growth of the streak amplitude from the jet axis, with better
results for transient growth analysis, especially for higher azimuthal wavenumbers.

5. Conclusions

In this work we have revisited the dual-plane, time-resolved, stereoscopic PIV database
of a turbulent jet provided by Jaunet et al. (2017). We identify the presence of streamwise
elongated, streaky structures in the turbulent field of a Mach 0.4 jet. To the best of our
knowledge, this is the first time that turbulent streaks have been observed in turbulent
jets. We have characterised the structures and highlighted similarities with those found
in wall-bounded flows. The velocity fields (shown using Taylor hypothesis, as commonly
done with experimental data of wall-bounded turbulence) exhibit a high resemblance with
pipe flows and boundary layers, with the dominance of streaky structures, suggesting
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Figure 14. Radial and azimuthal components of the optimal initial disturbance (arrows) and
streamwise component of optimal response (grayscale) from transient growth analysis for m = 3,
m = 7 and m = 10
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Figure 15. Comparison between SPOD modes (ω = 0), response modes from resolvent analysis
(ω = 0, kx = 0) and response at the time of optimal growth from transient growth analysis
(kx = 0) for x/D = 7. The optimal is shown for m = 3, m = 4 and m = 5.
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that the underlying mechanism associated with such structures may be similar between
jets and wall-bounded turbulence. Quantitative comparison of the energy spectrum with
boundary layer experiments were also performed, showing again a similarity for the peak
position of the spectrum. The growth of streaks in the axial direction was also inferred
by the growth of the energy for kx = 0 as the PIV plane was moved downstream.

A spectral proper orthogonal decomposition of the streamwise velocity fluctuations
clarified which modes are most relevant in the physical space of the experiment and how
each mode was extended in the streamwise direction. Moreover, a scaling law, similar to
that found by Hellström et al. (2016), was obtained, leading to a collapse of mode shapes
for azimuthal wavenumbers m > 3, showing that these structures are also self-similar in
the streamwise direction.

Cross-sections of the leading SPOD mode were compared with optimal flow responses
from resolvent and transient growth analyses. Resolvent modes and SPOD modes are in
agreement for the peak position and radial shape, with some discrepancies for radial
positions r/D > 0.6. The reasonable agreement obtained between the experimental
SPOD and the resolvent indicates that the real forcing is likely to be a white noise
in space, but improvement could be obtained if more realistic statistics of the non-linear
terms were used. The shape of the optimal forcing and corresponding response relates
the observed structures with the widely studied lift-up effect: for the turbulent jet, the
forcing takes the form of streamwise vortices with velocities directed such that flow is
moved from high- to low-speed regions, generating a positive streak; the opposite occurs
for the appearance of a negative streak.

Even though transient growth analysis involves different assumptions, considering
initial disturbances that lead to maximum growth in time, a good agreement was
found for the optimal response and the SPOD modes. Results indicate structures of low
frequency and wavenumber, characterised by a slow evolution in time. The optimal initial
disturbance has a shape close to the optimal forcing from resolvent analysis, allowing a
clearer connection with the lift-up effect studied in several other works, especially for
wall-bounded flows (see Brandt (2014) and references therein).

Altogether, the results herein identify the presence of streaks in a high-Reynolds
number, turbulent jet, displaying a direct connection with the lift-up effect. They show
that this phenomenon is also present in natural unbounded flows such as jets, showing
that the only element necessary for lift-up to occur is the presence of shear in a flow,
meaning that the existence of a wall is not a sine qua non condition for the occurrence
of streaks in turbulent flows. Moreover, since these coherent structures exist at the same
time as the well-known Kelvin-Helmholtz wavepacket, they may be related to some of the
features already studied in that framework. As observed by Liepmann & Gharib (1992),
axisymmetric Kelvin-Helmholtz vortices in transitional jets have secondary instabilities
leading to the appearance of streamwise vortices, which may provide the required forcing
leading to streaky structures. On the other hand, for transitional flows it was also
observed that streaks have a stabilising effect on Kelvin-Helmholtz vortices (Marant
& Cossu 2018). From such studies, a promising direction for turbulent jets would be
on a possible interplay between Kelvin-Helmholtz wavepackets, streamwise vortices and
elongated streaks, since this could be responsible for wavepacket jitter and corresponding
coherence decay (Cavalieri et al. 2011; Cavalieri & Agarwal 2014).

Another interesting direction is the connection of the present findings with the
dynamics of non-circular jets. In particular, nozzles serrations, or chevrons, are known
to lead to streamwise vortices, which in turn modify the jet mean flow (Gutmark
& Grinstein 1999; Alkislar et al. 2007). This could be thought as the generation of
steady streaks, which persist downstream, and tend to stabilise Kelvin-Helmholtz
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wavepackets (Lajús et al. 2015; Sinha et al. 2016; Marant & Cossu 2018). Such steady
streaky structures have been studied in turbulent boundary layers and related to the
lift-up mechanism Pujals et al. (2010). The optimal forcings studied here could serve
to guide nozzle design, increasing inhomogeneities of the shear layer in the azimuthal
direction. Further work following this direction for turbulent jets is promising.
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Appendix A

The underlying operators in section 3.2 were based on McKeon & Sharma (2010)’s
formulation and are defined below. The matrix A , which accounts for the evolution of
velocities is given by

A =


−ikxU + 1

Re (∆+ 1
r2 ) −∂U∂r 0

0 −ikxU + 1
Re∆ − 1

Re
2im
r2

0 1
Re

2im
r2 −ikxU + 1

Re∆

 , (A 1)

where ∆ = −k2x −
(m2+1)
r2 + ∂2

∂r2 + 1
r
∂
∂r . In order to consider the pressure term in the

formulation, the following operators are defined:

∇C =

[
ikx

∂

∂r
+

1

r

im

r

]
(A 2)

∇ =

 ikx
∂
∂r
im
r

 , (A 3)

which are responsible for both the inclusion of the pressure and the continuity equation.
Finally, the operator L of the Linearised Navier-Stokes equations is defined as

L =

[
A −∇
∇C 0

]
(A 4)

In order to isolate the time derivatives only in the velocity vector, we define the
following matrix:

H =

[
I3×3 03×1
01×3 0

]
, (A 5)

where I3×3 is a 3×3 identity matrix and 03×1, 01×3 are vectors of zeros (dimension 3×1
and 1× 3, respectively). Similarly, we define matrix B, which takes the forcing vector to
a compact form:

B =

[
I3×3

01×3

]
(A 6)
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Finally, the filtering matrix that isolates only the streamwise velocity for the resolvent
analysis is defined as:

C =

[
I 0
0 03×3

]
(A 7)

The boundary conditions were implemented as in Lesshafft & Huerre (2007) and are
dependent on the azimuthal mode as following:

u′(0) = 0
v(0) = 0
w(0) = 0
p′(0) = − 2

Rev
′′(0)

 for m = 0 (A 8)

u(0) = 0
v′(0) = 0
w(0)± iv(0) = 0
p(0) = 0

 for m = ±1 (A 9)

u(0) = 0
v(0) = 0
w(0) = 0
p(0) = 0

 for |m| > 1 (A 10)
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Peter 2017 Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical
layer. Journal of Fluid Mechanics 811, 95–137.

Tomkins, C. D. & Adrian, R. J. 2005 Energetic spanwise modes in the logarithmic layer of
a turbulent boundary layer. Journal of Fluid Mechanics 545, 141–162.

Towne, Aaron, Schmidt, Oliver T & Colonius, Tim 2017 Spectral proper orthogonal
decomposition and its relationship to dynamic mode decomposition and resolvent analysis.
arXiv preprint arXiv:1708.04393 .

Towne, Aaron, Schmidt, Oliver T & Colonius, Tim 2018 Spectral proper orthogonal
decomposition and its relationship to dynamic mode decomposition and resolvent analysis.
Journal of Fluid Mechanics 847, 821–867.

Trefethen, L. N. 2000 Spectral methods in MATLAB , , vol. 10. Society for Industrial
Mathematics.



Large-scale, streaky structures in turbulent jets 27

Waleffe, Fabian 1995 Hydrodynamic stability and turbulence: Beyond transients to a self-
sustaining process. Studies in applied mathematics 95 (3), 319–343.

Westerweel, Jerry & Scarano, Fulvio 2005 Universal outlier detection for piv data.
Experiments in fluids 39 (6), 1096–1100.


