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Abstract. The aim of this paper is to investigate the numerical implementation of the
Field Dislocation Mechanics (FDM) theory for the simulation of dislocation-mediated
plasticity. First, the mesoscale FDM theory of Acharya and Roy (2006) is recalled which
permits to express the set of equations under the form of a static problem, corresponding
to the determination of the local stress field for a given dislocation density distribution,
complemented by an evolution problem, corresponding to the transport of the dislocation
density. The static problem is solved using FFT-based techniques (Brenner et al., 2014).
The main contribution of the present study is an efficient numerical scheme based on
high resolution Godunov-type solvers to solve the evolution problem. Model problems
of dislocation-mediated plasticity are finally considered in a simplified layer case. First,
uncoupled problems with uniform velocity are considered, which permits to reproduce
annihilation of dislocations and expansion of dislocation loops. Then, the FDM theory
is applied to several problems of dislocation microstructures subjected to a mechanical
loading.
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1. Introduction

Yielding and plastic deformation in crystalline materials at the single crystal scale is
determined by underlying mechanisms at a smaller scale attached to the presence and
to the motion of dislocations (line defects). The treatment of dislocations as discrete
objects with local interacting rules (annihilation, junction formation, etc.) has led to the
Discrete Dislocation Dynamics (DDD) which dates back to the late eighties (Lepinoux and
Kubin, 1987; Kubin and Canova, 1992; van der Giessen et al., 1995) (see Kubin (2013); Po
et al. (2014) for comprehensive reviews). The computational time-consuming part of this
approach is the evaluation of the elastic interactions between all dislocation segments.

A first way around this problem is the hybrid “discrete-continuum” approach (Lemarchand
et al., 2001) which makes use of the eigenstrain theory (Mura, 1982). In short, this model
consists in an elastoplastic finite-element (FE) computation where the plastic flow rule is
replaced by a DDD simulation.

A different fully “continuum” approach, consists in considering dislocation density field
rather than individual dislocation segments. Several dislocation-mediated elastoplastic
theories, relating the elastic theory of continuously distributed dislocations (Willis, 1967)
to constitutive mesoscale plasticity models, have been proposed (Acharya, 2001, 2003,
2004; Roy and Acharya, 2005; Gurtin, 2006; Hochrainer et al., 2014; Xia and El-Azab,
2015). We follow here the “Field Dislocation Mechanics” (FDM) of Acharya (2001) which
is a fully continuum model using the Nye dislocation tensor (Nye, 1953) as an internal
state variable field. At each point, it is related, in general, to dislocation lines bundles
on different slip systems. This dislocation density, linked to the incompatible part of the
plastic distortion, allows for the determination of the internal stress state (i.e long-range
elastic interactions) and the plastic strain rate can be derived from its evolution (transport
equation) which expresses the conservation of the Burgers vector in the material.

Our study is a contribution towards the derivation of a plasticity model able to describe
size effects and dislocation patterning (Acharya and Roy, 2006; Acharya and Arora, 2019).
More specifically, it is focused on the description of the plastic strain rate arising from the
evolution of the dislocation density tensor field. This work builds upon a numerical study
solely devoted to the numerical resolution of the internal stress field problem (i.e static
FDM theory) for periodic media (Brenner et al., 2014). This previous investigation has
resorted to the numerical FFT scheme originally proposed by Moulinec and Suquet (1998)
and now widely used for micromechanical studies on the linear and nonlinear behaviors
of heterogeneous materials. The uniqueness of the solution stress field has been proven
and an efficient numerical computational procedure for three-dimensional heterogeneous
material with arbitrary elastic anisotropy has been proposed. Interestingly, it can be
noted that Bertin et al. (2015) took advantage of this numerical approach to propose a
dislocation dynamics model in line with Lemarchand et al. (2001). It is worth mentioning
the study of Djaka et al. (2017) which reports calculations of internal stress field, by using
a FFT scheme, for various microstructural situations (see also Berbenni et al. (2014) for
the homogeneous case).

In the present article, we first use a rewriting of the transport equation in terms of the
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plastic distortion (Section 2). A general procedure is then proposed to solve FDM plasticity
problems for which the plastic strain rate is only due to the evolution of the Nye tensor
field (i.e. there is no contribution of statistically stored dislocations). It is possible to
have recourse to phenomenological constitutive laws from classical crystal plasticity to
handle this contribution (Acharya and Roy, 2006). Note also that attempts have been
proposed to derive it from an average procedure of the behaviour of dislocations ensembles
for 2D systems of straight edge dislocations (Groma et al., 2003; Valdenaire et al., 2016).
To neglect this contribution amounts to solve the evolution problem for the Nye tensor
without source term. This assumption is made in the present work and the transport
equation is solved in Section 3 by means of a Godunov-type high resolution scheme which
extends to dimension 2 the scheme of Das et al. (2016).

[lustrative results are presented for simple problems with a constant dislocation velocity
(Section 4), namely annihilation and dislocation loop expansion which have been considered
in previous studies, and finally model problems with a dependence of the velocity on the
stress field are considered (Section 5).

2. Field Dislocation Mechanics theory

2.1. Primitive form of FDM

The problem we are addressing is the numerical modelling of dislocation-mediated plasticity.
The approach followed relies on the use of the Nye dislocation tensor field as internal state
variable (Acharya, 2001, 2004). This requires to solve (i) a static problem, consisting in
the determination of the internal stress field resulting from a given dislocation density
field and an applied macroscopic stress in heterogeneous anisotropic elastic media and (ii)
an evolution problem, consisting in the transport of the dislocation density field due to
the local stress field produced.

The present study is focused on the case of an infinite medium with a periodic
microstructure, that is, the Nye dislocation tensor a and the elastic moduli tensor C are
considered as periodic fields. The problem thus consists in finding, for a given periodic
dislocation field v and a macroscopic stress @, the elastic distortion U®, the stress o and
the rate of dislocation density & which solve, on the unit-cell V',

divie) = 0 Equilibrium (static problem)
o = C:U° Elasticity law (static problem)
curl(U?) = « Definition of Nye tensor (static problem)
6! = —curl(a x V) Transport of dislocation (evolution problem),

(1)

where V is the dislocation velocity whose constitutive relation needs to be specified. The
transport equation is the pointwise statement of the conservation law of the Burgers vector
in the absence of source term. The problem is closed by periodic boundary conditions
together with appropriate average relations. The use of periodicity conditions permits
to avoid the extra-complication of boundary effects (such as free boundaries). From the
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definition of the Nye tensor (1)s, it follows that
div(a) =0 (2)

whose physical meaning is that dislocations cannot end within the material (they either
form loops or reach the surface).

With in mind the numerical implementation and application of this constitutive model,
it is worth noting the following points:

e The main kinematic variables of the model are the elastic distortion U® and the
dislocation density a. The plastic part of the velocity gradient appears as a x V.
The system of equation (1) then allows for the determination of the displacement
field.

e The last equation in (1) is a transport equation for the dislocation density. As is well
known in other problems involving conservation laws, the numerical discretization
of such systems can only guarantee that the divergence condition is of order of the
numerical truncation error. In particular, the discrete divergence may become very
large across shock waves and can lead to spurious solutions with unphysical oscillations
(see Rossmanith (2006), and references herein, in the context of magnetohydrodynamics
flows). A way to circumvent this issue is to introduce a new variable accounting
implicitly for the divergence condition.

2.2. An elastoplastic formulation of FDM

Based on the above remarks, we adopt in the sequel a slightly reformulated version of
FDM following Acharya (2010).

First, in order to introduce standard state variables, we recall the multiplicative
decomposition of the deformation gradient F'

F = F°F? (3)

where F¢ and FP are respectively the elastic and plastic part of the deformation gradient
related to the elastic and plastic distortion U¢ and UP:

Fe=1+U% FP=I+UP (4)

The deformation gradient being defined from the displacement field uw via the relation
F =1+ Vu, one can easily obtain

Vu =U°+ UP + U UP. (5)
This reduces, in small strains, to the following relation
Vu =U°+UP (6)

which permits to express the elastic distortion as a function of the gradient of the
displacement. Of course, the total strain is given by

. ;(Vu +val). (1)
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In order to solve the evolution equation for a under the constraint (2), it is
advantageous to consider a corresponding governing equation on the plastic distortion UP
for which there are no constraints, except the periodicity. From equations (1)3; and (6),
the plastic distortion is connected to the Nye tensor by the relation

a = —curl(UP). (8)

Obviously, the plastic distortion is not uniquely defined by the Nye tensor. Relations
(1)4 and (8) imply that the rate of plastic distortion UP is given by, up to a constant
second-order tensor,

UP=axV+Ve. (9)

Since we are investigating dislocation-mediated plasticity, we assume that the rate of
plastic distortion becomes nil when dislocations have zero velocity. Consequently we
assume that V¢ = 0. The transport equation (1)4 can be rewritten in terms of the plastic
distortion

UP = —curl(UP) x V. (10)

Solving this differential equation for UP, with appropriate initial conditions, one can then
deduce the dislocation density tensor e using equation (8) which directly ensures the
constraint (2). It is noted that, given an initial dislocation density field ay, an initial
incompatible (i.e. gradient-free) plastic distortion Uf can be determined by solving the
Poisson equation

AU{ = curl(ay). (11)
The FDM problem (1) thus reads alternatively
divie) = 0
o = C:(Vu-TUp) (12)
Ur = —curl(UP) xV

with initial conditions (11) for UP. The following periodic boundary conditions are assumed
u — (e(u)).x periodic, o.n anti-periodic, (13)

where the total strain is given by equation (7). Macroscopic loadings are finally considered,
expressed either in stress (o) = @ or strain (€) = € (or a combination of both), where &
and € are respectively the prescribed macroscopic stress and strain and (.) denotes the
spatial average over the unit-cell V.

It is interesting to note that in the present formulation of plasticity mediated by
the motion of dislocations, the structure of the problem differs from that of classical
(macroscopic) elastoplasticity by the constitutive relations expressed here by (11) and
(12)3, the other equations being preserved. Unlike in engineering plasticity, there is no
explicit yield condition on the stress o and the rate of plastic distortion does not derive
from some normality property but directly arises from the motion of dislocations under
applied stress. It therefore remains to specify how the dislocation velocity V depends on
the other unknowns of the problem, in particular the stress field.

1 It should be noted that this constitutive assumption has already been formulated by Acharya (2010).
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2.3. Constitutive law for the dislocation’s velocity

Several studies of dislocation motion from molecular dynamics (Groh et al., 2009; Ruestes
et al., 2015; Oren et al., 2017; Cho et al., 2017) have shown that dislocation glide kinetics
may be divided into three regimes: (i) an exponential dependence on the stress at velocities
up to 1073Cr, where Cr is the transverse sound wave velocity, (ii) a linear stress-velocity
relationship in the range of 1072 — 107'C7 and (iii) an asymptotic behavior for high
subsonic and transonic velocities. In most previous works of dislocations dynamics (Zbib
et al., 1998) or field dislocation mechanics (Acharya, 2010; Zhang et al., 2015), only the
linear regime was considered. (Note that in the context of the PMFDM, Acharya and Roy
(2006); Puri et al. (2011) considered also a power dependence of the velocity on stress).
This basically corresponds to the case of quasi-static plasticity at moderate stress levels.
Consequently, we shall here also focus on the linear regime. The phenomenological law for
the dislocation velocity is supposed to be of the form

F

= m, (14)

where > 0 is a viscous drag coefficient (depending on the material considered) and F is
a driving force to be defined. This choice for the velocity law corresponds to the nonlocal
level set model of Zhang et al. (2015).

In the case of dislocation motion with no lattice friction, the driving force is given by
(Acharya, 2003)
F=—-€:(o0.a). (15)

with € the permutation tensor (see Appendix A). It should be noted that for a single
dislocation, the driving force corresponds to the Peach-Koehler force of classical dislocation
theory. Such law alone does not account for lattice friction and thus does not contain a
Peierls-type threshold (Peierls, 1940): under any arbitrary stress, dislocation densities are
automatically moving.

In practice, the introduction of lattice friction is mandatory in dislocation-mediated
plasticity in order to account for energetic barriers. The first approach to model lattice
friction consists in the introduction of a Peierls-type threshold directly in the dislocation
mobility law, as it is done classically in DDD simulations (Kubin, 2013; Po et al., 2014):
if the stress is below the threshold there is no motion, and if it reaches the threshold,
equation (14) applies. The second approach consists in the introduction of non-convex
energy density functions in the mechanical dissipation (see Zhang et al. (2015); Das et al.
(2016)). This approach is closer to the physics since it permits to keep the memory of
the discrete nature of dislocations and to access dislocations patterning. In the following,
a non-convex energy density function is introduced, following the work of Zhang et al.
(2015); Das et al. (2016). The volumic density of free (stored) energy w is assumed to be
of the form )

w = 566 :C:e+G(UP) (16)



Numerical simulation of model problems in Plasticity based on FDM 7

where €° is the symmetric part of the elastic distortion U°. The function G is supposed
to be multi-well non-convex which corresponds to an energy function with barriers to
slip, thus enabling preferred energetic status to certain plastic strains. It is possible to
add extra terms in equation (16) to account for instance for the core energy, as done
in Zhang et al. (2015). This path was not followed here since the core energy term can
lead to numerical issues in the resolution of the hyperbolic evolution equation which is
known to be very sensitive to small perturbations (LeVeque, 2002). With the constitutive
assumption (16), the study of the intrinsic dissipation (see Appendix A) leads to the
definition of the driving force associated to the velocity field V:

P (o 2 ). an

3. Numerical integration of the constitutive model

3.1. General resolution procedure

3.1.1. Generalities 'The numerical integration of FDM equations consists in finding for a
given plastic distortion UP and some boundary conditions, the total displacement w and
stress o solving system (12). One of the main difficulties is to ensure simultaneously the
elastic equilibrium (elliptic equation) and the transport of dislocation (transport equation).
The strategy adopted in this work is to treat separately the static problem and the evolution
problem (i.e. transport equation) through an alternating-directions procedure. The reason
for this choice is that the two systems require specific solvers which can hardly be used
simultaneously.

In practice, the resolution consists in finding the mechanical state S, = {w,41,
oni1, Uh, i} at time ¢,41, knowing the previous mechanical state S, = {u,,, o,, U2} at
time t,, and considering boundary conditions (13). The static problem is first solved for
the previous plastic distortion

div(e,+1) = 0
18
{ On+1 = C: (Vuy —Up), (18)

then the plastic distortion is updated by solving the transport equation with the new
stress field
Uy = —curl(UR) x V(UL 0,11). (19)

In the following, the subscripts n and n + 1 will be omitted to reduce the amount of
notation.

3.1.2. Static problem In order to solve the static problem (18), we consider the FFT
scheme proposed by Brenner et al. (2014) (see also Berbenni et al. (2014)), based on the
work of Moulinec and Suquet (1998).



Numerical simulation of model problems in Plasticity based on FDM 8

Let us first consider the case of a homogeneous elastic medium with moduli tensor
C(x) = CY the solution field € can be classically expressed as

e(x) = (e) — (T x 7)(x) where 7 =-C°:UP. (20)

In this equation, * is the convolution product and I'° the Green operator of the homogeneous
medium with elasticity C°. In the Fourier space, this equation reads

~

€€)=-T"(€):7(§), VE#O, (21)

where the Fourier transform of the Green operator I'V is recalled:

M) = [eo (c0e) T oe] (22)

In this equation, the symbol []®®) indicates minor and major symmetrization. The Fourier
transform of the stress field reads

G(&) = (C°:T°)—1):C*: T, VE#0, &(0)=7, (23)

where I is the fourth-order identity tensor. Besides, from the definition (8), the Fourier
transform of the incompatible plastic distortion UP is given by (Brenner et al., 2014)

a(§) x ¢
[t/

where ¢ is the imaginary unit.

UP(€) =1 vE#£0,  TP0)=T", (24)

In the case of a heterogeneous elastic medium with moduli tensor C(x), the local
behavior can be rewritten as

o=C":Vu+r (25)

where

T=-C:UP+(C—C": Vu, (26)

with the uniform moduli C° of a reference medium. The only difference with the
homogeneous elastic problem is that the prescribed eigentress field 7 is not known a
priori since it depends on the field u which solves the problem. When the reference
medium is adequately chosen, the solution field € is obtained as a series expansion:

+o0 i
e(x) =Y (-T°%0C(x)) : ((e) + (1% C: UP)(x)) . (27)
i=0
Efficient iterative numerical procedures based on fast-Fourier tranforms (FFT) may then
be used to compute the solution field € (see, among others, Moulinec and Suquet, 1998;
Brisard and Dormieux, 2012; Moulinec and Silva, 2014; Schneider, 2019).
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3.1.3. Ewolution problem As explained above, the evolution problem (19) is treated
separately from the static problem. In order to emphasize the main characteristics of the
constitutive transport problem, it is useful to detail the full set of equations. Knowing the
stress state, the evolution problem (19) consists of a system of nine hyperbolic equations

(_]1p1 = (U12,1 - Ufl,Q)Vz - (U11,3 U13 1)‘/5
Ufz - (Uf)s,z - Ufz 3)VE’> - (U12,1 U11 Q)VI
[_]1p3 = (U1p1,3 - Uf3 1)V1 - (Uf3,2 Uiy 3)‘/2
Uzpl - (U§2,1 - U21,2)V2 - (U§173 U23,1)VE’>
(_]52 = (U23,2 —Usy 3)V3 - (U22 1 U21,2)V1 (28)
Ugs = (U§1,3 - U§3 1>V1 - (U23,2 U2pQ,3)V2
U§1 = (U§2,1 - Ui?l 2)V2 - (U:Ia)l,:), - U:?s 1)V3
U:% = (U§3,2 - Uz?z 3)V3 - (U32,1 Usy 2)V1
Uss (U??I,S —Uss Vi — (U§3,2 — U o)Va

From the definition (14) of the velocity, it appears that the evolution problem consists in
a vectorial, multi-dimensional and non-linear hyperbolic system of Hamilton-Jacobi type.
Several approaches permit to solve Hamilton-Jacobi equations: ENO and WENO schemes
(Osher and Shu, 1991; Jiang and Peng, 2000), discontinuous Galerkin finite element (Hu and
Shu, 1999) and Godunov-type approaches (Lin and Tadmor, 2000; Kurganov et al., 2001).
These approaches rely on advanced numerical methods that are unfortunately restricted,
up to now, to two-dimensional scalar problems; if the extension to the three-dimensional
case does not seem to be an unrealistic task, the extension to vectorial equations remains
an open and difficult problem.

As a first step towards the resolution of the full coupled problem of FDM, we first
consider a particular case for which the vectorial system reduces to a scalar equation. This
allows us to resort to efficient numerical solvers for Hamilton-Jacobi equations.

3.2. A simplified layer problem

3.2.1. Position of the problem We consider a simplified model problem of edge and
screw dislocations confined in a thin layer as shown in Figure 1. This model problem
can be seen as an elastoplastic body where plastic flow is constrained in a layer, act-
ing as the slip plane. Thus, in the layer, both edge and screw dislocations exist and
FDM is active, while the two outer regions are purely elastic linear. This model may be
viewed as an extension to three dimensions of the problem considered by Zhang et al. (2015).

In the layer, the following ansatz is assumed:

(i) The plastic distortion is supposed to be constrained in the layer and is of the form

UP = Ulpg(xl,xQ)el X es. (29)
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Elastoplastic

with FDM Elastic

X:;T<:X2
X
Figure 1: Simplified layer problem.

This implies that the dislocation density tensor is of the form
a = a11(71,72)e; @ e; + aia(r1, 12)e; ® ey, (30)

where aqy (21, 22) = —Ups, and aig(21, 22) = Uly ;.

(ii) Let us suppose that the non-convex energy function G is of the form

Up
G = Bsin (%) Ty (31)
where [ is a nondimensional parameter that is supposed to be very small (Das et al.,
2016) and 7, has the dimension of a stress. The term 0G/0UT; arising in the definition
of the driving force is thus a high-frequency oscillatory function bounded with an
amplitude 7,. This energy, which was referred as a wiggly energy (Das et al., 2016),
permits to account for lattice friction produced by a discrete lattice, with a threshold
in stress corresponding to 7.

(iii) Dislocations move in the (thin) layer where they are constrained to stay (i.e. no
dislocation climb or cross-slip) so the dislocation velocity V can be assumed in the
form

V = Vi(z1, z0)er + Va(xy, 29)es. (32)

The dissipation D can be written as (see Appendix A)

oG oG
D = Layer (O’ — aUp> : (a X V) dv = /Layer (0'13 - ﬁ) (0411‘/2 — 0512‘/1) dv

L L aG
= h/_L /_L (7’13 - m) (0411‘/2 — 0412‘/1) dxl de, (33)
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where h is the layer’s thickness and 73 is the average stress in the layer given by

1 rh/2 q A
= — . 3
T13 h/—h/2 013dx3 ( )

Here, 13, aq1, aqa, Vi, Vo and 0G /90U, are functions of (x1, z2) only.

(iv) The driving force is finally supposed to depend on the average stress 73:

oG
Fi =—|mn3— ) Q12

oG
F, = (7'13 - aUp> a1y.
13

This implies that the driving force F is a function of (1, ) only, which permits to
apply the constitutive law V = V(F) in two dimensions.

(35)

The problem which has to be solved for (u, o) reduces to

80ij
— =0
8567;
ou;  Ou; Ouy,
74 —H (83} * Gscj- B UZ%) N )\Gisck(sij
(R (30
oy, _ ™M™ (ﬁ) EICEANEAN
ot n 0xq 0T
+ periodicity conditions,

. . . R 1 8u1 8uj
with prescribed macroscopic strain &;; = = + .
2 833'j 8951
Following Zhang et al. (2015), a dimensional analysis suggests the introduction of
dimensionless variables

X Vit u o T13 Ty Vin

}EZE, EZTSJ ﬁzg; &:Ea 7213:77 7t:t/:ﬁ? ﬁ: ,u7 d:ba7
(37)
where b is the norm of the Burgers vector, p is the elastic shear modulus and V, = /u/p

is the elastic shear wave speed (p being the density). The problem which has to be solved
for (@, &) thus reads

Z;
_ fow 0w .\ Aoy
u = (8@- 8z, Uij) T 0w

p (38)
T13 — COS % T,

oup, _ " B) | (0URY, (0URY

o i 07, lof

+ periodicity conditions,
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. . . . 1 <8I~L¢ 812j>
with prescribed macroscopic strain &;; = = ( =—— + == ).
2\0%; O,

This model problem is interesting from a computational point of view because it
allows to express the evolution problem in two dimensions only without losing too much of
the physics. Indeed, the problem is 3D in Fourier space and only the transport equation is
constrained in the layer, which ultimately corresponds to impose the slip plane. The static
problem, corresponding to equations (38);_5, can easily be solved in Fourier space using
the FFT scheme described in Section 3.1.2. Once the shear stress o3 is computed, it is
easy to compute the average stress 713 and, as explained in Section 3.1.1, U}y is updated
by solving the evolution problem, whose algorithm is presented hereafter.

3.2.2. Resolution of the evolution problem - 1D case The evolution problem consists of an
hyperbolic Hamilton-Jacobi equation (38)s. It is well known that such equations requires
specific solvers in order to avoid spurious numerical effects as oscillations and damping
(LeVeque, 2002).

Following the suggestion of Das et al. (2016), we adopt here Kurganov et al. (2001)’s
scheme which is a Godunov-type high resolution scheme. As such, it combines simplicity
and accuracy. First the algorithm is presented in one-dimension. We thus consider the
following one-dimensional prototype equation

d¢ 99\ _
% (%) - o

where ¢ = Ul and x = #;. The Hamiltonian H reads

%4
ox

9¢
ox

=7 , (40)

Ui

where the term vy is given by the previous time step.

9 cos <¢> Ty — T13
i(5) -

ox

A uniform resolution grid is chosen and we use the following notations: z; = jAx
(corresponding to the nodes of the pixels introduced in the FFT algorithm), " = nAt and
Py = Ups(xj,t"), where Az and At are respectively the spatial scale and the time step.

Assuming that the point values of Ul at time £ = ¢" (qb?) are known, we are looking for

the point values of U}y at time £ = ¢"*! (gb;‘“)

Step 1: construction of a continuous piecewise interpolant. We start with the construction
of the continuous piecewise interpolant ¢(x,t") in order to avoid spurious oscillations. The
quadratic interpolant over the interval [x;, z,41] reads

Yoy n (A¢)?+1/2 (A¢>;‘+1/2
o(x,t") = ¢} +Tx@—%)ﬂLW(flf—%)(ﬂf—l’jﬂ)’ (41)

where

Aiy1ja = Oja — 05 (42)
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The term (Ag)j,,/»/(Ax)? is an approximation of the second derivative ¢uq(2j41/2,t"). A
nonlinear limiter is used to compute this derivative in order to ensure the nonoscillatory
nature of ¢(x,t"). A one-parameter family of the minmod limiters is used

1
(A@))41/» = minmod (9 [(A0)7 1370 — (AD))41s0] s = [(AD) s — (AD)T 4 )

0 (AN 10— (AD)T1s2]) (43)

where 6 € [1,2] and the minmod function is defined by

DO |

min;{z,} if z; >0 Vy,
minmod(z1, z2,...) = { max;{z;} if z; <0 Vy, (44)
0 otherwise.

Step 2: estimation of the one-sided local speed of propagation. We estimate the one-sided
speed of propagation at the grid point x;, which are given by

af =max{H'(¢;), H'(¢,),0}:  a; =min{H'(¢;]), H'(¢,),0}, (45)
where ¢F = ¢,(z; £ 0,t"). Using the continuous piecewise quadratic polynomial (41), one

gets

(AP)is1jo  (AQ)jn1yo
+_

Step 3: approzimate solution of the Hamilton-Jacobi equation at intermediate grid points.
The Hamilton-Jacobi equation (39) is exactly solved at intermediate points defined as

_ + .
Tix = x; +a; At
tn+1

H (e, 1)) dt. (47)

With an appropriate CFL number condition (see Kurganov et al. (2001)), the integral
on the right-hand side can be evaluated within second-order accuracy by the midpoint

ALt = e t) — [

tn

rule; this yields to the following approximate Riemann solver
OIt = Glaju, ") — ALH (Gg(a]y, ")) . (48)

Step 4: projection of the intermediate solution onto the original grid. The solution
previously obtained at the intermediate points x4 is projected onto the original grid

¢n+1 a’j+ ¢n+1 (Z; ¢n+1 (49)
¢ Sy E

which leads to the fully discrete scheme

+ —

Ot = = (9l 1) = AH (9a(@ 1)) = (3, 1) = AH (Su(af 1))

a

J a;

(50)
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3.2.3. Resolution of the evolution problem - 2D case We continue with the resolution of
the evolution problem in the two-dimensional case. We consider the prototype equation

9¢ 9¢ 99\ _
(95+H<a:c’8y> =0, (51)

where ¢ = ULy, v = 1 and y = Z». The Hamiltonian H reads

cos (£ 7, — T3 ; 2 2
() UL ) )

where the term v, is given by the previous time step.

Again, a uniform resolution grid (corresponding to the pixels’ nodes) is chosen with
the following notations: z; = jAz, yp = kAy, t" = nAt and ¢}, = Uts(z;, yr, "), where
Az, Ay and At are respectively the spatial scales and the time step. Assuming that the
point values of Ul at time t = " ( ;Lk> are known, we are looking for the point values of

Ul at time £ = ¢! (qﬁ?,jl)

Step 1: construction of a continuous piecewise interpolant. We start with the construction
of the continuous piecewise interpolant q;(x, y,t™) in order to avoid spurious oscillations.
The extension of the quadratic interpolant written in the one-dimensional case (41) to the
two-dimensional case is tedious but straightforward (see Kurganov and Tadmor (2000) for
the full detail).

Step 2: estimation of the one-sided local speed of propagation. Then we evaluate the
one-sided local speeds of propagation in the x— and y—directions. These values at the
grid point (x;,y,) are given by

a, = max{g(‘;{( (pi), } az, = mln{gf( qbi),O}
b max{g(f( = 0y); 0}, bix _mln{gf( N ¢i),0}, (53)

where ¢F = (Zm(x] +0, yx, t") and qﬁj = (By(xj, yr£0,t") are the right and the left derivatives
in the x— and y—direction, deduced from the two-dimensional interpolant (Kurganov and
Tadmor, 2000).

Step 3: approximate solution of the Hamilton-Jacobi equation at intermediate grid
points. The Hamilton-Jacobi equation (51) is then solved at the intermediate points
(2 =25 + aﬁAt, Ype = Yk + b wAt). This leads to the approximate Riemann solver

gb;i%ci ¢( ?j:’ yl?ﬂ:» tn) — AtH (qu(x?j:’ yl?ﬂ:» tn)> ¢y(x?j:7 ygﬁzv tn)> : (54)
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Step 4: projection of the intermediate solution onto the original grid. The solution
previously obtained at the intermediate points x;1 and y+ is projected onto the original
grid which leads to the fully discrete scheme

¢?fj1 - (ah — ]];lzjk ( g+vyk+7tn AtH (5 <$?+7yk+7 ), &y ( y+ayk+7tn))>
gk — Ak

T a”’ﬁbﬂ“ = (e yit s #7) = AH (9 yi,#), 0y v, 1))

t @ J’; L ( Ty ) = AtH (6a(2), i 1), by () yity 1)) )

+ bk (&(x?_,y;? A7) = AH (o2, yi ), Sy (2, yi 1)) ) -

(a;rk - a;k)@?k - bjk)
(55)
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4. Numerical results: uncoupled problems

4.1. Preliminaries

The aim of this section is to study numerically the evolution of the pointwise dislocation
density tensor by considering only the transport problem. To do so, we assume a prescribed
constant stress field (in time and space) and a null stress threshold (7, = 0). In this way,
we have to solve the hyperbolic equation

oUY, ouR\*  [oUR\’
= =0 56
or "\ \ 5 ) TGz, ’ (56)
where the “celerity” of dislocation vy = —713/7 is constant since we do not consider the

coupling with the static problem.

This first step is needed in order to assess solely the algorithm proposed for the
hyperbolic Hamilton-Jacobi system because in the particular case of equation (56),
analytical solutions and mathematical properties may be exhibited. Indeed, in terms of
the dislocation densities a7 and ays, the hyperbolic equation (56) reads

{ Q. = —(Olnvz —0412V1),2 (57)
Qg = —(0612V1 - 0411‘/2),1
where the velocities V; and V5 are given by
vV, = _@ a2 = g Q12
My of; + aiy Vi +aiy (58)
Vv, — T13 a1 — a1
2 = T = Yy
T \Jod, + aty Vod +aiy
Then, let us study the derivative of ||a|| = \/a}; + o, in the velocity V defined as
dflef] -
T lall + V. V]al, (59)
where
: 1 . .
o] = m(@llan + Gr20012)
1 (60)
V.V ol = m [(04110411,1 + aipain1)Vi + (aniagn 2 + 04120412,2)‘/2]-

According to the definition of V; and V, given by (58), the transport equation (57) reduces
to

iy —aq12Va + ag22V)
(61)

Qg = 0411,1‘/2—0412,1‘/1-
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Thus the derivative of ||a|| (59) in the velocity field V reads

||| _ an Vi + aaVs
dt [ c]]

(o111 + a122) =0 (62)

due to the relation (2). This means that the transport of ||| modeled by equation (56) is
thus conservative in the velocity field considered?: no damping and no spreading of ||«||
should be observed in the numerical simulations. It should be noted that this property
only holds for the constitutive law (14) and under the hypothesis of constant and uniform
velocity vg. This provides however, under these hypotheses, a valuable assessment to test
the accuracy of the time-integration algorithm for the transport equation. An explicit
Euler algorithm would not satisfy this condition.

4.2. Description of the simulations

In the sequel, the FDM approach is used for two model problems with single
dislocations lines or loops, namely (i) the annihilation of edge dislocations and (ii) the
expansion of dislocation loops. To perform the simulations, dislocation densities and
material parameters need to be prescribed. We consider only a 2D unit-cell domain (since
we do not solve the static problem) of 320b x 320b corresponding to the layer, with b the
norm of the chosen Burgers vector b = be;. The dislocation is supposed to be spread
uniformly on an arbitrary surface Sy (of dimensions the layer’s height and dislocation’s
width), with normal n, so that the Burgers vector and the dislocation density tensor are
related by

b = _on ds. (63)

For the 2D problem the initial dislocation density components are

afy =aly = (64)
Here the surface Sy is supposed to be square with the layer’s height and dislocation’s
width both taken equal to 10b. Material data corresponding to aluminum are considered:
the norm of the Burgers vector is b = 0.286 nm, the viscous drag coefficient is n = 10°
Pa.s.m™! (Cho et al., 2017), the elastic constants are y = 26.1 GPa and A\ = 46.3 GPa, and
the density is p = 2700 kg.m . With the considered surface Sy = 10052, the dislocation

. (or equivalently &}, = &, = 107%). Finally,

densities are af; = afy = 3.5 x 107 m~
a uniform remote stress 73 = Vyn ~ £310 MPa is considered so that the celerity of

dislocations reads vg = %1.

2 It should be noted that, if annihilation occurs, the velocity is no longer well defined at the shock front,
and thus equation (62) is no longer valid.
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4.8. 1D example: annihilation of dislocations

As a first example, we consider a 1D version of the transport equation:

AU, . AU,
ot °1 04,

= 0. (65)

In this case, only straight parallel edge dislocations are considered in the slip plane, that
is ag; = 0 and ay2 = aja(z1). Physical phenomena such as the propagation of a sole
dislocation and annihilation of two dislocations of opposite sign can be investigated using
this 1D equation. Here we focus on the process of dislocation annihilation, resulting of the
shock of two dislocations of opposite sign (see Figure 2). This prototype equation was
investigated in previous works (Varadhan et al., 2006; Djaka et al., 2015; Xia and El-Azab,
2015) and was found to generate numerical artifacts such as oscillations and damping,.

(a) (b)

Figure 2: Mechanism of annihilation of dislocations. (a) Discrete edge dislocations, (b)

3D density of edge dislocations.

Two initial edge dislocation density distributions, modeled by half-square waves of
amplitude &Y, = #1072 are embedded in a uniform velocity field vy = —1. The unit-cell of
size 3200 is discretized on a regular grid of 2048 pixels, so the spatial scale is Ax; ~ 0.16b,
or equivalently AZ; =~ 0.16. In this case, the CFL number considered is

At

so the dimensionless time step is At ~ 0.04, or equivalently At ~ 3.6 x 1071% s.

The results are represented in Figure 3 at several time steps. The two half-square
waves move towards each other and collide when they meet at the center of the unit-cell.
In this unidimensional case, the evolution of the dislocation density predicted by the
numerical scheme coincides almost exactly with the exact evolution calculated using
the method of characteristics. (The exact solution is not represented since it would be
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indistinguishable from the numerical solution). In particular the dislocation densities are
transported without damping and oscillation. This is in contrast with previous works where
strong oscillations and damping were observed, requiring numerical heuristic methods such
as diffusion terms (Varadhan et al., 2006) or spectral filters (Djaka et al., 2015), even in
the case of smooth sinusoidal signals.
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Figure 3: Evolution of the edge dislocation density distribution /|| ||max in the process
of annihilation of dislocations. (a) £ =0, (b) £ = 35.2, (c¢) t = 74.2, (d) £ = 105 (e) ¢ = 109
(f) t = 113.

4.4. 2D examples: expansion dislocation loops

As a second example, we consider the 2D version of the transport equation:

OUP, Us\>  (0U\*
W + UO\J ( alfl + 85]2 =0. (67)

In this case, both edge and screw dislocations (a9 # 0,17 # 0) are considered in the

slip plane. Physical phenomena such as the expansion and shrinkage of planar dislocation
loops can be investigated with this equation.

4.4.1. Smooth circular dislocation loop Here we focus on the process of expansion of a
smooth circular dislocation loop (see Figure 4). This example was also investigated in
previous works where important spreading and damping was observed.

The initial dislocation density, characterized by ||a°|| = \/ (a9,)* + (ay)® = 3.5 x 107
m~! and represented in Figure 4, is again embedded in a uniform velocity field vy = —1.
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Figure 4: Mechanism of expansion of a circular dislocation loop. (a) Discrete dislocation
line, (b) 3D density of dislocation, (c) 2D problem considered.

The unit-cell is discretized on a regular grid of 512 x 512 pixels, so the spatial scale is
Az = 0.62b, (or AZ = 0.62). The CFL number considered is still

At

so the dimensionless time step is At ~ 0.16, or equivalently At ~ 1.44 x 107" s.

The results are represented in Figure 5 at several time steps. The mechanism
of expansion is well reproduced by the scheme and, again, the dislocation density is
transported without any damping and spreading, in contrast with previous works.
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Figure 5: Evolution of the dislocation density ||c||/||a®||max in the process of expansion of
a smooth circular loop.



Numerical simulation of model problems in Plasticity based on FDM 22

4.4.2. Polygonal dislocation loop We continue with the case of a dislocation loop with
corners as defined in Figure 6. This is an interesting case because it admits non-unique
weak solutions (Acharya, 2003). In particular, following Varadhan et al. (2006)’s comments,
some entropy condition needs to be specified in order to choose between the so-called
expansion fan solution (a moving corner turns into an arc of constant radius) or the shock
solution (a moving corner remains sharp).

Figure 6: 2D problem considered in the case of a polygonal dislocation loop.

First, we consider the case of expansion of the polygonal loop, which corresponds to a
uniform velocity vg = —1. The parameters considered in Section 4.4.1 are again used. The
mechanism of expansion is well reproduced in Figure 7 by the scheme without notable
damping and spreading. The corners do not stay sharp which means that the scheme
automatically chooses the expansion fan solution. It should be noted that if the process is
reversed at the end of the expansion by imposing vg = —1, the dislocation loop takes its
initial polygonal shape.

Then, we consider the case of shrinkage of an initially polygonal loop (defined in Figure
6), which corresponds to a uniform velocity vy = 1. (Again, the same other parameters are
considered). The mechanism of shrinkage is well reproduced in Figure 8 by the scheme
without regularizing the corners as in the expansion process.
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Figure 7: Evolution of the dislocation density ||c||/||a®||max in the process of expansion of
a polygonal loop.

Figure 8: Evolution of the dislocation density ||||/||a®||max in the process of shrinkage of
a polygonal loop.
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4.5. Discussion

As shown in Section 4.1, the transport of ||| modeled by equation (56) is conservative
in the velocity field considered, which means that no damping and no spreading of ||«||
should be observed. The numerical scheme considered in this work has permitted to
respect this property. The present results thus improve the prediction of dislocation
motion formulated in the field dislocation mechanics framework in a simplified case where
the plastic distortion tensor reduces to one component; indeed previous works suffer, in
the same simplified problem, from numerical discrepancies such as oscillations, spreading
and damping of dislocation densities. It is pointed out that predicting correctly the
dislocation density motion is of the highest importance in coupled problems where the
magnitude of the dislocation density will determine the stress level. In particular, an
inaccurate transport of the dislocation density with damping, spreading and oscillations
would induce spurious errors in the predictions of the stress and thus a poor prediction of
the elastoplastic mechanical behavior.
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5. Numerical results: coupled problems

5.1. Preliminaries

The aim of this section is to study numerically the evolution of the pointwise dislocation
density tensor by considering the simplified FDM layer problem defined in Section 3.2
with no a priori assumptions on the velocity of dislocations vg: the stress field is neither
constant nor uniform and the stress threshold is strictly positive; the evolution equation
(51) is coupled to the static problem (relations (18) and (19)).

In the sequel, we consider several 3D microstructures since the static problem is solved
on a 3D cell made of elastic regions and a layer governed by FDM equations; in all cases,
the unit-cell of 320b x 320b x 3200 is discretized on a regular grid of 256 x 256 x 256 pixels,
so the spatial scale is Az = 3.58 x 107! nm. The thickness h of the layer is chosen to be
very small (h = 5b) so that the layer may be seen as a slip plane. This permits to reduce
the possible fluctuation of the stress 13 in the x3-direction so that that the average stress
T13 is very close to the stress o13. Again, material data corresponding to aluminum are
considered (see Section 4.2). The parameters for the non-convex energy function are taken
as follows: 8 = 107® and 7, = 1 MPa. The value of the threshold 7, has been taken to
coincide with the Peirls stress of aluminum (Kamimura et al., 2013).

Dislocation microstructures (such as a dislocation dipole for instance) produce initially
an internal stress field (Brenner et al., 2014). Thus, an initial microstructure can evolve
without any macroscopic stress field applied, due to the local stress field produced by the
dislocation density. Consequently we first need to study the possible equilibrium aspects
of initial dislocation densities before any mechanical macroscopic loading. It should be
noted that, in absence of lattice friction effects, initial microstructures will evolve and the
dislocation will spread (Zhang et al., 2015); thus equilibrium positions of dislocation field
may be allowed only by the introduction of nonconvex energy density functions (Zhang
et al., 2015). In order to investigate the possible equilibrium of the initial dislocation
density field, we study its evolution while keeping a macroscopic zero stress field. Thus,
the cell is subjected to a macroscopic loading path &3 given by

__ (Un)

€13 = 5

(69)

which imposes that the stress 73 is nil. Then, when the microstructure stops evolving, an
equilibrium position is reached.

Equilibrated microstructures are then subjected to a mechanical loading in order to
investigate the evolution of the dislocation density field. An increasing macroscopic strain
13 = 13t is applied. The strain rate &5 is chosen low enough so the evolution may be
considered as rate-independent.

5.2. Evolution of a dislocation loop

We consider the previous case of a circular dislocation loop. The initial dislocation density

is characterized by |a°| = \/(a91)2 + (a%)® = 10® m~! and is represented in Figure 4.
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The CFL number considered is A7
t
— =10.2
|UO|A£1 0.25 (70)

where the celerity of dislocation vy = (cos (UTE“’) 7, — T13) /7 depends on the stress level.
The time step At is adjusted to ensure the value of the CFL number.

First we let the initial microstructure evolve in order to study its possible equilibrium
position. The simulation reveals that the dislocation density field slightly oscillates around
an equilibrium position that is represented in Figure 9. It is interesting to note that the
dislocation field is somehow “noisy” after this equilibrium process. This is due to the fact
that the mobility of dislocations oscillates very rapidly in space around the value zero, due
to the non-convex energy contribution which implies an alternation of positive, negative
and zero velocity.

Figure 9: Distribution of the dislocation density after equilibrium.

The equilibrated microstructure represented in Figure 9 is then subjected to an
increasing macroscopic strain. The results are represented in Figure 10 at several strains:
E13=0,E13=5.5x107° &3 =84 x 1072 and £;3 = 1.1 x 10~%. The increase of the total
strain £13 induces an expansion of the circular loop which is due to an increase of the local
stress field. In contrast with the uncoupled problem, the velocity of the dislocation is
not prescribed here and is only a consequence of the local mechanical state induced by
the macroscopic straining and the dislocation density. It is interesting to note that the
noisy effect observed in the equilibrated field disappears during the loading because lattice
effects are less dominant when the dislocation starts moving. It is worth noting that the
dislocation remains compact during the evolution.
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£3=8.4x10%

Figure 10: Evolution of the dislocation density ||a||/||a®||max of an initially circular loop
subjected to an increasing macroscopic strain.

5.8. Orowan’s mechanism

As a second example we investigate the interaction between a dislocation loop and
a precipitate, which is known as Orowan’s mechanism. This mechanism consists in
the formation of residual dislocation loops after the bowing of a dislocation around a
precipitate. Such mechanism has important consequences on the strength of metallic
alloys (i.e. precipitation hardening). In order to account for the presence of particles, we
consider a heterogeneous distribution of the viscous drag coefficient 7. We assume here
that particles do not allow the motion of dislocations so they can be modeled by an infinite
value of 7 which implies that the dislocation velocity (14) is zero. Two initial distributions
are considered, one with dual symmetrical precipitates (see Figure 11(a)) and the second
with a random distribution of precipitates (see Figure 11(b)). We consider as before a
circular dislocation loop whose equilibrium position is given in Figure 9.

The equilibrated microstructure is then subjected to an increasing macroscopic strain
£13. In the case of dual symmetrical precipitates, the results are represented in Figure 12
at several strains: &13 = 5.5 X 107°, 513 =84 x107°, 513 = 1.1 x107* and &3 = 1.2 x 10~
The simulations show that the dislocation loop cuts itself in two parts while it gets around
the precipitate. Once the precipitate is passed, the two parts of the dislocation density
merge and form again a loop. After this process, a residual dislocation loop remains
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(a) (b)

Figure 11: Distribution of the viscous drag coefficient 7 in the case of (a) dual symmetrical
precipitates and (b) a random distribution of precipitates. The white color corresponds to

n = oo and the black color corresponds to n = 10° Pa.s.m™.

around the precipitate.

£13=8.4x10"

Figure 12: Evolution of the dislocation density ||c|/||a®||max of an initially circular loop
subjected to an increasing macroscopic strain in the case of dual symmetrical precipitates.

In the case of a random distribution of precipitates, the results are represented in
Figure 13 at several strains: &3 = 0 (equilibrium), &3 = 5.5 x 107°, &3 = 8.4 x 107°
and &3 = 1.1 x 10~*. The simulations show that the dislocation loop gets around each
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precipitate with the same mechanism and a residual dislocation density remains around
each precipitate.

gh—=1.2x10"

Figure 13: Evolution of the dislocation density ||a||/[|a®||max of an initially circular loop
subjected to an increasing macroscopic strain in the case of a random distribution of
precipitates.
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5.4. Random microstructures

We finally investigate the possible emergence of spatial inhomogeneity of the Nye disloca-
tion field (i.e. dislocation patterning). To do so, we consider the equilibrium and evolution
of initially random distributions of the plastic distortion Ufy. A first microstructure (mi-
crostructure A) is generated in the plastic layer using a random number generator which
ensures that ||| max = 10> m~! and Uty = 0 (see Figure 14(a)). Since the random number
generation is done in each pixel, the distribution of Uty is noisy, which may induce damping
during the evolution problem. Thus, a second microstructure is generated by applying
a smoother (Garcia, 2010) which permits to keep the same properties (||a°||max = 103
m~" and U}y = 0) while gaining in smoothness (see Figure 14(b)). The aim of this study
is only to illustrate the possible emergence of patterning, so no attempt is done here to
characterize thoroughly these microstructures in terms of morphology and representativity
(Jeulin, 2012).

0.8

(b)

Figure 14: Distribution of the initial plastic distortion Ufs/Ufs .y (2) Noisy random
microstructure (microstructure A), (b) Smoothed random microstructure (microstructure
B).

Microstructure A. First we let the “noisy” random microstructure evolve in order to
study its equilibrium position. The dislocation density reaches an equilibrium position (see
Figure 15 upper left snapshot) consisting in an organized lamellar microstructure mimicking
tortuous dislocation cells. The value of the dislocation density ||«|| is ten times lower than
its initial value, due to an important damping. (The evolution of ||«/|| is not conservative
since the hypotheses of Section 4.1 are not met in the coupled case). The equilibrated
microstructure is then subjected to an increasing macroscopic strain £;3. The results
are represented in Figure 15 at several strains: &3 = 0 (equilibrium), &3 = 1.3 x 1075,
E13 = 2.2 x 107% and &3 = 3 x 107°. The “lamellar” microstructure is followed by a
“globular” microstructure made of dislocation loops separated by thin walls. This type
of microstructure evolution, obtained from a random distribution of plastic distortion,



Numerical simulation of model problems in Plasticity based on FDM 31

resembles the formation of dislocation cells. This apparent dislocation patterning seems
very similar to the formation of crystal grains. However, the cells boundaries do not act
here as classical grain boundaries where dislocation loops can stack up. Indeed, if the
loading is increased, dislocations loops will continue interacting and will annihilate in
absence of dislocation nucleation and no pile-up is observed.
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Figure 15: Evolution of the dislocation density ||c||/||a®||max of an initially noisy random
microstructure (microstructure A) subjected to an increasing macroscopic strain.

Microstructure B.  Then we consider the case of the “smooth microstructure”. Again, the
dislocation density reaches an equilibrium position (see Figure 16 upper left snapshot)
consisting in an organized lamellar microstructure. The initial cells are more apparent
due to a bigger size. It is worth noting that no damping of ||«/|| is observed, in contrast
with the noisy microstructure. The equilibrated microstructure is then subjected to an
increasing macroscopic strain £13. The results are represented in Figure 16 at several
strains: &3 = 0 (equilibrium), &3 = 1.3 x 107°, &13 = 2.2 x 107° and &3 = 3 x 107>,
Again, the “lamellar” microstructure is followed by a “globular” microstructure made of
dislocation loops separated by thin walls. In that case, the formation of dislocation cells
is more patent because they are bigger. This microstructure is very similar to crystal
grains in which dislocation loops grow. Again, no pile-up is observed due to dislocation
annihilation between loops of neighboring cells.
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§a=2/2x10

Figure 16: Evolution of the dislocation density ||a||/||a°||max of an initially smooth random
microstructure (microstructure B) subjected to an increasing macroscopic strain.

In both cases, it is worth noting that strain unloading, up to a nil macroscopic stress,
permits to stop the evolution of the microstructure and thus leads to a stabilization of the
pattern.
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6. Conclusion

The aim of this work was to investigate dislocation-mediated plasticity using the Field
Dislocation Mechanics theory. First, the mesoscale FDM theory was recalled which
has permitted to clearly identify two distinct problems to be solved, the static problem
consisting in the determination of the local stress field for a given dislocation density
(elliptic equation), and the evolution problem consisting in the transport of the dislocation
density (hyperbolic equation). An efficient numerical integration procedure was then
proposed. The static problem was solved in a general case using the FFT-based scheme
proposed by Brenner et al. (2014). The evolution problem, consisting in a vectorial
tridimensional Hamilton-Jacobi hyperbolic equation, was solved in a simplified layer case
using a high resolution Godunov-type scheme. Model problems were finally considered
in order to investigate the predictions of the theory. First, uncoupled problems with
constant velocity were explored: the numerical scheme considered has permitted to re-
produce accurately physical phenomena such as the annihilation of dislocations and the
expansion of a dislocation loop. Then, the FDM theory was applied to coupled problems
in order to investigate several problems of dislocation-mediated plasticity. In a model
problem of interactions between a dislocation and precipitates, the formation of residual
dislocation loops around the precipitates has been observed. Finally, the evolution of
random microstructures has been studied as a possible way to access dislocation patterning.

The present work permits to confirm the expectations funded in the Field Dislocation
Mechanics theory for predicting several mechanisms of dislocation-mediated plasticity
(Acharya, 2010). The present formulation is not complete since only one component of the
plastic distortion tensor was considered. Future developments concerning the numerical
integration of the 3-d FDM theory are thus necessary to tackle more general problems of
plasticity. A future important task will notably consist in developing numerical algorithms
to solve vectorial multi-dimensional Hamilton-Jacobi equations. This would permit to
develop a computational implementation of the 3-d FDM theory whose outcome would
be a complete description of multiple slips, anisotropy, arbitrary loadings and complex
polycrystalline microstructures.
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Appendix A. Plastic dissipation and driving force

The identification of the driving force F from the expression of the intrinsic dissipation
(Acharya, 2003) is briefly recalled and its components are given as a function of o and UP
components.
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By definition (Clausius-Duhem inequality), the intrinsic dissipation is defined by
D:/(U:Vu—u’))dv (A1)
Q

with w the volumic density of free (stored) energy. With the constitutive assumption for
the free energy w = %ee : C: € + G(UP), the intrinsic dissipation reads

D= /(a—aUp> :Updu_/g<a—§g> (@ x V) dv (A.2)

o) s o (e ) e o

The driving force associated to the velocity field V can thus be defined as

P (e 25) ) »

where € is the Levi-Civita tensor whose components are given by

+1 if (4,7, k) is (1,2,3),(2,3,1), or (3,1,2),
e = —1 if (4,4,k) is (3,2,1),(1,3,2), or (2,1,3), (A.5)
0 ifi=j, orj=k, ork=u.

Besides, a constitutive assumption, ensuring the positivity of the dissipation D, has
to be made for the velocity field V (see Section 2.3).
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