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Abstract
Sexual dimorphism not only is a matter of gonadal sex or
secondary sexual characteristics but also deals with slight
differences, the consequences of which may be important
because, as we know, the devil is in the detail. Sex determi-
nation leads to male or female genetic programming that will
influence many biological and/or pathological processes. The
adrenal gland is a good example of a nonreproductive sexually
dimorphic organ, and most adrenal lesions occur in females.
Little is known about the mechanism behind this prevalence,
but recent publications suggest the involvement of gonadal
hormones and the potentially protective role of androgens. The
scarcity of aggressive adrenal lesions has lead researchers to
develop animal models able to recapitulate female prevalence
to investigate the mechanism hidden behind this dimorphism.
Males and females evolve in the same way and give rise to two
not so different individuals, and in this review, we will focus on
the small differences that could have deleterious effects on
adrenal gland physiopathology, with a primary focus on
females.
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Sex determination and differentiation
In mammalian species, after gamete fertilization and
depending on the chromosomal content of the zygote,
the developing embryo will be genetically a male (het-
erogametic XY) or female (homogametic XX). Primary
sex determination and gonadal differentiation
depend on specific patterns of gene expression, leading
to the ovaries or testes through the balance between
genetic pathways that promote one fate and repress the

other [1]. Embryonic life is a complex and dynamic
process during which all the organs are formed, and
www.sciencedirect.com
among them, the gonads will be responsible for sex-
specific hormonal production that will define the sec-
ondary sex characteristics. From development to adult-
hood, ovarian estrogens/progestogens and testicular
androgens are potent regulators of many physiological
functions such as reproduction, behavior, metabolism,
and so on. [2]. Although primary and secondary sex
characteristics are well acknowledged, more subtle di-

morphisms that occur in nearly all organs are often
ignored. Differences between females and males can be
observed either in physiology or pathology. Indeed,
sexual dimorphism as a source of disease has been
largely disregarded for nonreproductive organs, and a
retrospective analysis of the biomedical literature
revealed that the vast majority of studies performed on
mice are either analyzing one sex (usually a male) or do
not specify which sex has been used [3]. For instance, a
recent review showed that the complex interplay be-
tween sex chromosomeeencoded information and sex

hormones can promote gender bias in cancer incidence
and mortality, not only by altering the immediate envi-
ronment of cancer cells or general organ homeostasis but
also by directly influencing cancer initiation [4].
Gender bias in adrenocortical tumors
Adrenocortical carcinoma (ACC) is a rare malignant
tumor that affects children and adults. Childhood ACC

occurs during the first 5 years of life, and a female:male
ratio of 1.7:1 is observed in patients younger than 3
years. A smaller second peak of ACC appears during
adolescence, and for patients older than 13 years, fe-
males are also more affected than males, with a ratio of
6.2:1 [5,6]. In adults, the same gender bias is observed
with a ratio of 1.5e2.5:1 in ‘favor’ of females, leading to
the hypothesis that sex hormones and/or information
encoded by sex chromosomes could be important
players in the outcome of ACC [7,8].

Benign adrenocortical tumors responsible for constitu-
tive (ACTH-independent) production of cortisol can
result in Cushing syndrome in patients. These tumors
originate from either unilateral adrenocortical adenomas
(ACAs) or bilateral lesions termed micronodular hyper-
plasia (primary pigmented nodular adrenocortical dis-
ease [PPNAD]) and primary bilateral macronodular
adrenal hyperplasia (PBMAH). Cushing syndrome in
patients with ACA and PPNAD is frequently the
Current Opinion in Endocrine and Metabolic Research xxxx, xxx:xxx
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consequence of sporadic or inherited mutations leading
to constitutive activation of the cAMP/PKA signaling
pathway. The most prevalent defects affecting PKA
signaling are sporadic activating mutations of the cata-
lytic subunit alpha (PRKACA) in ACA and germline
inactivating mutations of the regulatory subunit alpha
(PRKAR1A) in PPNAD [9,10]. Cortisol-producing ACAs
are more frequent in females than in males, with a 4e8:1
ratio [9]. Female prevalence is also found in PPNAD,
which is commonly diagnosed in a familial predisposi-
tion syndrome to endocrine tumors, Carney complex
(CNC). Follow-up in families with CNC provides
insight into the nature of the gender predilection of
PPNAD. Despite a sex ratio of 0.5:1 throughout child-
hood, this ratio changes, and females are more affected
than males after 12 years of age, reaching 2e3:1 in
adults, whereas sex prevalence tends to fade during
menopause [9,11]. Thus, the clinical evidence for
PPNAD in females with CNC during sexual maturity

suggests that the gender predilection seems influenced
by gonadal hormones rather than chromosomal sex in
this disease. Interestingly, no sex bias at diagnosis was
observed for any other tumoral manifestations of CNC,
suggesting that PKA-regulated organ homeostasis
should be particularly sensitive to sex hormones in the
human adrenal cortex. Although some alterations of PKA
signaling activity have been involved in PBMAH, most
familial cases relied on mutations of the tumor sup-
pressor ARMC5 [12] and have a female:male ratio of 2e
3:1 [9].

PBMAH, PPNAD, and ACC are rare adrenal diseases
with a prevalence of only a few individuals per million,
which make analysis and sample availability complicated
[7,9,11,13]. To further the understanding of the path-
ological process of adrenal lesions and try to provide
mechanistic responses to the sex-biased prevalence, the
use of animal models is crucial. Some mouse models
recapitulate female-biased prevalence of adrenal lesions
such as the DCat (Akr1b7-Cre::Ctnnb1lox(ex3)) mouse
model in which constitutive activation of b-catenin is
restricted to steroidogenic cells within the adrenal

cortex [14]. In this model, the uncontrolled activation of
b-catenin represents an oncogenic event that may
trigger adrenal carcinoma development in aging female
mice, but not in males [14]. The DAdKO (ASCre/
þ::Prkar1afl/fl) mouse model developed by the same
team showed the importance of regulation of the PKA
signaling pathway in adrenal cortex homeostasis [15].
This study demonstrates clear sex differences in adrenal
cortex homeostasis and disease onset/progression.
DAdKO females develop ACTH-independent
Cushing syndrome by 3 months of age, whereas 7e12

months are necessary for mutant males. The onset of
Cushing syndrome and cortex alterations are delayed by
Current Opinion in Endocrine and Metabolic Research xxxx, xxx:xxx
androgens as shown by castration and hormone supple-
mentation experiments in DAdKO males. Furthermore,
this study revealed that testicular androgens increase
WNT signaling that antagonizes PKA, leading to
decrease in the adrenocortical cell turnover that is 3
times slower in males [15]. The DAdKO mice represent
a powerful model to address mechanisms of sexual
dimorphism in female prevalence of adrenal lesions.

However, this prevalence is not obvious in all mouse
models. In ACC, overexpression of insulin-like growth
factor 2 (IGF2) and constitutive activation of the Wnt/
b-catenin signaling pathway have been involved in the
vast majority of sporadic ACCs [8,16]. Two studies using
two different approaches to overexpress IGF2 and b-
catenin signaling in the adrenal, APC KOeH19DDMD

and DCat;AdIgf2, demonstrated that in this context,
activation of both signaling pathways results in a mild
promoting effect on tumor progression [17,18].
Although females are more prone to develop adrenal

tumors in DCat;AdIgf2, no sexual dimorphism has been
highlighted in the APC KOeH19DDMD model, contrary
of what is observed in humans. Another frequent alter-
ation in patients with ACC is characterized by inacti-
vation of the TP53/RB pathway [8,16]. In a transgenic
mouse model of p53/Rb inhibition, which induces
metastatic ACC, males and females are both affected,
but rapid development of endometrial tumors has
hampered the follow-up of adrenal tumor progression in
females [19]. Mouse models are very useful tools to
study the onset and progression of adrenal lesions, and

when female/male phenotypes were compared, most of
them recapitulate the sex bias observed in humans.
Influence of sex on adrenal cortex
morphology and endocrine function
Mouse adrenal glands are sexually dimorphic. Indeed,
female adrenal glands displayed a higher weight than

those of males, and function (glucocorticoid production)
is markedly influenced by gender and age [20]. Accord-
ingly, this dimorphism essentially relies on increased
cellularity in the female zona fasciculata. Furthermore,
the X-zone, a transient cortical region located at the
corticalemedullary boundary, considered a reminiscent
fetal zone [21,22], regresses at puberty in males and
during the first gestation in females. In a recent review,
Huang and Kang [23] listed factors that affect the X-zone
clearance, and among them, androgen action remains the
most efficient inducer of regression, although participa-

tion of other sex steroids cannot be excluded. In 2013, a
transcriptomic analysis of adrenal sexual dimorphism in
mice was performed to address if there was a specific
signature in gene expression and to investigate the ef-
fects of androgen privation in males (by castration) or
supplementation in females (by testosterone
www.sciencedirect.com
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administration) [24]. Hierarchical clustering revealed
269 genes differentially expressed in males vs females, 71
of which were regulated by changes in the androgenic
milieu, suggesting that in addition to male sex hormones,
other potential factors including sex chromosomee
encoded information could explain those differences. In
coherence with these early studies, gene expression data
obtained from wild-type and mutant mice developing

Cushing syndrome confirmed that samples from cas-
trated males clustered close to female samples. This
indicates that in mice, androgens should be the main
determinant of adrenal sex dimorphism in both physi-
ology and disease [15]. The time points of sexual
dimorphism in gene expression can be seen until em-
bryonic day 14.5 for Cyp17, which is weakly expressed in
males and intensively in females. By embryonic day 18.5,
Cyp17 is no longer expressed in male adrenals but is still
highly expressed in those of females [25]. The role of this
early dimorphic expression is not well
Figure 1

Adrenal cortex renewal in female mice and interplay with androgens (ada
adrenal cortex cell renewal dynamics: Gli1+ stem cells and Axin2+/Shh+ proge
proliferate or be recruited to ensure cell renewal of the definitive/adult cortex.
interplay between WNT and PKA signaling pathways, with the WNT pathway
and favors conversion to zF identity and eventually to zR identity. In the zF, the
and therefore potentially in that of the zR. The X-zone regresses during the mid
down cortex replenishment by yet unclear mechanisms. Indeed, testicular an
occur in females or prepubescent males. Moreover, androgens sustain the WN
renewal in males. Steroidogenic cells in the zF could also be negatively affect
females.

www.sciencedirect.com
understood because Cyp17 expression is lost in adult
adrenals. Nr0b1/Dax1, which encodes important players
of adrenogonadal development and function, has sexually
dimorphic expression from postnatal day 14 to adulthood
in mouse adrenals [26]. Nr0b1 is highly expressed in
female adrenals and shows androgen-dependent down-
regulation in those of males [24,26]. Owing to its role in
steroidogenesis, dimorphic expression of Nr0b1 was pro-

posed to participate in sex differences in steroid hormone
production [27]. In other rodent models, sexual dimor-
phismmay not have the same expression. Rats are similar
to mice, having larger female adrenal glands [28,29],
whereas hamsters have the opposite [30]. The adrenal
gland is highly sensitive to stress and will produce glu-
cocorticoids after ACTH stimulation. Adrenal respon-
siveness to ACTH is sexually dimorphic in rats [31] and
mice, and the better responsiveness in females relies on
sexually dimorphic function of the adrenal molecular
clock that may be lost under an androgenic environment
Q9pted from Dumontet et al [15] and Grabek et al [48]). Scheme of female
nitor cells residing within the capsule and zG, respectively, that can either
Centripetal migration and zonal differentiation result from the antagonistic
promoting zG identity, whereas the PKA pathway stimulates cell turnover
Hippo pathway exerts a repressive role in zF differentiation/maintenance
gestation in females and at puberty in males. The androgenic milieu tones
drogens impede capsular stem cell recruitment and proliferation that only
T pathway, which restrains the PKA pathway, leading to lower cortical cell
ed by androgens, resulting in lower steroidogenic activity in males than in
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[32]. In humans, few studies have investigated the ad-
renal gland size in adults. Stein et al. [33] revealed that in
the Canadian population, adrenal weight (around 15 gg)
was similar in both genders, whereas a study on the
Chinese population showed a statistical difference
(p < 0.001) in adrenal weight between men (12.4 g) and
women (10.7 g) [34]. Finally, Ludescher et al. [35] re-
ported a bigger adrenal absolute volume in men (9.84 ml

vs 4.91 ml), but after normalizing to body volume, this
difference was lost. Concerning adrenarche, which refers
to the onset of increased production of adrenal androgens
during childhood, adrenarche in girls occurs earlier than
that in boys [36]. However, this dimorphism in adre-
narche dynamic setup might be explained by sex-
dependent differences in peripheral androgen meta-
bolism. Concerning adrenal androgen production, in
prepubescent children, no significant sex differences in
DHEAS or androstenedione were found. Differences
appear with age where adult males show a higher level

of DHEAS than females from the age of 17 to 69
years [37].
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Mechanisms influencing adrenal sexual
dimorphism
Adrenal sex dimorphism seems to rely on a complex
interplay between adrenal homeostatic maintenance
and responsiveness to gonadal steroids. Steroid hormone
receptors, including androgen receptors (ARs) or es-
trogen receptors (a/b), are expressed in both mouse and
human adrenals, suggesting their participation in the
gland’s function [38e40]. Besides, adult cortex ho-
meostasis is ensured by tissue renewal from capsular/
subcapsular progenitor cells (expressing markers GLI1
and SHH) that undergo centripetal migration and suc-
cessive conversion into the different zonal cell types to
replenish the cortex [41e43].

Evidence for androgenic control in mouse cortex ho-
meostasis was first experienced for the transient cortex
using male castration and/or female androgen adminis-
tration. Indeed, the male X-zone regresses at puberty,
and castration leads to development of a secondary X-
zone [44]. The keen interest to prove participation of
the AR in the adrenal gland is on the way, as illustrated
by preliminary results presented during scientific
meetings. Two different teams developed mouse
models with AR inactivation in the adrenal cortex.

These models would definitively prove that the AR is
essential for regression of the X-zone and for limiting the
adult cortex size in males, the loss of the AR being
sufficient to abolish any sexual dimorphism [45,46].

Various mechanisms downstream to AR signaling should
be involved in the gender-specific regulation of
Current Opinion in Endocrine and Metabolic Research xxxx, xxx:xxx
definitive cortex homeostasis (Figure 1). The low
androgenic milieu found in females was shown to favor
PKA-prone cortex cell renewal, whereas in males, an-
drogens limit this action by sustaining the RSPO/Wnt/b-
catenin pathway [15]. Disruption of the Hippo signaling
pathway in adrenocortical cells leads to progressive at-
rophy of the adrenal cortex (affecting mainly the zona
fasciculata) only in male mutant mice [47]. One part of

the explanation to this phenotype could be provided by
a recent study combining the lineage-tracing experi-
ment of adrenal stem cells with gonadectomy and DHT
treatments. This study revealed that after puberty, sex-
specific stem cell activity is driven by male hormones
that repress Gli1-positive stem cells from the capsule
and cell proliferation, leaving only one progenitor
compartment (subcapsular Shhþcells) available for
tissue renewal [48]. In contrast, females can recruit
within two different populations of stem cells situated
in the capsular and steroidogenic compartments

(Gli1þand Shhþ), leading to a 3-fold higher turnover
than males. These data show a higher potential for
cortical cell renewal in female mouse adrenals attested
by 2 complementary genetic models (15, 48), which may
help explain the overrepresentation of adrenocortical
diseases/tumors in women.
Conclusion, issues, and perspectives
Mice and humans are different, but animal models are a
powerful tool to thoroughly study biological processes
that cannot be dissected finely in humans because of
ethics, diseases rareness, timing onset of the disease,
and so on. Nevertheless, mouse models can not only
recapitulate observations made in clinics regarding ad-
renal lesions but also provide insight into adrenal
physiology [49,50]. The challenge in research now is to
decipher how the identified mechanisms are inter-

connected with androgenic signaling and whether these
rules are applicable to human adrenals. Furthermore,
sexual dimorphism not only is limited to regulation of
cell turnover but also may influence metabolic activities
dealing with cholesterol and steroid synthetic pathways
[15]. Grabek et al. [48] made a great demonstration that
cell proliferation and recruitment in the adrenal cortex is
more active in females and regulated by androgens, and
as the authors said, “Future research will need to focus
on how these differences translate into sex-specific
diseases, which, in the long run, may pave the way for

development of sex-specific treatment options.” Sexual
dimorphism does not stand only for reproductive organs;
taking into account both sexes individually in future
experiments will improve our general understanding on
sexual dimorphism in every organ, and do not let females
apart in studies because their hormones could be
considered as ‘a problem’ [51].
www.sciencedirect.com
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