
HAL Id: hal-02351562
https://hal.science/hal-02351562

Submitted on 6 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spy Game: Verifying a Local Generic Solver in Iris
Paulo Emílio de Vilhena, François Pottier, Jacques-Henri Jourdan

To cite this version:
Paulo Emílio de Vilhena, François Pottier, Jacques-Henri Jourdan. Spy Game: Verifying a Lo-
cal Generic Solver in Iris. Proceedings of the ACM on Programming Languages, 2020, 4 (POPL),
�10.1145/3371101�. �hal-02351562�

https://hal.science/hal-02351562
https://hal.archives-ouvertes.fr

Spy Game: Verifying a Local Generic Solver in Iris∗

PAULO EMÍLIO DE VILHENA, Inria, France
FRANÇOIS POTTIER, Inria, France
JACQUES-HENRI JOURDAN, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique,

France

We verify the partial correctness of a “local generic solver”, that is, an on-demand, incremental, memoizing

least fixed point computation algorithm. The verification is carried out in Iris, a modern breed of concurrent

separation logic. The specification is simple: the solver computes the optimal least fixed point of a system of

monotone equations. Although the solver relies on mutable internal state for memoization and for “spying”, a

form of dynamic dependency discovery, it is apparently pure: no side effects are mentioned in its specification.

As auxiliary contributions, we provide several illustrations of the use of prophecy variables, a novel feature of

Iris; we establish a restricted form of the infinitary conjunction rule; and we provide a specification and proof

of Longley’s modulus function, an archetypical example of spying.

CCS Concepts: • Theory of computation→ Separation logic; Program verification.

Additional Key Words and Phrases: separation logic, prophecy variables, least fixed point, program verification

ACM Reference Format:
Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan. 2020. Spy Game: Verifying a Local

Generic Solver in Iris. 1, 1 (January 2020), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
1.1 The Problem
The problem of computing the least solution of a system of monotone equations often arises in the

analysis of objects that have cyclic or recursive structure, such as grammars, control flow graphs,

transition systems, and so on. For instance, in the analysis of a context-free grammar, determining

which symbols generate an empty language, determining which symbols can derive the empty

word, and computing the “first” and “follow” sets of each symbol, are four problems that can be

formulated in this manner. Many other examples can be found in the area of static program analysis,

where it has long been understood that most forms of static program analysis are in fact least fixed

point computations. Early references include Kildall [1973], Kam and Ullman [1976], and Cousot

and Cousot [1977].

The problem is traditionally stated as follows: compute the least fixed point of a monotone

function E of type (V → P) → (V → P), where V is an arbitrary type of “variables” and P

is a type of “properties” equipped with a partial order ≤ and a least element ⊥. One can think

of E as a “system of equations” because to every variable it associates a “right-hand side” of type

(V → P) → P — something that can be evaluated to a property, under an environment that maps

variables to properties.

When the problem is stated in this way, it must be accompanied with a sufficient condition for a

least fixed point to exist. Instead, we find it beneficial to rephrase it in a manner that is both simpler

∗
This research was partly supported by the French National Research Agency (ANR) under the grant ANR-15-CE25-0008.

Authors’ addresses: Paulo Emílio de Vilhena, Inria, France, paulo-emilio.de-vilhena@inria.fr; François Pottier, Inria, France,

francois.pottier@inria.fr; Jacques-Henri Jourdan, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique,

91405, Orsay, France, jacques-henri.jourdan@lri.fr.

2020. XXXX-XXXX/2020/1-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

and more general, as follows: compute the optimal least fixed point of a monotone function E of

type (V → P) → (V → P), where V and P are as above.

The notion of an optimal least fixed point, which is defined further on (§2), can be roughly

described as follows. First, it is a partial function: it is not necessarily defined on all of V , but only

on a subset ofV . Second, it is a partial fixed point of E, in a sense to be made precise later on. Third,

it is smaller (with respect to the partial order ≤) than every partial fixed point, where their domains

overlap. Finally, among all partial functions that satisfy these three properties, it is optimal: that is,
it is the one whose domain is largest.

We prove that every function E admits a unique optimal least fixed point. Thus, the rephrased

problem does not need to be accompanied with an existence side condition. Furthermore, we prove

that the optimal least fixed point coincides with the least fixed point when the existence of the latter

is guaranteed either by the Knaster-Tarski theorem or by Kleene’s fixed point theorem. Thus, for

most practical purposes, the rephrased problem is indeed more general than the original problem.

1.2 Local Generic Solvers
Because this problem is so central and pervasive, several authors have proposed algorithms that

solve it in a generic way. These algorithms, or solvers, are parameterized with a type V , with a

partially ordered type P, and with a monotone function E of type (V → P) → (V → P). This

makes them applicable in a wide range of situations. Such solvers have been proposed by Le Charlier

and Van Hentenryck [1992], Vergauwen, Wauman, and Lewi [1994], and by Fecht and Seidl [1999],

who give a pleasant presentation of a solver as a higher-order function in the programming

language ML. In unpublished work, Pottier [2009] describes an OCaml implementation of a solver

that is closely related to Vergauwen, Wauman and Lewi’s solver and to Fecht and Seidl’s solverW .

The solvers cited above are of particular interest in that they are local. Instead of eagerly

attempting to compute the value µ̄E(v) at every variable v , they perform no computation at all

up front, and return a first-class function get of type V → P, whose specification is simple:

get implements µ̄E. In other words, when get is applied to a variable v , it returns µ̄E(v), if the
variable v is in the domain of the partial function µ̄E; otherwise, it diverges. The function call

get(v) performs as little work as possible: the value µ̄E(w) is computed for every variablew in a

certain subsetW of V that the solver strives to keep as small as possible. In an informal sense,W
is a set of variables which v directly or indirectly depends upon. The solvers cited above perform

dynamic dependency discovery: instead of explicitly asking the user for dependency information,

they spy on the user’s implementation of E and dynamically record dependency edges v → w .

Furthermore, once the value µ̄E(w) has been computed at some variablew , it is memoized, so that

it never needs to be recomputed. In short, a local solver is on-demand, incremental, and memoizing.
These solvers have imperative implementations: indeed, memoization and spying both rely on

long-lived mutable state, which persists across invocations by the user of solver functions. (There

are in fact two such functions, whose lifetimes are distinct, namely get and request. The latter is
presented in §5, where we explain the solver in detail.) Yet, if the solver is correctly implemented,

none of these side effects can be observed by the user. In fact, the specification of get that was
proposed earlier, namely get implements µ̄E, mentions no side effect: in such a case, we say that

get is apparently pure. (A similar specification, not shown yet, can be given to request.) If one can
prove, in a formal sense, that a solver satisfies these specifications, then this guarantees that it is

indeed sound for the user to reason under the illusion that the solver is side-effect-free.

1.3 Our Result and its Limitations
In this paper, we formally verify that a slightly simplified version of Pottier’s solver [2009; 2019]

satisfies the specification sketched above. We carry out a machine-checked proof in the setting of

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 3

Iris [Jung et al. 2018], a powerful concurrent separation logic. This shows that the solver is safe

(that is, combining it with valid user code cannot result in an illegal memory access or a data race)

and correct (that is, it computes the optimal least fixed point of the user-supplied function E).

Because Iris is a logic of partial correctness, our result comes with two limitations: it guarantees

neither termination nor deadlock-freedom. Although, in a certain technical sense, these are two

facets of the same problem,
1
let us discuss each of these limitations separately.

• A call to get can fail to terminate. There are two reasons why this is so. First, the optimal

least fixed point µ̄E is a partial function, whose domain dom(µ̄E) can be a proper subset

ofV . The function call get(v) will diverge if the variable v lies outside dom(µ̄E). We are able

to prove this fact, under its contrapositive form: our specification of get guarantees that, if
get(v) returns, then v ∈ dom(µ̄E) holds. Second, even when v lies in dom(µ̄E), the solver can
still diverge; this can happen, for instance, if the partial order has infinite ascending chains.

• A call to get (or request) can in some circumstances cause a deadlock. Indeed, even though

the solver is inherently sequential, it makes use of several locks, which serve as a runtime

mechanism to defend against certain patterns of misuse. Quite obviously, if there are multiple

user threads, then these locks forbid concurrent calls to the solver: in other words, they rule

out data races on the solver’s internal mutable state. More subtly, even if there is only one

user thread, they forbid reentrant calls, such as a call to get that takes place while an earlier

call to get is still ongoing. (Although such a scenario may seem contrived and unlikely to

arise, it is technically feasible, via recursion through the store.) In such an event, the solver

will attempt to acquire a lock twice, resulting in a deadlock.

The main reason why we use locks is that this allows us to equip the solver with a very simple

specification, where no side effects are mentioned at all. We believe that, if desired, we could verify a

variant of the solver that does not use any lock, and therefore runs no risk of a deadlock. This solver

would come with a more restrictive specification, which enforces a sequential use of the solver

functions by the client. This would be achieved by giving out and reclaiming unique permissions

to call the solver functions.

There are two main reasons why we do not guarantee termination. One reason is that, in order

to ensure termination, we would have to impose a certain requirement onV,P, E, and it seems

difficult to pick such a requirement without abandoning some generality. For instance, requiringV

to be finite and requiring P to have finite ascending chains suffices to ensure termination, but there

are reasonable use cases for the solver where V is infinite, so this condition seems too restrictive.

Another reason is that, although there exists a variant of Iris that imposes total correctness and

therefore can be used to guarantee termination, this variant currently does not support prophecy

variables [Jung et al. 2020], a feature on which our proof crucially relies. We imagine that it should

be possible to extend it with support for prophecy variables, but this could require nontrivial work.

1.4 Challenges and Previous Work
The solvers cited earlier (§1.2) compute a least fixed point via chaotic iteration, a well-known

technique whose correctness is not difficult to establish; see, for example, Besson et al. [2009].
However, several challenges arise from the fact that these are local generic solvers, which exhibit a

compact and apparently pure API, yet rely on a number of subtle internal tricks, such asmemoization

and spying. More specifically,

1
Locks in Iris/HeapLang are not primitive. They are implemented in a library, and the operation of acquiring a lock spins

until the lock is available. Thus, a “deadlock” manifests itself as an infinite loop. In a real-world implementation, depending

on how locks are implemented by the programming language and operating system, some deadlocks may be detected and

replaced with a graceful runtime failure. In the paper, we ignore this aspect and speak only of “deadlocks”.

, Vol. 1, No. 1, Article . Publication date: January 2020.

4 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

• The solver presents itself as a function lfp of type ((V → P) → (V → P)) → V → P. This

is a third-order function type, which means that there are three nested levels of interaction

between the user and the solver. This interaction goes roughly as follows. Initially, the user

applies lfp to a user function eqs, which represents a system of equations E. The solver

immediately returns a function get, which in the user’s eyes represents the optimal least

fixed point µ̄E. Later on, whenever desired, the user may invoke get. This in turn can cause

calls by the solver to the user function eqs. This function is passed a solver function request.
• The functions passed by the solver to the user, namely get and request, have internal side
effects on long-lived mutable state. Yet, these effects are not mentioned in the specification.

So, one must somehow prove that it is safe for the user not to be aware of them. Furthermore,

get and request are first-class functions, which the user can store and call at any time, from a

single thread or from multiple threads; one must somehow prove that this is safe.

• Long-lived mutable state is used for two distinct purposes, namely memoization and spying.

Whereas memoization is a well-understood technique, whose verification in a concurrent

separation logic is straightforward, spying seems much more challenging. The solver spies on

the user function eqs by recording a list of variables at which eqs invokes the solver function
request. Once eqs returns, the solver deduces that the set of variable-property pairs that have

been exposed to the user by these calls to request is sufficient for eqs to determine its result.

In other words, the result of eqs does not depend on any information beyond this set of

variable-property pairs. This is a dynamic dependency discovery technique.

Spying has been studied by Longley [1999], who proposes dynamic dependency discovery as a

typical application of this technique. He presents a third-order function modulus as an example. He

describes the desired denotational semantics of this function, and argues that this function is pure.

(If it wasn’t, it would not admit such a semantics in the first place.) He shows how to implement

modulus using imperative features, but does not actually prove that this imperative implementation

has the desired semantics.

The problem of verifying the correctness of a local generic solver has been offered by Pottier [2009]

as a challenge in an unpublished yet publicly available manuscript. He writes: “how and why

encapsulation [of the solver’s internal mutable state] is properly achieved is somewhat subtle, and

would deserve formal verification.” He offers an informal specification, but no proof.

A step towards addressing Pottier’s challenge is taken by Hofmann, Karbyshev and Seidl [2010a],

who use Coq to verify a simplified model of the local generic solver RLD [Seidl et al. 2012]. However,

their work exhibits a number of limitations. Both the solver and its client are modeled in Coq in

terms of functions, relations, and explicit state-passing. In particular, the client is modeled as a

strategy tree, which effectively means that it must be written in monadic style, in a monad that

allows querying the solver (in the same way that we allow eqs to invoke request) but does not allow
any side effects. (Examples of side effects that could be useful in practice, but are thus forbidden,

include logging, concurrency, or invoking another instance of the solver.) Furthermore, Hofmann et
al.’s simplified model of the solver is not on-demand, incremental, or memoizing. In this model, the

client invokes the solver just once, passing a set V of variables of interest. The solver replies with a

set of value-property pairs (v, µ̄E(v)), where v ranges over V . There is no memoization, therefore

no need to reason about it, and no danger of concurrent or reentrant invocations.

1.5 Contributions
In this paper, we make the following contributions:

• We propose a specification of a local generic solver in Iris [Jung et al. 2018]. We believe that

this (third-order!) specification is remarkably simple and permissive. It is apparently pure:

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 5

no side effects are mentioned. This has several consequences. On the one hand, the fact that

the solver is guaranteed to be apparently pure means that the user need not worry about the

solver’s internal use of mutable state. On the other hand, the fact that the user function eqs
is required to be apparently pure means that it can have internal side effects, provided one

can prove in Iris that eqs implements a mathematical function E.

• Instead of imposing a strong condition to guarantee the existence of a total least fixed point,

our specification relies on the concept of an optimal least fixed point, which exists as soon as

the partially ordered set (P, ≤) admits a least element ⊥ and the user-supplied function E is

monotone. In particular, we do not require V to be finite, and do not require P to satisfy

the ascending chain condition. The theory of optimal least fixed points, a generalization of

Charguéraud’s theory of optimal fixed points [2010b], is a contribution of our paper.

• We make the simple yet novel remark that a local solver can use Longley’s modulus [1999]
off the shelf. We split the solver’s implementation into two components, namely modulus, a
stand-alone function, and lfp, which uses modulus. We also split the correctness proof: we

verify each component independently. This requires proposing a suitable Iris specification

for modulus, proving that modulus satisfies this specification, and exploiting solely this

specification while reasoning about the use of modulus inside lfp. As far as we know, this is
the very first proof of correctness of the imperative implementation of modulus.

• In the proof of modulus, we feel a need to exploit an infinitary conjunction rule, that is, a
reasoning rule that states that ∀x . {P} e {y. Q x y} implies {P} e {y. ∀x .Q x y}. Unfor-
tunately, this rule is unsound; in fact, even the binary conjunction rule, which states that

{P} e {y. Q1 y} and {P} e {y. Q2 y} imply {P} e {y. Q1 y ∧Q2 y}, is unsound in Iris, due to

its interaction with ghost state. We work around this issue by establishing a weak variant

of the infinitary conjunction rule where the postcondition Q x y is required to be a pure

assertion. So far, such a conjunction rule has been missing in Iris, which is why we believe

that this result and its proof are of independent interest.

• In the proof of the restricted infinitary conjunction rule (§6) and in the proofs ofmodulus (§7)
and lfp (§8), we exploit prophecy variables, a recent feature of Iris [Jung et al. 2020]. Thus,

these proofs offer several original applications of prophecy variables. Furthermore, we make

two improvements to Iris’s prophecy variable API. We extend it with a new rule for disposing

of a prophecy variable, and we further extend it with support for typed prophecy variables.

These extensions are defined as libraries on top of Iris’s basic prophecy variable API: this

shows that they are sound. We find both of them to be useful in our proofs: they allow us to

work at a higher level of abstraction.

• In the end, we provide a proof that modulus and lfp satisfy the proposed Iris specifications.

Our proof is machine-checked in Coq
2
and is available online [de Vilhena et al. 2020]. As far

as we know, this is the first proof of a local generic solver implementation, expressed in a

programming language that allows side effects, including mutable state and concurrency, both

in the solver’s implementation and in user code outside the solver. Thanks to the modularity

of separation logic, the verified solver can be modularly combined with verified client code.

The paper is laid out as follows. We begin with background material on the theory of optimal

fixed points, including optimal least fixed points (§2), followed with background material on Iris

and prophecy variables, including improvements to Iris’s prophecy variable API (§3). Then, we

present the specification in Iris of a local generic solver (§4), followed with an overview of the

2
We make use of two classical reasoning principles, namely the law of excluded middle and Hilbert’s operator. Both are

used in the theory of optimal (least) fixed points (§2). The law of the excluded middle is also used on several occasions

when reasoning about the code (§6).

, Vol. 1, No. 1, Article . Publication date: January 2020.

6 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

code of our solver (§5). We move on to our proof in Iris of the solver, which is organized in three

main steps, namely the justification of a restricted infinitary conjunction rule (§6), the proof that

the function modulus satisfies a certain specification (§7), and the proof that the solver satisfies its

specification (§8). Finally, we discuss our results, the related work, and future work (§9, §10, §11).

2 A THEORY OF OPTIMAL LEAST FIXED POINTS
In this section, we define the notion of optimal least fixed point, a generalization of Charguéraud’s

optimal fixed point [2010b] to a setting where the type P is equipped with a partial order. Through-

out this section, V is an arbitrary type, P is an arbitrary inhabited type, and E is an arbitrary

function of type (V → P) → (V → P). The material in §2.1 is taken from Charguéraud [2010b],

whereas the content of §2.2 is new.

2.1 Optimal Fixed Points
Definition 2.1 (Partial function). A partial function ¯f is a pair (f ,D) of a total function f of type

V → P and its domain D, a subset of V .

Following Charguéraud, we write dom(¯f) for the right projection of
¯f , and write just f for its

left projection. We write f =D д as a short-hand for ∀v ∈ D. f v = дv , which means that the

functions f and д agree on D. We write V ↪→ P for the type of partial functions of V to P.

A partial function
¯f extends a partial function д̄, which we write д̄ ⊑ ¯f , if dom(д̄) is a subset of

dom(¯f) and f =dom(д̄) д holds. The partial functions
¯f and д̄ are equivalent, which we write

¯f ≡ д̄,

if
¯f extends д̄ and д̄ extends

¯f .

Definition 2.2 (Partial fixed point). Apartial function
¯f is a partial fixed point if for every functionд,

the agreement д =dom(¯f) f implies д =dom(¯f) E д.

That is, a partial function
¯f is a partial fixed point if every total function that extends

¯f satisfies

the fixed point equation on the domain of
¯f .

Definition 2.3 (Consistency). A partial fixed point
¯f is consistent if for every partial fixed point д̄,

f =dom(¯f)∩dom(д̄) д holds.

Thus, a consistent partial fixed point is one that agrees with every other partial fixed point where

their domains overlap. Charguéraud says “generally consistent”; we say “consistent” for brevity.

Definition 2.4 (Optimal fixed point). Among the consistent partial fixed points, the optimal fixed
point is the one that is greatest with respect to the relation ⊑.

In other words, the optimal fixed point is a consistent partial fixed point that extends every other

consistent partial fixed point. It always exists: it can be constructed as the union of all consistent

partial fixed points, which is itself a consistent partial fixed point. It is unique up to equivalence ≡.

This concludes our review of the theory of optimal fixed points. One key limitation of the

notion of optimal fixed point is that it is meant to be used in situations where the fixed point is

unequivocally defined. If two partial fixed points disagree at some point v ∈ V , then v definitely

cannot be in the domain of the optimal fixed point. Thus, this notion is of no use in situations

where there exist multiple (partial) solutions to the fixed point equation and one would like to pick

the least solution with respect to a partial order on P. In the next subsection (§2.2), we generalize

Charguéraud’s theory so as to remedy this limitation.

2.2 Optimal Least Fixed Points
Throughout this subsection, we fix a partial order ≤ on P. We also write ≤ for the pointwise

partial order on functions: f ≤ д is a short-hand for ∀v . f v ≤ дv . Accordingly, f ≤D д is short

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 7

for ∀v ∈ D. f v ≤ дv . We adapt the notion of a consistent partial fixed point to take the partial

order ≤ into account. The notion of an optimal least fixed point then falls out in a straightforward

way. These definitions generalize those given previously: instantiating ≤ with equality yields the

definitions of §2.1.

Definition 2.5 (Consistency up to ≤). A partial fixed point
¯f is consistent up to ≤ if for every partial

fixed point д̄, we have f ≤dom(¯f)∩dom(д̄) д.

Definition 2.6 (Optimal least fixed point). Among the partial fixed points that are consistent up

to ≤, the optimal least fixed point of E, written µ̄E, is the one that is greatest with respect to the

relation ⊑.

The optimal least fixed point always exists: it is constructed as the union of all partial fixed

points that are consistent up to ≤, which one can prove is itself a partial fixed point and consistent

up to ≤. It is unique up to equivalence ≡.

It is worth noting that the function E is not required to bemonotone: the existence and uniqueness

of the optimal least fixed point can be established without this hypothesis. The solver that we

verify, however, does require monotonicity; this condition appears in its specification (§4).

Although the optimal least fixed point always exists, there is a priori no guarantee about its

domain dom(µ̄E). In general, it is up to the user of the theory to establish a fact of the form

V ⊆ dom(µ̄E), which means that the partial function µ̄E is well-defined on a subset V of V . In the

following, we establish one such general result: if E admits a (total) least fixed point, then (up to a

certain technical condition) the optimal least fixed point µ̄E is defined everywhere and coincides

with the least fixed point.

Definition 2.7 (Overriding E with φ̄). If φ̄ is a partial function, then (E|φ̄) is defined as follows:

(E|φ̄) f v ≜

{
φv ifv ∈ dom(φ̄)

E f v otherwise

Theorem 2.8 (Coincidence). Suppose E admits a least fixed point µ. Suppose furthermore that,
for every partial function φ̄, (E|φ̄) admits a fixed point. Then, the partial function (µ,V) is the optimal
least fixed point of E. In other words, the optimal least fixed point is defined everywhere and coincides
with the least fixed point.

The technical condition imposed by Theorem 2.8, namely “for every partial function φ̄, (E|φ̄)
admits a fixed point”, is satisfied when the least fixed point is obtained either via the Knaster-Tarski

theorem (which requires (P, ≤) to form a complete lattice and requires E to be monotone) or via

the Kleene fixed point theorem (which requires (P, ≤) to form a directed-complete partial order

and requires E to be continuous). Indeed, if E is monotone or continuous, then so is (E|φ̄). Thus,

when the existence of the least fixed point is guaranteed by either of these standard theorems, the

optimal least fixed point is defined everywhere and coincides with the least fixed point.

3 BACKGROUND ON IRIS
3.1 Iris and HeapLang
Iris [Jung et al. 2018] is a powerful program logic, a modern form of concurrent separation

logic [O’Hearn 2007]. Both its metatheory and its user aspects (notations, tactics, etc.) are embedded

in Coq. A large part of it is programming-language-independent. Nevertheless, the Iris distribution

contains a sample programming language, HeapLang, so it is easy for a newcomer to quickly get

started and carry out proofs of HeapLang programs in Iris.

, Vol. 1, No. 1, Article . Publication date: January 2020.

8 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

We take advantage of this facility: the code that we verify is HeapLang code. In the paper, we take

the liberty of presenting it in OCaml syntax, which is more readable and should feel more familiar

to some readers. This introduces a formalization gap: our manual transcription of the HeapLang

code into OCaml-like pseudocode may introduce errors. In the future, it would be desirable to have

a mechanical way of bridging the gap between HeapLang and a subset of OCaml, or to instantiate

Iris for a subset of OCaml.

HeapLang is a call-by-value λ-calculus equipped with structured data (unit, sums, pairs), mutable

state (references), and shared-memory concurrency. A fork operation spawns a new thread. An

atomic CAS operation allows implementing synchronization operations. HeapLang is untyped. It is

equipped with a small-step operational semantics.

Iris defines a triple of the form {P} e {y. Q}, with a partial correctness interpretation: the

meaning of such a triple is (very roughly) that the execution of expression e in an initial state that

satisfies P must either diverge or terminate and return a value y such that the final state satisfies Q .

The variable y may appear in the assertion Q ; its type is val, the type of all HeapLang values. In
such a triple, P and Q are Iris assertions, whose type is iProp. A triple {P} e {y. Q} is itself an

assertion. We use a few standard Iris notations: if P is a proposition, whose type is Prop, then ⌈P⌉ is
an Iris assertion; P ∗ Q is a separating conjunction; P −∗ Q is a separating implication.

Locks are implemented in Iris/HeapLang as a library, which offers the operations newLock,
acquireLock, and releaseLock. We also use a higher-order function withLock which enforces a

balanced use of acquireLock and releaseLock. The reasoning rules associated with locks are standard

[Gotsman et al. 2007; Hobor et al. 2008]. A lock protects an invariant, represented by an assertion I ,
which is chosen when the lock is allocated. Acquiring a lock transfers the invariant from the lock to

the current thread; releasing a lock transfers the invariant back from the current thread to the lock.

3.2 Representation Predicates for Data and Functions
A number of simple entities, such as integers, pairs of integers, lists of integers, and so on, exist both

as data in the programming language HeapLang and as mathematical entities in the meta-language

(that is, in Coq). In order to write specifications for programs in a natural and uniform style, we

must explicitly define this correspondence.

To do so, we introduce a universe of data types: T ::= val | unit | T + T | T × T | list T . This
universe includes val, the type of HeapLang values itself; the base type unit; sums, products, and

lists. This universe is relatively poor, but could be extended if needed: we view it as a proof of

concept, which is sufficient for the purposes of this paper.

We define an interpretation function that maps a type T in this universe to the corresponding

native Coq type. In this paper, in order to avoid notational overhead, we make applications of this

function implicit: thus, we allow T to be read as a Coq type.

At every type T , we define an injective encoding function J·KT of type T → val. By doing so,

we define a correspondence between certain HeapLang values and mathematical entities: if X is

a mathematical value of type T , then the HeapLang value JX KT represents X . We make this idea

explicit by defining “x represents X at type T ” as a proposition:

Definition 3.1 (Represents / data). The Coq proposition “x represents X at type T ”, where x is a

HeapLang value and X has type T , is defined as x = JX KT .

We also define a decoding function decodeT · of type val → option T , which is a partial inverse

of the above encoding function: we have decodeT JX KT = Some X . The existence of this decoding
function means that the encoding function is injective. It is exploited in our construction of typed

prophecy variables (§3.4).

The following convenient abuse of notation is used in our proofs (§7, §8):

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 9

Definition 3.2 (Typed points-to). m 7→ X is short for ∃x .(m 7→ x ∗ x represents X at type T).

In this paper, it is often the case that a HeapLang function f is intended to behave like a

mathematical function F . By this, wemean that, if the HeapLang valuex represents themathematical

valueX , then the function call f x must return a HeapLang valuey that represents F (X), if it returns

at all (it can also diverge).

To make this idea precise, and to make it work also at higher function types and at partial

function types, we proceed as follows. We introduce a universe that includes the data typesT as its

base types and that features total function types and partial function types: τ ::= T | τ → τ | τ ↪→ τ .
Then, we define the assertion “f implements F at type τ ” by induction over τ . (Thus, this assertion
can be viewed as a logical relation between HeapLang values and mathematical values.) The three

cases of this definition are given in the next three definitions.

Definition 3.3 (Implements / data). The Iris assertion “x implements X at type T ”, where x is a

HeapLang value and X has type T , is defined as ⌈x represents X at type T ⌉.

Definition 3.4 (Implements / function). The Iris assertion “f implements F at type τ → τ ′”, where
f is a HeapLang value and F has type τ → τ ′, is defined as the following triple:

∀x .∀X . {x implements X at type τ } f x {y. y implements F (X) at type τ ′}

When the function f satisfies such a specification, we say that f is apparently pure. A pure

function typically enjoys a specification of this form. However, an apparently pure function is not

necessarily pure in a strong sense. Indeed, an apparently pure function can have internal side effects:

its execution can involve spawning a thread, acquiring and releasing a lock, updating a piece of

mutable state that is protected by a lock, and so on. As a consequence, the fact that f is apparently

pure does not imply that the expressions (f x, f x) and let y = f x in (y,y) are observationally

equivalent. It does guarantee a weak form of determinism: two calls to f x must return the same

result, if they both terminate. It does allow a user to reason about f , by applying the reasoning

rules of Iris, in exactly the same way as if f was pure.

In this paper, it is sometimes the case that a function f implemented in HeapLang is intended to

behave like a mathematical partial function F̄ . (We have explained in §2 how we encode partial

functions in Coq.) There are at least two distinct ways in which this can be expressed as a triple.

A strict way is to let the assertion ⌈X ∈ dom(F̄)⌉ appear in the precondition, which means that the

caller has the obligation to prove that the argument lies within the domain of the partial function.

A lax way is to impose no such requirement and instead adopt the convention that the function call

f x must diverge if the argument lies outside the domain. This convention is reflected by letting

the assertion ⌈X ∈ dom(F̄)⌉ appear in the postcondition. This allows a user to reason that, if the

call returns, then definitely the argument was in the domain.

The “strict” interpretation is so named because it imposes a stronger requirement on the client
than the “lax” interpretation. However, from the point of view of the implementor, who wishes to

prove that the code satisfies a certain specification, a “lax” triple is a stronger specification than a

“strict” triple: indeed, by the rule of consequence, it is clear that a lax triple entails the corresponding

strict triple.

In the following definition, we use the lax interpretation, because it is what we need in the

specification of lfp (§4), where we wish to give the strongest possible specification to get.

Definition 3.5 (Implements / lax partial function). The Iris assertion “f implements F̄ at type
τ ↪→ τ ′”, where f is a HeapLang value and F̄ has type τ ↪→ τ ′, is defined as the following triple:

∀x .∀X . {x implements X at type τ } f x {y. y implements F (X) at type τ ′ ∗ ⌈X ∈ dom(F̄)⌉}

, Vol. 1, No. 1, Article . Publication date: January 2020.

10 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

Prophecy Allocation

{true}
newProph()

{p. ∃xs. p will receive xs}

Prophecy Assignment

{p will receive xs}
resolveProph p x{

(). ∃xs′.
⌈xs = x :: xs′⌉
p will receive xs′

} Prophecy Disposal

{p will receive xs}
disposeProph p
{(). ⌈xs = []⌉}

Fig. 1. Rules for allocating, writing, and destroying untyped prophecy variables

Typed Prophecy Allocation

{true}
newProph()

{p. ∃Xs. p will receive Xs}

Typed Prophecy Assignment{
⌈x represents X at type T ⌉
p will receive Xs

}
resolveProph p x{

(). ∃Xs′.
⌈Xs = X :: Xs′⌉
p will receive Xs′

}
Typed Prophecy Disposal

{p will receive Xs}
disposeProph p
{(). ⌈Xs = []⌉}

Fig. 2. Rules for allocating, writing, and destroying typed prophecy variables

3.3 Prophecy Variables
In several places,

3
our proofs rely on prophecy variables, a concept originally due to Abadi and

Lamport [1988], which has very recently appeared in Iris [Jung et al. 2020].
4
The purpose of

prophecy variables is to remedy a shortcoming of Hoare logic that Iris inherits, namely the fact that

an assertion describes just the current state of the computation. In other words, there is no direct

way for an assertion to refer to either past states or future states. As far as the past is concerned,
one typically works around this limitation by allocating ghost state in which one stores relevant

history information. As far as the future is concerned, though, is there a work-around? Prophecy

variables offer an answer: in short, they are a form of ghost state, and they store information about

the future. Although this sentence is arguably confusing, the rules that govern prophecy variables

in Iris are in fact rather easy to explain, so we review them right away.

Iris currently offers just two primitive operations on prophecy variables, namely allocation and

assignment. The expression newProph() allocates and returns a fresh prophecy variable p. The
expression resolveProph p x writes x , an arbitrary HeapLang value, into the prophecy variable p.
A prophecy variable can be written several times. Thus, during its lifetime, a sequence of values
is written into it. Because our focus is on proving safety properties of programs, we can restrict

our attention to finite runs of programs: therefore, we may consider that, during the lifetime of a

prophecy variable p, a finite sequence of values is written into p.
This remark suffices to understand at an intuitive level the reasoning rules for newProph and

resolveProph, which appear in Figure 1, left and middle. The rule Prophecy Allocation has

precondition true, which means that it is always permitted to allocate a new prophecy variable p,
and postcondition ∃xs. p will receive xs,5 which means that there exists a sequence of values xs that
will be written to p in the future. The key point is, even though we may not know, at this point

in the code, which sequence of writes will take place in the future, we are allowed to name this
sequence by anticipation. The assertion p will receive xs is affine, and appears as a precondition in

3
Prophecy variables are exploited in the proof of the restricted infinitary conjunction rule (§6), in the proof of modulus (§7),
and in the proof of the solver (§8). We do not see how these proofs could be carried out without prophecy variables.

4
We were fortunate to learn about prophecy variables in Iris, through a personal communication, before they were presented

in a published paper.

5
In Jung et al.’s paper [2020], this assertion is written Proph(p, xs).

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 11

the second rule, Prophecy Assignment. This means that this assertion also serves as a permission

to write p. The postcondition of the rule Prophecy Assignment is natural: if initially we know

that the sequence of values that will be written to p in the future is xs, then, after writing x into p,
we can deduce that the sequence xs must be of the form x :: xs′, where x is the value that was just

written and xs′ is the sequence of values that remain to be written in the future.

Prophecy variables are ghost variables: they do not exist at runtime. All operations on prophecy

variables are erased at compile-time. It would be nice if these operations appeared only in the

proof of the program, not in the program itself: this is how ordinary ghost state is handled in Iris.

Unfortunately, in the case of prophecy variables, a naïve attempt to adopt a similar treatment would

lead to circularities and contradictions. This is why, at present, these operations must appear in the

code, even though they have no runtime effect.

3.4 Two Improvements to the Prophecy Variable API
In this section, we present two improvements to Iris’s prophecy variables, which we have imple-

mented on top of Iris’s existing prophecy variable API.

First, we remark that it seems desirable to extend the API with a third rule, Prophecy Disposal,

also shown in Figure 1 (right). In this rule, the assertion p will receive xs appears in the precondition,
but not in the postcondition, which means that it is consumed. Thus, by applying this rule, we

abandon our permission to write p in the future. In return, we are assured that no more writes will

take place, which implies that xs must be the empty sequence. This reasoning rule is not currently
offered by Iris’s primitive prophecy variables. Perhaps Iris could be easily extended to offer it; we

have not explored this avenue. Instead, we implement the extended API in Figure 1 as an additional

layer above Iris’s primitive prophecy variables. The implementation is simple: in short, a write of v
at the upper level is translated to a write of inj

1
v at the lower level, while a disposeProph operation

at the upper level is translated to a write of a “mark” inj
2
() at the lower level. The upper-level

assertion p will receive xs is defined in terms of the lower-level assertion as follows:

∃xs′. ©­«
p will receive xs′ ∗
⌈ map inj

1
xs is a prefix of xs′ ⌉ ∗

⌈ and xs is the longest list that enjoys this property ⌉

ª®¬
Next, we remark that Iris’s primitive prophecy variables are untyped. In the rules of Figure 1,

x and xs respectively have types val and list val, where val is the type of all HeapLang values. Yet, it
is often more natural and convenient to be able to work with a typed prophecy variable, into which

one writes values of some typeT , which is fixed when the prophecy variable is allocated. This often

removes the annoying need, noted by [Jung et al. 2020], to explicitly deal with “spurious prophesied

values” . It turns out, again, that typed prophecy variables are easy to implement as an additional

layer above untyped prophecy variables. We restrict our attention to the types T in our universe of

data types (§3.2), for which we have an injective encoding function J·KT of typeT → val. Then, we
are able to offer the reasoning rules shown in Figure 2. These rules are essentially identical to those

of Figure 1, except that the user works directly with an assertion of the form “p will receive Xs”,
where Xs has type list T . (The type T is an implicit parameter of this assertion.) The assertion

p will receive Xs is defined in terms of a lower-level untyped-prophecy assertion as follows:

∃xs. ©­«
p will receive xs ∗
⌈map J·KT Xs is a prefix of xs⌉ ∗
⌈ and Xs is the longest list that enjoys this property ⌉

ª®¬
Each of the encoding layers described above is hidden behind an abstraction barrier, so the end

user relies purely on the rules of Figure 2 and does not need to know how these rules are justified.

, Vol. 1, No. 1, Article . Publication date: January 2020.

12 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

4 SPECIFICATION OF A SOLVER
Before presenting the particular solver that we verify, we present our specification of a “local

generic solver”. Although there exist several slightly different ways of implementing a solver, some

of which are discussed later on (§9), we think that all of them should in principle satisfy this

specification.

4.1 Assumptions about Variables and Properties
A solver is parameterized with a type of variablesV and a type of properties P. We assume that

these types are part of the universe of data types T defined earlier (§3.2), so that the predicates

“_ represents _ at type V” and “_ represents _ at type P” are well-defined. As a result, the predicates

that characterize apparently pure functions, such as “_ implements _ at type V → P”, make sense

as well.

A solver is also parameterized with a number of functions that allow manipulating variables

and properties. Regarding variables, the user must provide an implementation Var .Map of maps

whose keys are variables. Regarding properties, the user must provide a property Prop.bottom and

an equality test Prop.eq on properties. (No ordering test is required.) These parameters exist at

runtime: they are HeapLang values.

The specification of a solver is further parameterized with a number of objects and properties that

exist at the mathematical level, but not at runtime. The type P must be equipped with a relation ≤,

which must be a partial order, and with an element⊥, which must be the least element of this partial

order. The value Prop.bottom must satisfy the specification “Prop.bottom represents ⊥ at type P”.

The value Prop.eq must satisfy the specification “Prop.eq implements λxy.Is_true (x = y) at type
P → P → bool”. Finally, the dictionary operations in Var .Map must behave as expected: for the

sake of brevity, we omit their specifications, which are standard. As usual in separation logic, these

specifications involve a user-defined abstract predicate isMap, whose arguments are a HeapLang

value and a mathematical finite map. Examples of the use of this predicate appear in the proof of

the solver (§8). For instance, the assertion “isMap permanent P” grants permission to access the

data structure located at address permanent in the heap and guarantees that this data structure

currently represents the mathematical map P .

4.2 Specification of lfp
Once the stage is thus set, the remainder of the specification of a solver is simple. An Iris statement

of this specification appears in Figure 3. It can be read as follows: a solver computes the optimal least

fixed point of a system of monotone equations. At a slightly greater level of detail, if E is a monotone

function, then, provided the user supplies an apparently pure function eqs that implements flip E,6

the function call lfp eqs returns an apparently pure function get that implements the optimal least

6
The user-supplied function eqs is so named because it can be thought of as a “system of monotone equations”. flip E

is synonymous with λv .λF .E F v . It is the function E whose arguments have been exchanged. We let eqs take first a
variable, then a function (instead of the reverse) because this seems slightly more natural and convenient in practice.

∀eqs.∀E . (E is monotone) ⇒

{eqs implements flip E at type V → (V → P) → P}

lfp eqs
{get. get implements µ̄E at type V ↪→ P}

Fig. 3. An Iris specification for a local generic solver

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 13

fixed point µ̄E of E. Unfolding the definition of implements (§3.2) makes the following points

apparent:

• The user can expect eqs to be applied to a variable v and to an apparently pure function f
that implements some mathematical function ϕ of type V → P. It must then return the

property E ϕ v .
It is worth emphasizing that the function f , which is passed by the solver to the user, is

in reality likely to have a variety of internal side effects, including looking up memoized

information, spying on the user (that is, dynamically recording dependencies), and scheduling

variables for reexamination. By stating that f is apparently pure, this specification guarantees

that it is safe for the user to be unaware of these effects. Dually, it forces the implementor of

the solver to verify that these effects are properly encapsulated.

• According to Definition 3.5, the user can apply get to any variable v . If this function call

returns, then it returns the property µ̄E(v), and v ∈ dom(µ̄E) is guaranteed to hold. By

contraposition, an application of get to a variable v outside dom(µ̄E) is guaranteed to diverge.
It may seem odd that the user is not required to prove v ∈ dom(µ̄E). That would be the case

if we used the strict interpretation of “get implements µ̄E at type V ↪→ P” (§3.2). However,

because we do not establish termination, we have no use for such a requirement. We could
nevertheless add it to the specification so as to detect more mistakes in user code.

Expressing the specification of a solver in terms of an optimal least fixed point, as opposed to

the more familiar notion of a least fixed point, is attractive on several grounds. First, this allows

a solver to be used in situations where “the least fixed point is not defined everywhere”, that is,

where no (total) least fixed point exists. Second, this removes the need to bake a sufficient condition

for the existence of a least fixed point into the specification of a solver. The literature offers several

incomparable sufficient conditions; we need not choose.

Even though the monotonicity of E is not required for the optimal least fixed point to exist (§2),

it is needed when we verify that the algorithm meets its specification (§8). Technically, it is required

in order to maintain the invariant that the transient map is an under-approximation (with respect

to the ordering ≤) of every partial fixed point.

5 PRESENTATION OF THE SOLVER
Several local fixed point computation algorithms exist in the literature [Fecht and Seidl 1999;

Le Charlier and Van Hentenryck 1992; Pottier 2009; Vergauwen et al. 1994]. The code that we

verify is inspired by Pottier’s OCaml implementation [2019]. Our main improvement on Pottier’s

implementation resides in isolating “spying” from the rest of the solver. Spying is implemented

as a third-order function, modulus, whose code appears in Figure 7. In short, the function call

modulus ff f performs an application of ff to f and returns a pair (c,ws) of the result of this

application and a list of points at which f was invoked by ff during this application. The function

modulus has in fact been documented and studied by Longley [1999], but the remark that it can be

used off the shelf in the construction of a local solver is novel. In order to facilitate our proof, we

remove a few optimizations from Pottier’s implementation. They are discussed later on (§9).

Our solver appears in Figure 4. We remind the reader that the code that we actually verify

is expressed in HeapLang syntax inside Coq (§3.1). The pseudocode in Figure 4 is a manual

transcription of this code in OCaml syntax, extended with operations on locks and prophecy

variables.

The solver is parameterized with a type of variables and a type of properties, respectively named

var and prop in our pseudocode (Figure 4, line 1). We assume that the module Var .Map offers an
implementation of maps whose keys are variables. We assume that the module Prop provides access

, Vol. 1, No. 1, Article . Publication date: January 2020.

14 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

1 val lfp: (var -> (var -> prop) -> prop) -> (var -> prop)

2 let lfp eqs =

3 let permanent , transient , dependencies , todo =

4 Var.Map.create(), Var.Map.create(), Var.Map.create(), ref [] in

5 let master = newLock () in

6 let schedule v =

7 Var.Map.insert dependencies v [];

8 todo := v :: !todo

9 in

10 let discover v =

11 Var.Map.insert transient v Prop.bottom;

12 schedule v

13 in

14 let reevaluate v =

15 let p, l = newProph(), newLock () in

16 let request w =

17 withLock l (fun () ->

18 match Var.Map.lookup permanent w with Some c -> c | None ->

19 match Var.Map.lookup transient w with Some c -> c | None ->

20 discover w; resolveProph p w; Prop.bottom)

21 in

22 let c, ws = modulus (eqs v) request in

23 acquireLock l;

24 disposeProph p;

25 Var.Map.insert dependencies v ws;

26 if not (Prop.eq c (Var.Map.lookup_exn transient v)) then begin

27 Var.Map.insert transient v c;

28 List.iter schedule (predecessors dependencies v)

29 end

30 in

31 let rec loop () =

32 match !todo with [] -> () | v :: vs ->

33 todo := vs; reevaluate v; loop()

34 in

35 let get v =

36 withLock master (fun () ->

37 match Var.Map.lookup permanent v with

38 | Some c -> c

39 | None ->

40 discover v; loop ();

41 Var.Map.transfer transient permanent;

42 Var.Map.flush dependencies;

43 Var.Map.lookup_exn permanent v)

44 in

45 get

Fig. 4. The function lfp

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 15

to the least property Prop.bottom and to an equality test Prop.eq. We omit the signatures of these

modules; we have explained earlier (§4.1) which specifications they must satisfy.

The solver’s main function, lfp, first allocates and initializes a number of internal data structures.

Then, without performing any actual computation yet, it returns a function, get (line 45). Later on,
at any time, the user may call getv to query the optimal least fixed point at a variable v . Each such

call possibly causes a new wave of computation, as the solver computes the optimal least fixed

point over a fragment of its domain that is as limited as possible in order to answer this query at v .
The solver maintains a number of mutable data structures. These data structures, allocated on

lines 3–4, are:

• A permanent map of variables to properties. This map records a fragment of the optimal least

fixed point µ̄E. As its name suggests, once a variable-property pair is stored in this map, it

remains there forever. The permanent map is used for memoization. It is long-lived: that is, it

persists across invocations of get.
• A transient map of variables to properties. While a wave is in progress, this map stores a

partial function that is less than (or equal to) the optimal least fixed point with respect to the

partial order ≤ on properties.

• A dependency graph, naïvely represented as a map of each variable in the transient map to

a list of its successors. A dependency edge u → v means that u observes v . If the property
associated with v in the transient map is updated, then u must be scheduled for reevaluation.

• A workset, represented as a list of variables, whose order is irrelevant.

A master lock, allocated on line 5, protects these data structures. Indeed, the body of get forms

a critical section, protected by this lock (lines 36–43). This prevents two calls to get from taking

place at the same time. A reentrant call (that is, an attempt to call get while a call to get is already
in progress on the same thread) gives rise to a deadlock, a behavior that is considered safe. Two

calls to get on distinct threads are sequentialized; thus, data races are prevented. Pottier [2009]

emphasizes the need for such a lock, even in a sequential setting, and implements it as a Boolean

flag, inactive.
The implementation of get can be described as follows. If the variablev that is queried by the user

already appears in the permanent map, then the corresponding property is immediately returned

(line 38). Otherwise (line 40), the variable v is “discovered”, and the solver enters its main loop;

this is the beginning of a new wave. Once this wave is over (line 41), the information stored in the

transient map, which is now stable, is transferred into the permanent map, and the dependency

graph is thrown away (line 42). At this point, the variablev must be in the domain of the permanent

map, so the lookup at line 43 must succeed.

The function discover (line 10) inserts a newly discovered variable into the transient map, where

it is initially associated with the property ⊥, and schedules it for evaluation. The function schedule
(line 6) removes v’s outgoing dependency edges (if there are any) and inserts v into the workset.

During a wave, the solver repeatedly extracts a variable v out of the workset and reevaluates

it (line 31). The function reevaluate (line 14) is in charge of this. To this end, the user-supplied

function eqs, which implements flip E, must be applied to the variable v and to a function, request,
which implements our current under-approximation of the fixed point.

The function request (line 16), looks up the permanent map first, then the transient map. If

both lookups fail, then it schedules its argument for later evaluation and returns ⊥, a safe under-

approximation. It too must be protected by a lock l. The critical section at lines 17–20 prevents

concurrent calls to request. The final lock acquisition on line 23 blocks any invocation of request
after the function call eqsv request on line 22 has returned.

, Vol. 1, No. 1, Article . Publication date: January 2020.

16 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

Coming back to reevaluate, precisely on line 22, where one might expect a function call of

the form let c = eqsv request, one finds that this call is wrapped in an invocation of the higher-

order function modulus, like so: let c,ws = modulus (eqsv) request. In short, modulus performs the

application of eqsv to request and returns not only its result c , a property, but also a list ws of
the variables at which request is invoked during this function application. The implementation

of modulus is shown in Figure 7 and explained later on (§7). Coming back to reevaluate, still at
line 22, the property c is the result of the function call eqsv request, and it is known that c has
been computed based solely on the properties that are currently associated with the variables ws.
As long as these properties do not change, there is no need to reevaluate v . Thus, we record that

v depends (only) on ws (line 25).
Still inside reevaluate, on line 26, the property c , which should be newly associated with v , is

compared with the property currently associated with v in the transient map. If they are equal,

then v is stable with respect to its predecessors, and there is nothing else to do. Otherwise, the

transient map is updated at v (line 27), which implies that the predecessors of v in the dependency

graph must be scheduled for reevaluation (line 28).

6 A RESTRICTED INFINITARY CONJUNCTION RULE
6.1 Unsoundness of the Unrestricted Conjunction Rule
In the proof of modulus (§7), there seems to be a need for an infinitary conjunction rule, whose
statement could be the following:

Infinitary Conjunction (Unsound)

∀x . {P} e {y. Q x y}

{P} e {y. ∀x .Q x y}

The rule is written under the assumption that x does not occur in P, e,y. There is no restriction on

the expression e , whose execution can involve nondeterminism and side effects. The type of the

auxiliary variable x must be inhabited, but is otherwise arbitrary; in particular, it can be finite or

infinite. The binary conjunction rule is obtained as the special case where the type of x is bool.
The rule can be read informally as follows: if for every x one can prove that the execution of the

expression e , beginning in a state that satisfies P , must end in a state that satisfies Q x y, then one

can deduce that the execution of e , beginning in a state that satisfies P , must end in a state that

satisfies Q x y for every x .
When read in this way, this rule seems valid. Indeed, this reading relies on the traditional “must”

interpretation of Hoare triples, where {P} e {y. Ry} means that every possible final state must
satisfy the postcondition Ry. Then, the explicit universal quantification over x and the implicit

universal quantification over the final state can be exchanged, which seems to justify the rule.

Indeed, in traditional Hoare logic, the binary and infinitary conjunction rules are sound. The binary

conjunction rule appears as Axiom 1 in Floyd’s seminal paper [1967], where it is argued that it is

sound with respect to the semantic interpretation of triples.

In the setting of separation logic, however, the binary and infinitary conjunction rules are

unsound. O’Hearn [2007] documents a counter-example, which he attributes to Reynolds. The

counter-example involves permission transfer: using the binary conjunction rule, one combines a

derivation where the ownership of a certain memory cell is transferred to a lock and a derivation

where ownership is not transferred. This results in a contradiction: one concludes that in the final

state the local heap contains a memory cell and the local heap is empty.

One could say that this problem arises out of the interaction between the conjunction rule

and ghost state: in the counter-example, the two derivations are incompatible because they make

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 17

(candidate rule)

∀x . {P} e {y. ⌈Q x y⌉}

{P} e {y. ⌈∀x .Q x y⌉}

Pure Infinitary Conjunction

∀x . {P} e {y. ⌈Q x y⌉}

{P}
©­­­«
let p = newProph() in
let y = e in
resolveProph p y;

y

ª®®®¬ {y. ⌈∀x .Q x y⌉}

Fig. 5. The pure infinitary conjunction rule

Pure Implication

⌈Q⌉ −∗ {P} e {y. R} {P} e {y. true}

{P} e {y. ⌈Q⌉ −∗ R}

Fig. 6. The pure implication rule

different decisions about who owns the memory cell. This is ghost information, not recorded at

runtime in the physical state. In Iris, which has a very general notion of ghost state, the same

problem exists: the binary and infinitary conjunction rules are unsound. One way to understand

this is to recall that the definition of an Iris triple includes a basic update modality [Jung et al.

2018, 6.3.2, 6.3.5]. Because of this, an intuitive reading of the Iris triple {P} e {y. Ry} is: for every
possible final physical state, there exists a way of updating the ghost state such that the combined

physical and ghost state satisfies the postcondition Ry. The presence of this existential quantifier
explains why the conjunction rule is unsound: an existential quantifier and a universal quantifier

cannot be exchanged.

6.2 A Sound, Restricted Infinitary Conjunction Rule
The unsoundness of the conjunction rule arises out the fact that the postcondition of an Iris triple

is an arbitrary Iris assertion, which can impose a constraint on the ghost state. Thus, it seems

that there is a chance that the conjunction rule might become sound if one restricts or removes

the ability of the postcondition to describe the ghost state. For instance, one might require the

postcondition to be pure. (In Iris, a pure assertion is one that is independent of the current state

and step index.) The rule would then take the form shown in Figure 5 (left). Again, we assume

that x does not occur in P, e,y and that the type of x is inhabited. This is a candidate rule: it is

likely sound, yet we do not know how to prove it sound under this exact form. In the following, we

first give an informal proof sketch for this candidate rule, then present an almost identical rule that

we are able to prove sound.

Proof sketch. Let us suppose that ∀x . {P} e {y. ⌈Q x y⌉} holds (1). We wish to argue that the

triple {P} e {y. ⌈∀x .Q x y⌉} holds. We do so as follows. As a first step, by anticipation, let us namey
the eventual value of the expression e . (We do not know whether e will terminate and what its

value will be. We do know that, if e terminates, then it will return some value, which we choose to

refer to as y, ahead of time.) Our next step is to apply the law of excluded middle: the proposition

∀x .Q x y either holds or does not hold. The disjunction rule of Hoare logic, which happens to be

(obviously) valid in Iris, then allows us to reason by cases.

, Vol. 1, No. 1, Article . Publication date: January 2020.

18 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

• Case 1: ∀x .Q x y holds. Then, the goal degenerates to {P} e {y. true}, which means that

it is safe to execute e . Hypothesis (1), instantiated with an arbitrary value of x , yields
{P} e {y. ⌈Q x y⌉}, which (by the consequence rule) implies the goal.

• Case 2: ∀x .Q x y does not hold. Then, the goal degenerates to {P} e {y. false}, which means

that e cannot possibly return a value. Because∀x .Q x y is false, there must exist a specific value

of x such thatQ x y is false. By instantiating Hypothesis (1) with it, we get {P} e {y. ⌈Q x y⌉}.
Because Q x y is false, this is equivalent to {P} e {y. false}, which is the goal.

This ends the proof sketch. This proof is rather unusual in two ways. First, it exploits the law

of excluded middle. Second, it exhibits a need to name a value by anticipation, that is, to assign a

name to a value that is not known yet, and that will become known once and if the execution of

the program reaches a certain point: here, this is the point where the expression e returns a value.
This is a typical use case for prophecy variables. To announce one’s desire to name a value by

anticipation, one allocates a fresh prophecy variable. To declare that the value denoted by this name

has become known, one assigns a value to this prophecy variable. In Iris, as explained earlier (§3.3),

these operations must be explicit in the program text. Because of this, we are unable to prove the

soundness of the candidate rule shown above. Instead, in the conclusion of the rule, the expression e
must be enclosed within prophecy allocation and prophecy assignment instructions. The rule that

we are able to establish is shown in Figure 5 (right). Because newProph and resolveProph have no

runtime effect, this is virtually the desired rule. It is somewhat bothersome that the code must be

instrumented with these dummy instructions; hopefully, in the future, this technical requirement

can be removed.

In practical use, we find it convenient to combine this restricted infinitary conjunction rule with

a higher-order “function application” combinator, which we name conjApply. Thus, the expression
conjApply f x has the same runtime behavior as an ordinary function call f x , but allows an

application of the pure infinitary conjunction rule. This combinator is exploited in the proof of

modulus (§7).

6.3 A Restricted Implication Rule
In the proof of modulus (§7), we also find a need for a restricted implication rule, shown in Figure 6.

This rule allows hoisting an implication, whose left-hand side is a pure assertion ⌈Q⌉, out of a triple.
(The variable y must not appear in Q .) It is easy to prove that this rule is valid, as follows. By the

law of the excluded middle, either the proposition Q holds, or it does not. If it does, then the rule’s

left-hand premise and conclusion both boil down to {P} e {y. R}, so the rule is valid. If it does not,

then the rule’s conclusion boils down to {P} e {y. true}, which is exactly the rule’s right-hand

premise, so the rule is valid as well.

7 SPECIFICATION AND PROOF OF MODULUS
The function modulus is one of the most subtle components of the solver. The function call

modulus ff f performs an application of ff to f and returns a pair (c,ws) of the result of this

application and a list of points at which f was invoked by ff during this application.

7.1 Implementation
The implementation of modulus, which appears in Figure 7, is simple. A referencem is allocated

to keep track of the points where f is invoked (line 5). The function f is wrapped in an auxiliary

function, spy (line 6), which takes care of keepingm up-to-date: whenever spy is invoked at some

point x , this point is added to the list stored inm (line 8), and the call is forwarded to f (line 7).

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 19

1 val modulus:

2 (('a -> 'b) -> 'c) ->

3 (('a -> 'b) -> 'c * ('a list))

4 let modulus ff f =

5 let m, p, lk = ref [], newProph(), newLock () in

6 let spy x =

7 let y = f x in

8 withLock lk (fun () -> m := x :: !m; resolveProph p x);

9 y

10 in

11 let c = conjApply ff spy in

12 acquireLock lk;

13 disposeProph p;

14 (c, !m)

Fig. 7. The function modulus

The function ff is applied to spy, instead of f , on line 11. The combinator conjApply, which was

introduced at the end of §6.2, behaves like function application.

A lock lk, allocated on line 5, protects the memory locationm. The critical section on line 8

prevents data races on m and ensures that the instruction m := x :: !m is atomic, which is

important: naïvely decomposing it into a read and a write, and allowing several threads to race

onm, would lead to scenarios where some dependencies fail to be recorded. Indeed, we emphasize

that, because HeapLang is a concurrent calculus, it is perfectly possible and permitted for the

user-provided function ff to spawn several threads and perform multiple concurrent calls to f .
The lock lk serves a second purpose, which is to prevent the user from using f after the function

call ff f has returned. Thanks to the final lock acquisition on line 12, which is never followed

with a matching releaseLock instruction, any subsequent attempt by the user to use f will cause a

deadlock.

It seems intuitively clear that, because the user does not have access tom, she cannot tell the

difference between spy and f . That is, the fact that we record information inm is unobservable. It

also seems intuitively clear that, once the call ff spy returns, the set of points stored inm represents

sound dependency information. That is, roughly speaking, the value c cannot depend on the value

of f at any point outside this set. However, how to express the specification ofmodulus in a program

logic, such as Iris, and how to prove that modulus satisfies its specification, is not so clear. To the

best of our knowledge, we are the first to propose a solution to this problem.

Although Longley [1999] does study modulus,7 and gives an imperative implementation of

it in Standard ML, his main point is that a PCF, a pure λ-calculus, can be safely extended with

modulus. The extended calculus remains pure, in the sense that every term denotes a mathematical

function. Longley points out that the extended calculus can express only “sequentially realizable”

functions, and can express all of them. In Longley’s setting, modulus itself is a pure function: that
is, if the equalities ff1 = ff2 and f1 = f2 hold in an extensional sense, then the calls modulus ff1 f1
and modulus ff2 f2 must yield the same outcome, that is, the same result and the same set of

dependencies. In contrast, we work in the setting of HeapLang, an impure, concurrent calculus,

where new phenomena appear, including nondeterminism. As a result, even though modulus still

7
Our modulus corresponds to the function Mod’ in Longley’s paper.

, Vol. 1, No. 1, Article . Publication date: January 2020.

20 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

{
f implements ϕ at type Ta → Tb

ff implements F at type (Ta → Tb) → Tc

}
modulus ff f{

y. ∃ws.
⌈y represents (F (ϕ),ws) at type Tc × list Ta⌉
⌈∀ϕ ′. ϕ ′ =ws ϕ ⇒ F(ϕ ′) = F (ϕ)⌉

}
Fig. 8. The specification of modulus

“works” in a certain sense, to be made precise below, it is no longer a pure function. Indeed, even
when ff and f both are apparently pure functions, it is possible for two calls to modulus ff f to

return two different sets of dependencies.
8
Thus, the question: “what does modulus compute?”, or

in other words: “what is the specification of modulus?” is not entirely trivial. Furthermore, as far as

we understand, Longley [1999] does not prove that his imperative implementation of modulus is
correct. That would require giving some sort of semantics to PCF with mutable state, which he

does not do. In contrast, we prove that modulus satisfies a certain specification and, based on this

specification, we verify that our use of modulus inside lfp produces sound dependency information.

7.2 Specification
Our specification of modulus is given in Figure 8. Its precondition just requires the user-provided

functions ff and f to be apparently pure. That is, ff and f must implement two mathematical

functions, named F and ϕ. Its postcondition states that the call modulus ff f must return a pair:

• whose first component represents F (ϕ), and
• whose second component represents a list ws that satisfies ∀ϕ ′. ϕ ′ =ws ϕ ⇒ F(ϕ ′) = F (ϕ).

The first item means that the first pair component is the result that would be returned by the

call ff f . (Because both ff and f are apparently pure, there is only one result that this call may

return.) The second item states that ws is a sound set of dependencies. This is done by guaranteeing
that the mathematical function F is insensitive to the behavior of its argument ϕ outside of ws.
This statement involves a quantification over all functions ϕ ′

such that ϕ ′
and ϕ agree on the set ws.

This universal quantification represents a very strong guarantee. Intuitively, the postcondition

means, “modulus returns a pair (c,ws) where c represents not just F (ϕ), but also F (ϕ ′), for every

function ϕ ′
that agrees with ϕ on ws”.

The postcondition involves an existential quantification over ws because (as argued in §7.1)

the list ws (or the underlying set) cannot be expressed as a function of F and ϕ. In other words,

modulus itself is not an apparently pure function.

7.3 Proof
How can one prove that the function modulus, whose code appears in Figure 7, satisfies the

specification in Figure 8? Before answering this question, let us first sketch a proof that modulus is
safe. That is, let us sketch why modulus satisfies a weaker specification, whose postcondition is

just true.

Why modulus is safe (proof sketch). The precondition of modulus lets us assume that the user-

provided functions ff and f implement two mathematical functions F and ϕ. Now, the main

8
Our specification of modulus allows ff to have internal side effects, including nondeterminism, as long as one can prove

that ff is apparently pure. One can craft an example where ff is a “parallel-or” function, which invokes f 0 and f 1 on two

newly spawned threads, and returns true as soon as one of these calls returns true. Then, a call modulus ff (λi .true) will
return a pair of the form (true, ws), where the list ws can contain just 0, just 1, or both.

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 21

difficulty in the proof thatmodulus is safe is to argue that the function call ff spy on line 11 of Figure 7
is permitted. The only fact that is known about ff is “ff implements F at type (Ta → Tb) → Tc ”,
whose meaning is given by Definition 3.4. This implies that, in order to justify the call ff spy,
we must establish a fact of the form “spy implements ψ at type Ta → Tb” for some function ψ .
Because in the eye of the user the function spy is intended to behave exactly like f , and because f
implements ϕ, it seems quite reasonable to letψ be just ϕ. Indeed, this works: by arguing that the

lock lk protects the memory locationm, it is not difficult to argue that our reads and writes ofm
can remain hidden and (therefore) that spy implements ϕ. This allows us to conclude that the call

ff spy is permitted and therefore that modulus is safe. In fact, we are even able to conclude that c
represents F (ϕ), which is a little stronger than what was announced at the beginning of this proof

sketch. This ends the proof sketch.

The above proof sketch is a good first step, but fails to establish anything about the second

component of the result of modulus. By strengthening the lock invariant slightly, we could keep

track of the fact that, at all times, the memory locationm stores a list of points, and conclude that

the second component of the result represents some list ws at type list Ta . However, this still gives
us no way of proving that ws is a sound set of dependencies, as expressed by the second assertion

in the postcondition of modulus, namely ∀ϕ ′. ϕ ′ =ws ϕ ⇒ F(ϕ ′) = F (ϕ).
One idea that might come to mind is to strengthen the lock invariant so as to claim that this

assertion holds at every time of the list ws currently stored at locationm. However, this candidate

invariant is much too strong: in particular,m initially holds the empty list, so, in order to establish

this invariant, we would have to prove ∀ϕ ′. F (ϕ ′) = F (ϕ), which is hopeless. Put another way, the

fact that “the memory locationm stores a sound set of dependencies” becomes true eventually, once
the call ff spy on line 11 returns, but is not true while this call is in progress.

Before attempting to remedy this problem by imagining another candidate invariant, let us take

a step back and recall why we think that modulus is correct. The key intuition is this: although

we can justify the call ff spy by arguing that “spy implements ϕ”, we could just as well argue that

“spy implements ϕ ′
”, for any function ϕ ′

of our choosing, as long as ϕ ′
and ϕ agree on the points

that the user queries, that is, on the points in the list ws, where ws refers to the list of dependencies
that is eventually computed by modulus. This intuition leads us to a second proof sketch:

Why modulus is correct (rough proof sketch). By anticipation, let ws refer to the list that is

eventually stored at location m, just before modulus returns. Then, we would like to claim not

only that spy implements ϕ, as in the previous proof sketch, but in fact that spy implements every

function ϕ ′
such that ϕ ′ =ws ϕ holds. If we can establish this claim, then we can conclude not only

that c represents F (ϕ), as in the previous proof sketch, but also that c represents every F (ϕ ′), out

of which the desired result follows. Thus, assuming that an arbitrary function ϕ ′
is given, such

that ϕ ′ =ws ϕ holds, there remains to argue that spy implements ϕ ′
. To do so, we must prove that,

when spy is applied to some argument x , it returns ϕ ′(x). However, because the value returned by

spy is the result of the call f x , and because f implements ϕ, it is clear that spy in fact returns ϕ(x).
So, there remains to prove ϕ ′(x) = ϕ(x). Because the functions ϕ ′

and ϕ agree on ws, this boils
down to proving that x is a member of the list ws. Because ws is the list that is eventually stored at

locationm, and because spy has the effect of inserting x into this list, it is obvious that this is true.

(Remember, this is a rough sketch, not a proof!) This ends the proof sketch.

In order to turn this proof sketch into a valid proof in Iris, a number of technical issues must

be overcome. First, it appears that, at the very beginning of the proof, we must be able to refer to

the list ws that is eventually computed by modulus. This reference to the future seems to call for a

prophecy variable. Second, although the proof sketch claims that any value that is inserted into

, Vol. 1, No. 1, Article . Publication date: January 2020.

22 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

the list at some point is “obviously” also a member of the list at the end, making this argument

precise requires coming up with a suitable invariant. Third, although we have argued informally

that “spy implements every function ϕ ′
such that ϕ ′ =ws ϕ holds”, at the point where we wish to

justify the function call ff spy, we must pick one functionψ such that spy implementsψ . Indeed,
this is imposed on us by the specification of ff . So, we must focus on one function ϕ ′

and carry

out a proof of modulus with respect to this specific ϕ ′
. Once that is done, we wish to argue that

“if modulus is correct with respect to an arbitrary function ϕ ′
, then it is correct with respect to all

such functions at once”. This is where an infinitary conjunction rule is called for. Fortunately, the

postcondition of modulus is a pure assertion, so our restricted rule (§6) is applicable.

Why modulus is correct (detailed proof sketch). As before, the precondition of modulus lets us
assume that the user-provided functions ff and f implement two mathematical functions F and ϕ.
These assertions are persistent, which means that they remain available throughout the proof. At

line 5 of Figure 7, the memory locationm is initialized with the empty list. A prophecy variable p is

allocated. It is “typed” at type Ta ; see §3.4. At this point, we introduce the name ws to stand for the

list of values that will be written to p in the future: initially, the assertion “p will receive ws” holds.
Still on line 5, a lock lk is allocated. For this lock, we must choose an invariant that relatesm and p.
Our intuition is that, at any point in time, the list stored at locationm contains the points at which

spy has been invoked in the past, while the list held in the prophecy variable p contains the points at

which spy will be invoked in the future. At any time, the combination of these lists forms the list ws,
that is, the complete list that is eventually recorded. Thus, the lock invariant is as follows:

∃us vs.


m 7→ us ∗
p will receive vs ∗
⌈ws = reverse us ++ vs⌉

Instantiating us with the empty list and vs with ws shows that this invariant initially holds. Also,

anticipating on the proof of spy, it is easy to check that the critical section at line 8 of Figure 7

preserves this invariant, and it is easy to see that this invariant allows establishing at line 8 that

x is a member of the list ws.
Skipping (for now) over the definition of spy, the next step is to justify the application of ff

to spy at line 11. We wish to establish the following triple:

{true} conjApply ff spy {c . ⌈∀ϕ ′. ϕ ′ =ws ϕ ⇒ c represents F (ϕ ′) at type Tc ⌉}

By the pure infinitary conjunction rule (§6.2) and by the pure implication rule (§6.3), this boils

down to proving the following two triples:

∀ϕ ′. ⌈ϕ ′ =ws ϕ⌉ −∗ {true} ff spy {c . ⌈c represents F (ϕ ′) at type Tc ⌉}

{true} ff spy {c . true}

The second one is unproblematic; we have already sketched why the function call ff spy is safe.

Thus, let us focus on the first one. We assume that some function ϕ ′
is given, such that ϕ ′ =ws ϕ

holds, and we must prove:

{true} ff spy {c . ⌈c represents F (ϕ ′) at type Tc ⌉}

Since ff implements F , in order to establish this triple, it suffices to show that spy implements ϕ ′
.

We have already explained (in the previous proof sketch) that this follows from the assumption

ϕ ′ =ws ϕ and from the fact that at line 8 one can prove that x is a member of the list ws.
Thus, at line 12, the proposition “∀ϕ ′. ϕ ′ =ws ϕ ⇒ c represents F (ϕ ′) at type Tc ” holds. It might

seem as though we are done; still, an important argument remains to be made, namely the fact that

the final read ofm on line 14 yields the list reverse ws. Indeed, the final lock acquisition on line 12

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 23

gives us access to the lock invariant, and the prophecy disposal instruction on the following line

yields the information that the list vs of future writes is empty. Therefore, at line 14, we are able

to deduce that the list stored atm is reverse ws. At this point, checking that the postcondition of

modulus is satisfied is routine; the witness for the existential quantifier ∃ws. . . . in the postcondition
of modulus is in fact reverse ws.

8 PROOF OF THE SOLVER
There remains to verify that the function lfp, whose code appears in Figure 4, satisfies the specifi-

cation shown in Figure 3. We do not explain the proof in detail, but highlight its main points of

interest: in particular, we give the invariants associated with the two locks and the loop invariant

associated with the function loop.
In the following, if P is a finite map of variables to properties, we write P⊥

for the total function

of type V → P that agrees with the map P on its domain and that maps every variable outside of

dom(P) to ⊥. Also, if ws is a list of variables, we write ws Z⇒ x for the finite map that maps every

variable in the list ws to x .
The invariant that we associate with the master lock (line 5) is the following:

∃ P .

{
isMap permanent P ∗ isMap transient ∅ ∗ isMap dependencies ∅ ∗ todo 7→ [] ∗

⌈ the function P⊥
is consistent up to ≤⌉

Thus, when the master lock is available (that is, when no call to get is in progress), the permanent

map stores a fragment P of the optimal least fixed point: this is stated by the proposition “the

function P⊥
is consistent up to ≤”. Furthermore, the transient map, the dependency graph, and the

workset are empty.

The main loop invariant (that is, the precondition of the function loop) is as follows:

∃ T D us.


isMap transient T ∗ isMap dependencies D ∗ todo 7→ us ∗
⌈dom(T) = dom(D)⌉ ∗ ⌈us ⊆ dom(T)⌉ ∗ ⌈∀ v ∈ dom(D). D(v) ⊆ dom(P ∪T)⌉ ∗
⌈∀ v ∈ dom(T). v ∈ us ∨ ∀ ϕ . ϕ =D(v) (P ∪T)⊥ ⇒ T (v) = E(ϕ)(v) ⌉ ∗
⌈∀ ¯f . ¯f is a partial fixed point of E ⇒ T⊥ ≤dom(¯f) f ⌉

Let us say that a variable is permanent if it appears in the domain dom(P) of the permanent map

and transient if it appears in the domain dom(T) of the transient map. Together, the propositions

on the second line above state that every variable in the workset us is transient, that the source of
every edge in the dependency graph is transient, and that the target of every such edge is either

permanent or transient. The proposition on the third line above states that every transient variablev
either appears in the workset (v ∈ us) or is stable with respect to its successors in the dependency

graph (∀ϕ). This expresses the intuition that it is fine to not reevaluate the variables that are
not in the workset. The proposition on the last line above indicates that the partial function T⊥

under-approximates every partial fixed point. Together, the last two propositions allow proving

that, once the workset us becomes empty, the function (P ∪T)⊥ is consistent up to ≤. Therefore,

it is a fragment of the optimal least fixed point. This justifies transferring all of the information

contained in the transient map into the permanent map at line 41.

Finally, the invariant associated with the auxiliary lock at line 15 is as follows:

∃ ws ws′.


isMap transient (T ∪ (ws Z⇒ ⊥)) ∗

isMap dependencies (D ∪ (ws Z⇒ [])) ∗

todo 7→ ws ++ us ∗

p will receive ws′ ∗ ⌈vs = reverse ws′ ++ ws⌉

, Vol. 1, No. 1, Article . Publication date: January 2020.

24 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

In this invariant, the variable vs occurs free. We let this name refer, by anticipation, to the list

of all variables that are newly discovered (at line 20) during the execution of the function call

modulus (eqs v) request at line 22. Thus, the above invariant expresses the fact that a mapping of

every newly discovered variable to ⊥ is added to the transient map, that every such variable is

recorded in the dependency graph (with no outgoing edges), and that every such variable is inserted

into the workset.

A subtle technical point, which we mention only briefly, in the interest of space, is that we must

control the set ws returned by modulus on line 22. That is, we must establish an upper bound on

this set: in other words, we must prove that modulus cannot, out of the blue, report dependencies
on variables that have never been encountered before. To do so, we first argue that the function

request (line 16) implements (in the lax sense of Definition 3.5) a partial function whose domain is

dom(P ∪T) ∪ vs, that is, the variables that are known at the beginning of reevaluate, plus those
that are newly discovered during the execution of reevaluate. From this fact, we deduce that the

set ws returned by modulus on line 22 is a subset of dom(P ∪T) ∪ vs.9 This result is exploited to

prove (among other things) that adding a dependency edge from v to every member of ws (line 25)
preserves the property that “the target of every dependency edge is either permanent or transient”.

9 DISCUSSION
We have verified a “local generic solver”, that is, an on-demand, incremental, memoizing least fixed

point computation algorithm, inspired by Pottier’s OCaml implementation [2019]. In so doing, we

have also verified a version of Longley’s modulus [1999].
The code that we verify is expressed in HeapLang, an imperative, concurrent programming

language. Thus, the correctness results that we establish hold even if the client exploits mutable

state or concurrency, as long as the requirements imposed by our specifications of modulus and lfp
are respected: in short, the arguments that the client passes to modulus and lfp must be apparently

pure functions.

We believe that these results are compelling examples of how a modern program logic, such

as Iris, allows relating a subtle imperative algorithm with an elegant mathematical specification.

Furthermore, these proofs provide several illustrations of the use of prophecy variables, and suggest

that prophecy variables can be required in the verification of deterministic and sequential code,

when this code is allowed to interact with a possibly nondeterministic and concurrent client.

We verify only the partial correctness of modulus and lfp. In other words, we establish neither

termination nor deadlock-freedom. As noted at the beginning of the paper (§1.3), we believe that

it should be possible to verify a variant of the solver that does not use any lock, and therefore

runs no risk of a deadlock. This solver would come with a more restrictive specification, which

enforces a sequential use of the solver functions by the client. This would be achieved by giving out

and reclaiming unique permissions to call the solver functions. We believe that our current solver,

which uses locks, could then be redefined in a modular manner, by combining the lockless solver

with a wrapper that creates, acquires, and releases locks at appropriate times. Such an approach

would be superior in principle, and quite interesting. We leave it to future work.

For the sake of simplicity, we have removed a couple of optimizations that exist in Pottier’s

implementation [2009]. First, we represent the dependency graph as a map of each vertex to the

list of its successors. This gives us efficient access to the successors of a vertex, but not to its

predecessors. Pottier [2009] uses a more efficient representation, which gives constant-time access

9
This deduction step requires verifying that modulus satisfies a specification that is slightly stronger than the one shown

in Figure 8. This strengthened specification allows the function f to implement a partial function ¯ϕ , in the lax sense of

Definition 3.5, and guarantees that the list ws returned by modulus is a subset of dom(¯ϕ).

, Vol. 1, No. 1, Article . Publication date: January 2020.

Spy Game: Verifying a Local Generic Solver in Iris 25

to successors and predecessors. Although we do not anticipate any deep difficulty in verifying it, we

leave this effort to future work. Second, when we find that the variable v depends on a variablew ,

we record this dependency unconditionally, whereas Pottier’s code records it only ifw is a transient

variable, as opposed to a permanent variable. Indeed, there is no need to record a dependency on a

variable whose value will not change in the future. That said, this optimization does not seem to be

crucial. In terms of time, it should make virtually no difference. In terms of space, it might offer

some savings, but only during a wave, not in the long run, because at the end of each wave the

entire dependency graph is thrown away.

The solver that we verify is purely iterative: no recursive functions are involved. (The function

loop is tail-recursive; it is a loop.) The literature documents “top-down” variants of the solver [Fecht

and Seidl 1999; Le Charlier and Van Hentenryck 1992; Pottier 2009] where, instead of scheduling a

newly-discovered variablew for later examination and returning the property Prop.bottom (line 20),

one invokes reevaluatew before returning the property currently associated withw in the transient

map. This is a true recursive call: these variants of the solver use an implicit stack. We have not

yet attempted to verify such a variant. We expect its verification to be more difficult, as it mixes

iterative and recursive aspects.

10 RELATEDWORK
Several on-demand, incremental, memoizing fixed point computation algorithms appear in the liter-

ature [Fecht and Seidl 1999; Le Charlier and Van Hentenryck 1992; Muthukumar and Hermenegildo

1990; Pottier 2009; Vergauwen et al. 1994]. Apinis et al. [2016] extend such a solver with support for

widening and narrowing, two standard operations in the realm of abstract interpretation. Seidl and

Vogler [2018] further extend this solver so that (1) termination is guaranteed even in the absence of

a monotonicity hypothesis; (2) space usage is reduced, thanks to a form of selective memoization;

and (3) the construction and the resolution of the system of equations can be intertwined through

so-called “side effects”. Point (2) is an improvement that could probably be incorporated into our

solver without requiring any change to its specification. The other extensions mentioned above

seem to require altering the specification of the solver; they would constitute interesting directions

for future research.

An entirely different approach to the computation of least fixed points is to propose a domain-

specific language, such as Flix [Madsen et al. 2016], in which systems of monotone equations can

be described and to compile this language down to efficient executable code.

Longley [1999] discusses the function modulus and notes that, even though its implementation

is imperative, its behavior in the setting of PCF remains pure, so that PCF extended with modulus
remains a pure calculus, which can express only “sequentially realizable” functions, and can express

all of them. We have given earlier a more detailed comparison with Longley’s work (§7.1).

Hofmann, Karbyshev and Seidl [2010a] use Coq to verify a simplified model of a local generic

solver. More details appear in Karbyshev’s dissertation [2013]. We have given earlier a brief

comparison with their work (§1.4). In short, both the solver and its user are modeled in Coq in

terms of functions, relations, and explicit state-passing. In particular, the user-provided function eqs
is modeled as a strategy tree. The fact that it is safe to model the behavior of eqs in this way is the

subject of two separate papers [Bauer et al. 2013; Hofmann et al. 2010b], where it is argued that

every second-order function that is “pure” in a certain semantic sense can indeed be represented as

a strategy tree. In contrast, we work in the setting of a program logic for HeapLang, a λ-calculus
extended with mutable state and shared-memory concurrency, which obviates the need to construct

a mathematical model of the solver and of its user and the need to argue that this model is faithful

in some sense. We rely on the notion of apparent purity that is naturally provided by Iris: a

function f is apparently pure if it satisfies a specification of the form f implements ϕ (Definition 3.4).

, Vol. 1, No. 1, Article . Publication date: January 2020.

26 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

Such a specification allows the function f to have internal state, as long as this state is properly

encapsulated; this is typically achieved by protecting it with a lock. The notion of apparent purity

is used both ways in our specification of the solver. On the one hand, we require the user-provided

function eqs to be apparently pure. On the other hand, we guarantee that the functions exposed by

the solver to the user (namely get and request-wrapped-inside-spy) are apparently pure.

Continuing our comparison with Hofmann et al. [2010a], our result is stronger in several respects.

Hofmann et al. require the partial order (P, ≤,⊥) to form a lattice, whereas we do not. They simplify

the solver’s API quite radically, so that get is called exactly once, with a set of variables of interest.

This implies that there is no need for memoization and no possibility of concurrent or reentrant

invocations of get. Finally, although they prove that the solver computes a fixed point, they do not

prove that it is the least fixed point, whereas we do. In fact, by exploiting the novel notion of an

optimal least fixed point, a mild generalization of Charguéraud’s optimal fixed point [2010a], we

avoid imposing an ad hoc sufficient condition for a least fixed point to exist everywhere, and we

are able to deal with situations where the least fixed point is well-defined only on a subset of V .

There have been several successful efforts to implement and verify abstract interpreters in

Coq [Besson et al. 2009; Cachera and Pichardie 2010; Jourdan 2016; Pichardie 2008]. At their

heart, these abstract interpreters contain a least fixed point computation algorithm. They are

implemented in a purely functional style, which precludes the use of mutable state for the purposes

of memoization or spying. As a result, they are not local (instead, they compute the least fixed point

everywhere) and do not perform dynamic dependency discovery (instead, their iteration strategy

is directed by the syntax of the program under analysis).

11 FUTUREWORK
There are many directions for future work. Regarding the metatheory of Iris, it would be desirable

to find out whether the candidate conjunction rule in Figure 5 is sound with respect to Iris’s notion

of weakest precondition [Jung et al. 2018, §6.3.4]; we currently do not know. Regarding our solver,

it would be desirable to replace our current naïve representation of the dependency graph with an

efficient representation, such as Pottier’s [2009]. It would be worthwhile to verify a “top-down”

variant of the solver (§9), both as an instructive exercise and because such a variant can be more

efficient. In a hypothetical variant of Iris that allows establishing total correctness and supports

prophecy variables, one might wish to prove that a variant of the solver that does not use any locks

always terminates. More ambitiously, in an extension of Iris with time credits [Mével et al. 2019],

one might wish to bound its asymptotic complexity. Regarding the variant of the solver that does

involve locks, it would be nice if one could use fewer locks, by removing or combining some of

them, and if one could statically rule out some or all deadlocks. Finally, it would be desirable to

verify realistic applications of the solver: program analyses and parser generators come to mind.

With an eye towards applications in program analysis, it would be interesting to specify and verify

the more powerful solvers proposed by Apinis et al. [2016] and by Seidl and Vogler [2018].

REFERENCES
Martin Abadi and Leslie Lamport. 1988. The Existence of Refinement Mappings. In Logic in Computer Science (LICS).

165–175.

Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. 2016. Enhancing Top-Down Solving with Widening and Narrowing. In

Semantics, Logics, and Calculi – Essays Dedicated to Hanne Riis Nielson and Flemming Nielson on the Occasion of Their 60th
Birthdays (Lecture Notes in Computer Science), Vol. 9560. Springer, 272–288.

Andrej Bauer, Martin Hofmann, and Aleksandr Karbyshev. 2013. On Monadic Parametricity of Second-Order Functionals.

In Foundations of Software Science and Computation Structures (FOSSACS) (Lecture Notes in Computer Science), Vol. 7794.
Springer, 225–240.

, Vol. 1, No. 1, Article . Publication date: January 2020.

https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
http://kodu.ut.ee/~vesal/papers/Apinis_2015_ETS.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/publikationen-pdfs/c69-onmonadicparametricityof2orderfunction.pdf

Spy Game: Verifying a Local Generic Solver in Iris 27

Frédéric Besson, David Cachera, Thomas P. Jensen, and David Pichardie. 2009. Certified Static Analysis by Abstract

Interpretation. In Foundations of Security Analysis and Design (Lecture Notes in Computer Science), Vol. 5705. Springer,
223–257.

David Cachera and David Pichardie. 2010. A Certified Denotational Abstract Interpreter. In Interactive Theorem Proving
(ITP) (Lecture Notes in Computer Science), Vol. 6172. Springer, 9–24.

Arthur Charguéraud. 2010a. Characteristic Formulae for Mechanized Program Verification. Ph.D. Dissertation. Université
Paris 7.

Arthur Charguéraud. 2010b. The Optimal Fixed Point Combinator. In Interactive Theorem Proving (ITP) (Lecture Notes in
Computer Science), Vol. 6172. Springer, 195–210.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Principles of Programming Languages (POPL). 238–252.
Paulo Emílio de Vilhena, Jacques-Henri Jourdan, and François Pottier. 2020. Coq proofs for “Spy game”. https://gitlab.inria.

fr/pdevilhe/spy-game.

Christian Fecht and Helmut Seidl. 1999. A Faster Solver for General Systems of Equations. Science of Computer Programming
35, 2–3 (1999), 137–162.

R. W. Floyd. 1967. Assigning meanings to programs. In Mathematical Aspects of Computer Science (Proceedings of Symposia
in Applied Mathematics), Vol. 19. American Mathematical Society, 19–32.

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. 2007. Local Reasoning for Storable Locks

and Threads. In Asian Symposium on Programming Languages and Systems (APLAS) (Lecture Notes in Computer Science),
Vol. 4807. Springer, 19–37.

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle Semantics for Concurrent Separation Logic.

In European Symposium on Programming (ESOP) (Lecture Notes in Computer Science), Vol. 4960. Springer, 353–367.
Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. 2010a. Verifying a Local Generic Solver in Coq. In Static Analysis

Symposium (SAS) (Lecture Notes in Computer Science), Vol. 6337. Springer, 340–355.
Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. 2010b. What Is a Pure Functional?. In International Colloquium

on Automata, Languages and Programming (Lecture Notes in Computer Science), Vol. 6199. Springer, 199–210.
Jacques-Henri Jourdan. 2016. Verasco: a Formally Verified C Static Analyzer. Ph.D. Dissertation. Université Paris Diderot.
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),

e20.

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2020.

The Future is Ours: Prophecy Variables in Separation Logic. Proceedings of the ACM on Programming Languages POPL
(Jan. 2020).

John B. Kam and Jeffrey D. Ullman. 1976. Global Data Flow Analysis and Iterative Algorithms. Journal of the ACM 23, 1

(1976), 158–171.

Aleksandr Karbyshev. 2013. Monadic Parametricity of Second-Order Functionals. Ph.D. Dissertation. Technische Universität
München.

Gary A. Kildall. 1973. A unified approach to global program optimization. In Principles of Programming Languages (POPL).
194–206.

Baudouin Le Charlier and Pascal Van Hentenryck. 1992. A Universal Top-Down Fixpoint Algorithm. Technical Report

CS-92-25. Brown University.

John Longley. 1999. When is a Functional Program Not a Functional Program?. In International Conference on Functional
Programming (ICFP). 1–7.

Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to Flix: a declarative language for fixed points on

lattices. In Programming Language Design and Implementation (PLDI). 194–208.
K. Muthukumar and M. V. Hermenegildo. 1990. Deriving A Fixpoint Computation Algorithm for Top-down Abstract Interpre-

tation of Logic Programs. Technical Report ACT-DC-153-90. Microelectronics and Computer Technology Corporation.

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time credits and time receipts in Iris. In European Symposium
on Programming (ESOP) (Lecture Notes in Computer Science), Luis Caires (Ed.), Vol. 11423. Springer, 1–27.

Peter W. O’Hearn. 2007. Resources, Concurrency and Local Reasoning. Theoretical Computer Science 375, 1–3 (2007),

271–307.

David Pichardie. 2008. Building Certified Static Analysers by Modular Construction of Well-founded Lattices. Electronic
Notes in Theoretical Computer Science 212 (2008), 225–239.

François Pottier. 2009. Lazy Least Fixed Points in ML. (2009). Unpublished.

François Pottier. 2019. Fix. https://gitlab.inria.fr/fpottier/fix.

Helmut Seidl and Ralf Vogler. 2018. Three Improvements to the Top-Down Solver. In Principles and Practice of Declarative
Programming (PPDP). 21:1–21:14.

, Vol. 1, No. 1, Article . Publication date: January 2020.

https://people.irisa.fr/David.Pichardie/papers/fosad09.pdf
https://people.irisa.fr/David.Pichardie/papers/fosad09.pdf
https://hal.inria.fr/inria-00537810/
http://www.chargueraud.org/research/2010/thesis/thesis_final.pdf
http://www.chargueraud.org/research/2010/fix/fix.pdf
http://www.di.ens.fr/~cousot/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf
http://www.di.ens.fr/~cousot/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf
https://gitlab.inria.fr/pdevilhe/spy-game
https://gitlab.inria.fr/pdevilhe/spy-game
http://www2.in.tum.de/~seidl/papers/final-solver.ps.gz
https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf
http://dx.doi.org/10.1007/978-3-540-76637-7_3
http://dx.doi.org/10.1007/978-3-540-76637-7_3
http://www.cs.princeton.edu/~appel/papers/concurrent.pdf
http://goblint.in.tum.de/papers/coq.pdf
http://www2.in.tum.de/bib/files/Hofmann10Pure.pdf
https://jhjourdan.mketjh.fr/thesis_jhjourdan.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
http://doi.acm.org/10.1145/321921.321938
http://mediatum.ub.tum.de/node?id=1144371
http://doi.acm.org/10.1145/512927.512945
ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.ps.gz
http://doi.acm.org/10.1145/317636.317775
https://plg.uwaterloo.ca/~olhotak/pubs/pldi16.pdf
https://plg.uwaterloo.ca/~olhotak/pubs/pldi16.pdf
http://oa.upm.es/15292/1/HERME_TCREP_ANDMANS_1990-1.pdf
http://oa.upm.es/15292/1/HERME_TCREP_ANDMANS_1990-1.pdf
http://gallium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf
https://doi.org/10.1016/j.entcs.2008.04.064
http://gallium.inria.fr/~fpottier/publis/fpottier-fix.pdf
https://gitlab.inria.fr/fpottier/fix
https://doi.org/10.1145/3236950.3236967

28 Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan

Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. 2012. Compiler Design: Analysis and Transformation. Springer.
Bart Vergauwen, J. Wauman, and Johan Lewi. 1994. Efficient fixpoint computation. In Static Analysis Symposium (SAS)

(Lecture Notes in Computer Science), Vol. 864. Springer, 314–328.

, Vol. 1, No. 1, Article . Publication date: January 2020.

http://doi.org/10.1007/978-3-642-17548-0
http://dx.doi.org/10.1007/3-540-58485-4_49

	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Local Generic Solvers
	1.3 Our Result and its Limitations
	1.4 Challenges and Previous Work
	1.5 Contributions

	2 A Theory of Optimal Least Fixed Points
	2.1 Optimal Fixed Points
	2.2 Optimal Least Fixed Points

	3 Background on Iris
	3.1 Iris and HeapLang
	3.2 Representation Predicates for Data and Functions
	3.3 Prophecy Variables
	3.4 Two Improvements to the Prophecy Variable API

	4 Specification of a Solver
	4.1 Assumptions about Variables and Properties
	4.2 Specification of lfp

	5 Presentation of the Solver
	6 A Restricted Infinitary Conjunction Rule
	6.1 Unsoundness of the Unrestricted Conjunction Rule
	6.2 A Sound, Restricted Infinitary Conjunction Rule
	6.3 A Restricted Implication Rule

	7 Specification and Proof of Modulus
	7.1 Implementation
	7.2 Specification
	7.3 Proof

	8 Proof of the Solver
	9 Discussion
	10 Related Work
	11 Future Work
	References

