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. The main contribution of the present study is an efficient numerical scheme based on high resolution Godunov-type solvers to solve the evolution problem. Model problems of dislocation-mediated plasticity are finally considered in a simplified layer case. First, uncoupled problems with uniform velocity are considered, which permits to reproduce annihilation of dislocations and expansion of dislocation loops. Then, the FDM theory is applied to several problems of dislocation microstructures subjected to a mechanical loading.

Introduction

Yielding and plastic deformation in crystalline materials at the single crystal scale is determined by underlying mechanisms at a smaller scale attached to the presence and to the motion of dislocations (line defects). The treatment of dislocations as discrete objects with local interacting rules (annihilation, junction formation, etc.) has led to the Discrete Dislocation Dynamics (DDD) which dates back to the late eighties [START_REF] Lepinoux | The dynamic organization of dislocation structures: A simulation[END_REF][START_REF] Kubin | The modelling of dislocation patterns[END_REF][START_REF] Van Der Giessen | Discrete dislocation plasticity: a simple planar model[END_REF] (see [START_REF] Kubin | Dislocations, mesoscale simulations and plastic flow[END_REF]; [START_REF] Po | Recent progress in discrete dislocation dynamics and its applications to micro plasticity[END_REF] for comprehensive reviews). The computational time-consuming part of this approach is the evaluation of the elastic interactions between all dislocation segments. A first way around this problem is the hybrid "discrete-continuum" approach [START_REF] Lemarchand | Homogenization method for a discretecontinuum simulation of dislocation dynamics[END_REF] which makes use of the eigenstrain theory [START_REF] Mura | Micromechanics of defects in solids[END_REF]. In short, this model consists in an elastoplastic finite-element (FE) computation where the plastic flow rule is replaced by a DDD simulation. A different fully "continuum" approach, consists in considering dislocation density field rather than individual dislocation segments. Several dislocation-mediated elastoplastic theories, relating the elastic theory of continuously distributed dislocations [START_REF] Willis | Second-order effects of dislocations in anisotropic crystals[END_REF] to constitutive mesoscale plasticity models, have been proposed [START_REF] Acharya | A model of crystal plasticity based on the theory of continuously distributed dislocations[END_REF][START_REF] Acharya | Driving forces and boundary conditions in continuum dislocation mechanics[END_REF][START_REF] Acharya | Constitutive analysis of finite deformation field dislocation mechanics[END_REF][START_REF] Roy | Finite element approximation of field dislocation mechanics[END_REF][START_REF] Gurtin | The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity[END_REF][START_REF] Hochrainer | Continuum dislocation dynamics: Towards a physical theory of crystal plasticity[END_REF][START_REF] Xia | Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals[END_REF]. We follow here the "Field Dislocation Mechanics" (FDM) of [START_REF] Acharya | A model of crystal plasticity based on the theory of continuously distributed dislocations[END_REF] which is a fully continuum model using the Nye dislocation tensor [START_REF] Nye | Some geometrical relations in dislocated crystals[END_REF] as an internal state variable field. At each point, it is related, in general, to dislocation lines bundles on different slip systems. This dislocation density, linked to the incompatible part of the plastic distortion, allows for the determination of the internal stress state (i.e long-range elastic interactions) and the plastic strain rate can be derived from its evolution (transport equation) which expresses the conservation of the Burgers vector in the material. Our study is a contribution towards the derivation of a plasticity model able to describe size effects and dislocation patterning [START_REF] Acharya | Size effects and idealized dislocation microstructure at small scales: Predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I[END_REF][START_REF] Acharya | Dislocation pattern formation in finite deformation crystal plasticity[END_REF]. More specifically, it is focused on the description of the plastic strain rate arising from the evolution of the dislocation density tensor field. This work builds upon a numerical study solely devoted to the numerical resolution of the internal stress field problem (i.e static FDM theory) for periodic media [START_REF] Brenner | Numerical implementation of static Field Dislocation Mechanics theory for periodic media[END_REF]. This previous investigation has resorted to the numerical FFT scheme originally proposed by [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF] and now widely used for micromechanical studies on the linear and nonlinear behaviors of heterogeneous materials. The uniqueness of the solution stress field has been proven and an efficient numerical computational procedure for three-dimensional heterogeneous material with arbitrary elastic anisotropy has been proposed. Interestingly, it can be noted that [START_REF] Bertin | A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics[END_REF] took advantage of this numerical approach to propose a dislocation dynamics model in line with [START_REF] Lemarchand | Homogenization method for a discretecontinuum simulation of dislocation dynamics[END_REF]. It is worth mentioning the study of [START_REF] Djaka | Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach[END_REF] which reports calculations of internal stress field, by using a FFT scheme, for various microstructural situations (see also [START_REF] Berbenni | A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics[END_REF] for the homogeneous case). In the present article, we first use a rewriting of the transport equation in terms of the plastic distortion (Section 2). A general procedure is then proposed to solve FDM plasticity problems for which the plastic strain rate is only due to the evolution of the Nye tensor field (i.e. there is no contribution of statistically stored dislocations). It is possible to have recourse to phenomenological constitutive laws from classical crystal plasticity to handle this contribution [START_REF] Acharya | Size effects and idealized dislocation microstructure at small scales: Predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I[END_REF]. Note also that attempts have been proposed to derive it from an average procedure of the behaviour of dislocations ensembles for 2D systems of straight edge dislocations [START_REF] Groma | Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics[END_REF][START_REF] Valdenaire | Density-based crystal plasticity: From the discrete to the continuum[END_REF]. To neglect this contribution amounts to solve the evolution problem for the Nye tensor without source term. This assumption is made in the present work and the transport equation is solved in Section 3 by means of a Godunov-type high resolution scheme which extends to dimension 2 the scheme of [START_REF] Das | Microstructure in plasticity without nonconvexity[END_REF]. Illustrative results are presented for simple problems with a constant dislocation velocity (Section 4), namely annihilation and dislocation loop expansion which have been considered in previous studies, and finally model problems with a dependence of the velocity on the stress field are considered (Section 5).

Field Dislocation Mechanics theory

Primitive form of FDM

The problem we are addressing is the numerical modelling of dislocation-mediated plasticity. The approach followed relies on the use of the Nye dislocation tensor field as internal state variable [START_REF] Acharya | A model of crystal plasticity based on the theory of continuously distributed dislocations[END_REF][START_REF] Acharya | Constitutive analysis of finite deformation field dislocation mechanics[END_REF]. This requires to solve (i) a static problem, consisting in the determination of the internal stress field resulting from a given dislocation density field and an applied macroscopic stress in heterogeneous anisotropic elastic media and (ii) an evolution problem, consisting in the transport of the dislocation density field due to the local stress field produced.

The present study is focused on the case of an infinite medium with a periodic microstructure, that is, the Nye dislocation tensor α and the elastic moduli tensor C are considered as periodic fields. The problem thus consists in finding, for a given periodic dislocation field α and a macroscopic stress σ, the elastic distortion U e , the stress σ and the rate of dislocation density α which solve, on the unit-cell V ,

           div(σ) = 0 Equilibrium (static problem) σ = C : U e Elasticity law (static problem) curl(U e ) = α Definition of Nye tensor (static problem) α = -curl(α × V) Transport of dislocation (evolution problem), ( 1 
)
where V is the dislocation velocity whose constitutive relation needs to be specified. The transport equation is the pointwise statement of the conservation law of the Burgers vector in the absence of source term. The problem is closed by periodic boundary conditions together with appropriate average relations. The use of periodicity conditions permits to avoid the extra-complication of boundary effects (such as free boundaries). From the definition of the Nye tensor (1) 3 , it follows that

div(α) = 0 (2)
whose physical meaning is that dislocations cannot end within the material (they either form loops or reach the surface). With in mind the numerical implementation and application of this constitutive model, it is worth noting the following points:

• The main kinematic variables of the model are the elastic distortion U e and the dislocation density α. The plastic part of the velocity gradient appears as α × V.

The system of equation ( 1) then allows for the determination of the displacement field.

• The last equation in ( 1) is a transport equation for the dislocation density. As is well known in other problems involving conservation laws, the numerical discretization of such systems can only guarantee that the divergence condition is of order of the numerical truncation error. In particular, the discrete divergence may become very large across shock waves and can lead to spurious solutions with unphysical oscillations (see [START_REF] Rossmanith | An Unstaggered, High Resolution Constrained Transport Method for Magnetohydrodynamic Flows[END_REF], and references herein, in the context of magnetohydrodynamics flows). A way to circumvent this issue is to introduce a new variable accounting implicitly for the divergence condition.

An elastoplastic formulation of FDM

Based on the above remarks, we adopt in the sequel a slightly reformulated version of FDM following [START_REF] Acharya | New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale[END_REF]. First, in order to introduce standard state variables, we recall the multiplicative decomposition of the deformation gradient F:

F = F e .F p (3) 
where F e and F p are respectively the elastic and plastic part of the deformation gradient related to the elastic and plastic distortion U e and U p :

F e = I + U e ; F p = I + U p . ( 4 
)
The deformation gradient being defined from the displacement field u via the relation

F = I + ∇u, one can easily obtain ∇u = U e + U p + U e .U p . ( 5 
)
This reduces, in small strains, to the following relation

∇u = U e + U p (6) 
which permits to express the elastic distortion as a function of the gradient of the displacement. Of course, the total strain is given by

ε = 1 2 (∇u + ∇u T ). (7) 
In order to solve the evolution equation for α under the constraint (2), it is advantageous to consider a corresponding governing equation on the plastic distortion U p for which there are no constraints, except the periodicity. From equations (1) 3 and (6), the plastic distortion is connected to the Nye tensor by the relation

α = -curl(U p ). ( 8 
)
Obviously, the plastic distortion is not uniquely defined by the Nye tensor. Relations (1) 4 and ( 8) imply that the rate of plastic distortion Up is given by, up to a constant second-order tensor,

Up = α × V + ∇φ. (9) 
Since we are investigating dislocation-mediated plasticity, we assume that the rate of plastic distortion becomes nil when dislocations have zero velocity. Consequently we assume that ∇φ = 01 . The transport equation (1) 4 can be rewritten in terms of the plastic

distortion Up = -curl(U p ) × V. ( 10 
)
Solving this differential equation for U p , with appropriate initial conditions, one can then deduce the dislocation density tensor α using equation ( 8) which directly ensures the constraint (2). It is noted that, given an initial dislocation density field α 0 , an initial incompatible (i.e. gradient-free) plastic distortion U p 0 can be determined by solving the Poisson equation

∆U p 0 = curl(α 0 ). (11) 
The FDM problem (1) thus reads alternatively

       div(σ) = 0 σ = C : (∇u -U p ) Up = -curl(U p ) × V (12) 
with initial conditions (11) for U p . The following periodic boundary conditions are assumed

u -ε(u) .x periodic, σ.n anti-periodic, (13) 
where the total strain is given by equation ( 7). Macroscopic loadings are finally considered, expressed either in stress σ = σ or strain ε = ε (or a combination of both), where σ and ε are respectively the prescribed macroscopic stress and strain and . denotes the spatial average over the unit-cell V .

It is interesting to note that in the present formulation of plasticity mediated by the motion of dislocations, the structure of the problem differs from that of classical (macroscopic) elastoplasticity by the constitutive relations expressed here by ( 11) and (12) 3 , the other equations being preserved. Unlike in engineering plasticity, there is no explicit yield condition on the stress σ and the rate of plastic distortion does not derive from some normality property but directly arises from the motion of dislocations under applied stress. It therefore remains to specify how the dislocation velocity V depends on the other unknowns of the problem, in particular the stress field.

Constitutive law for the dislocation's velocity

Several studies of dislocation motion from molecular dynamics [START_REF] Groh | Dislocation motion in magnesium: a study by molecular statics and molecular dynamics[END_REF][START_REF] Ruestes | Probing the character of ultra-fast dislocations[END_REF][START_REF] Oren | Dislocation kinematics: a molecular dynamics study in Cu[END_REF][START_REF] Cho | Mobility law of dislocations with several character angles and temperatures in FCC aluminum[END_REF] have shown that dislocation glide kinetics may be divided into three regimes: (i) an exponential dependence on the stress at velocities up to 10 -3 C T , where C T is the transverse sound wave velocity, (ii) a linear stress-velocity relationship in the range of 10 -3 -10 -1 C T and (iii) an asymptotic behavior for high subsonic and transonic velocities. In most previous works of dislocations dynamics [START_REF] Zbib | On plastic deformation and the dynamics of 3D dislocations[END_REF] or field dislocation mechanics [START_REF] Acharya | New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale[END_REF][START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF], only the linear regime was considered. (Note that in the context of the PMFDM, [START_REF] Acharya | Size effects and idealized dislocation microstructure at small scales: Predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I[END_REF]; [START_REF] Puri | Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics[END_REF] considered also a power dependence of the velocity on stress). This basically corresponds to the case of quasi-static plasticity at moderate stress levels. Consequently, we shall here also focus on the linear regime. The phenomenological law for the dislocation velocity is supposed to be of the form

V = F η||α|| , ( 14 
)
where η > 0 is a viscous drag coefficient (depending on the material considered) and F is a driving force to be defined. This choice for the velocity law corresponds to the nonlocal level set model of [START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF].

In the case of dislocation motion with no lattice friction, the driving force is given by [START_REF] Acharya | Driving forces and boundary conditions in continuum dislocation mechanics[END_REF])

F = -: (σ.α). ( 15 
)
with the permutation tensor (see Appendix A). It should be noted that for a single dislocation, the driving force corresponds to the Peach-Koehler force of classical dislocation theory. Such law alone does not account for lattice friction and thus does not contain a Peierls-type threshold [START_REF] Peierls | The size of a dislocation[END_REF]: under any arbitrary stress, dislocation densities are automatically moving.

In practice, the introduction of lattice friction is mandatory in dislocation-mediated plasticity in order to account for energetic barriers. The first approach to model lattice friction consists in the introduction of a Peierls-type threshold directly in the dislocation mobility law, as it is done classically in DDD simulations [START_REF] Kubin | Dislocations, mesoscale simulations and plastic flow[END_REF][START_REF] Po | Recent progress in discrete dislocation dynamics and its applications to micro plasticity[END_REF]: if the stress is below the threshold there is no motion, and if it reaches the threshold, equation ( 14) applies. The second approach consists in the introduction of non-convex energy density functions in the mechanical dissipation (see [START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF]; [START_REF] Das | Microstructure in plasticity without nonconvexity[END_REF]). This approach is closer to the physics since it permits to keep the memory of the discrete nature of dislocations and to access dislocations patterning. In the following, a non-convex energy density function is introduced, following the work of [START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF]; [START_REF] Das | Microstructure in plasticity without nonconvexity[END_REF]. The volumic density of free (stored) energy w is assumed to be of the form

w = 1 2 e : C : e + G(U p ) ( 16 
)
where e is the symmetric part of the elastic distortion U e . The function G is supposed to be multi-well non-convex which corresponds to an energy function with barriers to slip, thus enabling preferred energetic status to certain plastic strains. It is possible to add extra terms in equation ( 16) to account for instance for the core energy, as done in [START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF]. This path was not followed here since the core energy term can lead to numerical issues in the resolution of the hyperbolic evolution equation which is known to be very sensitive to small perturbations [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF]. With the constitutive assumption ( 16), the study of the intrinsic dissipation (see Appendix A) leads to the definition of the driving force associated to the velocity field V:

F = -: σ - ∂G ∂U p .α . ( 17 
)
3. Numerical integration of the constitutive model

General resolution procedure

3.1.1. Generalities The numerical integration of FDM equations consists in finding for a given plastic distortion U p and some boundary conditions, the total displacement u and stress σ solving system (12). One of the main difficulties is to ensure simultaneously the elastic equilibrium (elliptic equation) and the transport of dislocation (transport equation).

The strategy adopted in this work is to treat separately the static problem and the evolution problem (i.e. transport equation) through an alternating-directions procedure. The reason for this choice is that the two systems require specific solvers which can hardly be used simultaneously.

In practice, the resolution consists in finding the mechanical state S n+1 = {u n+1 , σ n+1 , U p n+1 } at time t n+1 , knowing the previous mechanical state S n = {u n , σ n , U p n } at time t n and considering boundary conditions (13). The static problem is first solved for the previous plastic distortion

div(σ n+1 ) = 0 σ n+1 = C : (∇u n+1 -U p n ), (18) 
then the plastic distortion is updated by solving the transport equation with the new

stress field Up n+1 = -curl(U p n ) × V(U p n , σ n+1 ). ( 19 
)
In the following, the subscripts n and n + 1 will be omitted to reduce the amount of notation.

Static problem

In order to solve the static problem (18), we consider the FFT scheme proposed by [START_REF] Brenner | Numerical implementation of static Field Dislocation Mechanics theory for periodic media[END_REF] (see also [START_REF] Berbenni | A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics[END_REF]), based on the work of [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF].

Let us first consider the case of a homogeneous elastic medium with moduli tensor C(x) = C 0 ; the solution field ε can be classically expressed as

ε(x) = ε -(Γ 0 * τ )(x) where τ = -C 0 : U p . ( 20 
)
In this equation, * is the convolution product and Γ 0 the Green operator of the homogeneous medium with elasticity C 0 . In the Fourier space, this equation reads

ε(ξ) = -Γ 0 (ξ) : τ (ξ), ∀ξ = 0, (21) 
where the Fourier transform of the Green operator Γ 0 is recalled:

Γ 0 (ξ) = ξ ⊗ ξ.C 0 .ξ -1 ⊗ ξ (s) . ( 22 
)
In this equation, the symbol [.] (s) indicates minor and major symmetrization. The Fourier transform of the stress field reads

σ(ξ) = C 0 : Γ 0 (ξ) -I : C 0 : U p (ξ), ∀ξ = 0, σ(0) = σ, ( 23 
)
where I is the fourth-order identity tensor. Besides, from the definition (8), the Fourier transform of the incompatible plastic distortion U p is given by [START_REF] Brenner | Numerical implementation of static Field Dislocation Mechanics theory for periodic media[END_REF])

U p (ξ) = ı α(ξ) × ξ ξ 2 , ∀ξ = 0, U p (0) = U p , ( 24 
)
where ı is the imaginary unit.

In the case of a heterogeneous elastic medium with moduli tensor C(x), the local behavior can be rewritten as

σ = C 0 : ∇u + τ (25) where τ = -C : U p + (C -C 0 ) : ∇u, (26) 
with the uniform moduli C 0 of a reference medium. The only difference with the homogeneous elastic problem is that the prescribed eigentress field τ is not known a priori since it depends on the field u which solves the problem. When the reference medium is adequately chosen, the solution field ε is obtained as a series expansion:

ε(x) = +∞ i=0 -Γ 0 * δC(x) i : ε + (Γ 0 * C : U p )(x) . ( 27 
)
Efficient iterative numerical procedures based on fast-Fourier tranforms (FFT) may then be used to compute the solution field ε (see, among others, [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF][START_REF] Brisard | Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites[END_REF][START_REF] Moulinec | Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials[END_REF][START_REF] Schneider | On the Barzilai-Borwein basic scheme in FFT-based computational homogenization[END_REF].

Evolution problem

As explained above, the evolution problem ( 19) is treated separately from the static problem. In order to emphasize the main characteristics of the constitutive transport problem, it is useful to detail the full set of equations. Knowing the stress state, the evolution problem ( 19) consists of a system of nine hyperbolic equations

                                       U p 11 = (U p 12,1 -U p 11,2 )V 2 -(U p 11,3 -U p 13,1 )V 3 U p 12 = (U p 13,2 -U p 12,3 )V 3 -(U p 12,1 -U p 11,2 )V 1 U p 13 = (U p 11,3 -U p 13,1 )V 1 -(U p 13,2 -U p 12,3 )V 2 U p 21 = (U p 22,1 -U p 21,2 )V 2 -(U p 21,3 -U p 23,1 )V 3 U p 22 = (U p 23,2 -U p 22,3 )V 3 -(U p 22,1 -U p 21,2 )V 1 U p 23 = (U p 21,3 -U p 23,1 )V 1 -(U p 23,2 -U p 22,3 )V 2 U p 31 = (U p 32,1 -U p 31,2 )V 2 -(U p 31,3 -U p 33,1 )V 3 U p 32 = (U p 33,2 -U p 32,3 )V 3 -(U p 32,1 -U p 31,2 )V 1 U p 33 = (U p 31,3 -U p 33,1 )V 1 -(U p 33,2 -U p 32,2 )V 2 . ( 28 
)
From the definition (14) of the velocity, it appears that the evolution problem consists in a vectorial, multi-dimensional and non-linear hyperbolic system of Hamilton-Jacobi type.

Several approaches permit to solve Hamilton-Jacobi equations: ENO and WENO schemes [START_REF] Osher | High-Order Essentially Nonoscillatory Schemes for Hamilton-Jacobi Equations[END_REF][START_REF] Jiang | Weighted ENO Schemes for Hamilton-Jacobi Equations[END_REF], discontinuous Galerkin finite element [START_REF] Hu | A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations[END_REF] and Godunov-type approaches [START_REF] Lin | High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations[END_REF][START_REF] Kurganov | Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations[END_REF]. These approaches rely on advanced numerical methods that are unfortunately restricted, up to now, to two-dimensional scalar problems; if the extension to the three-dimensional case does not seem to be an unrealistic task, the extension to vectorial equations remains an open and difficult problem.

As a first step towards the resolution of the full coupled problem of FDM, we first consider a particular case for which the vectorial system reduces to a scalar equation. This allows us to resort to efficient numerical solvers for Hamilton-Jacobi equations.

A simplified layer problem

Position of the problem

We consider a simplified model problem of edge and screw dislocations confined in a thin layer as shown in Figure 1. This model problem can be seen as an elastoplastic body where plastic flow is constrained in a layer, acting as the slip plane. Thus, in the layer, both edge and screw dislocations exist and FDM is active, while the two outer regions are purely elastic linear. This model may be viewed as an extension to three dimensions of the problem considered by [START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF].

In the layer, the following ansatz is assumed:

(i) The plastic distortion is supposed to be constrained in the layer and is of the form This implies that the dislocation density tensor is of the form

U p = U p 13 (x 1 , x 2 )e 1 ⊗ e 3 . ( 29 
)
α = α 11 (x 1 , x 2 )e 1 ⊗ e 1 + α 12 (x 1 , x 2 )e 1 ⊗ e 2 , ( 30 
)
where α 11 (x 1 , x 2 ) = -U p 13,2 and α 12 (x 1 , x 2 ) = U p 13,1 . (ii) Let us suppose that the non-convex energy function G is of the form

G = βsin U p 13 β τ y ( 31 
)
where β is a nondimensional parameter that is supposed to be very small [START_REF] Das | Microstructure in plasticity without nonconvexity[END_REF] and τ y has the dimension of a stress. The term ∂G/∂U p 13 arising in the definition of the driving force is thus a high-frequency oscillatory function bounded with an amplitude τ y . This energy, which was referred as a wiggly energy [START_REF] Das | Microstructure in plasticity without nonconvexity[END_REF], permits to account for lattice friction produced by a discrete lattice, with a threshold in stress corresponding to τ y .

(iii) Dislocations move in the (thin) layer where they are constrained to stay (i.e. no dislocation climb or cross-slip) so the dislocation velocity V can be assumed in the form

V = V 1 (x 1 , x 2 )e 1 + V 2 (x 1 , x 2 )e 2 . ( 32 
)
The dissipation D can be written as (see Appendix A)

D = Layer σ - ∂G ∂U p : (α × V) dv = Layer σ 13 - ∂G ∂U p 13 (α 11 V 2 -α 12 V 1 ) dv = h L -L L -L τ 13 - ∂G ∂U p 13 (α 11 V 2 -α 12 V 1 ) dx 1 dx 2 , ( 33 
)
where h is the layer's thickness and τ 13 is the average stress in the layer given by

τ 13 = 1 h h/2 -h/2 σ 13 dx 3 . (34)
Here, τ 13 , α 11 , α 12 , V 1 , V 2 and ∂G/∂U p 13 are functions of (x 1 , x 2 ) only. (iv) The driving force is finally supposed to depend on the average stress τ 13 :

           F 1 = -τ 13 - ∂G ∂U p 13 α 12 F 2 = τ 13 - ∂G ∂U p 13 α 11 . ( 35 
)
This implies that the driving force F is a function of (x 1 , x 2 ) only, which permits to apply the constitutive law V = V(F) in two dimensions.

The problem which has to be solved for (u, σ) reduces to

                                 ∂σ ij ∂x i = 0 σ ij = µ ∂u i ∂x j + ∂u j ∂x i -U p ij + λ ∂u k ∂x k δ ij ∂U p 13 ∂t = τ 13 -cos U p 13 β τ y η ∂U p 13 ∂x 1 2 + ∂U p 13 ∂x 2 2 + periodicity conditions, (36) 
with prescribed macroscopic strain εij = 1 2

∂u i ∂x j + ∂u j ∂x i .
Following [START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF], a dimensional analysis suggests the introduction of dimensionless variables

x = x b , t = V s t b , ũ = u b , σ = σ µ , τ13 = τ 13 µ , τy = τ y µ , η = V s η µ , α = bα, ( 37 
) where b is the norm of the Burgers vector, µ is the elastic shear modulus and V s = µ/ρ is the elastic shear wave speed (ρ being the density). The problem which has to be solved for (ũ, σ) thus reads

                                 ∂ σij ∂ xi = 0 σij = ∂ ũi ∂ xj + ∂ ũj ∂ xi -U p ij + λ µ ∂ ũk ∂ xk δ ij ∂U p 13 ∂ t = τ13 -cos U p 13 β τy η ∂U p 13 ∂ x1 2 + ∂U p 13 ∂ x2 2 + periodicity conditions, (38) 
with prescribed macroscopic strain εij = 1 2

∂ ũi ∂ xj + ∂ ũj ∂ xi .
This model problem is interesting from a computational point of view because it allows to express the evolution problem in two dimensions only without losing too much of the physics. Indeed, the problem is 3D in Fourier space and only the transport equation is constrained in the layer, which ultimately corresponds to impose the slip plane. The static problem, corresponding to equations (38) 1-2 , can easily be solved in Fourier space using the FFT scheme described in Section 3.1.2. Once the shear stress σ 13 is computed, it is easy to compute the average stress τ 13 and, as explained in Section 3.1.1, U p 13 is updated by solving the evolution problem, whose algorithm is presented hereafter.

Resolution of the evolution problem -1D case

The evolution problem consists of an hyperbolic Hamilton-Jacobi equation ( 38) 3 . It is well known that such equations requires specific solvers in order to avoid spurious numerical effects as oscillations and damping [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF].

Following the suggestion of [START_REF] Das | Microstructure in plasticity without nonconvexity[END_REF], we adopt here [START_REF] Kurganov | Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations[END_REF]'s scheme which is a Godunov-type high resolution scheme. As such, it combines simplicity and accuracy. First the algorithm is presented in one-dimension. We thus consider the following one-dimensional prototype equation

∂φ ∂ t + H ∂φ ∂x = 0. ( 39 
)
where φ = U p 13 and x = x1 . The Hamiltonian H reads

H ∂φ ∂x = cos φ β τy -τ13 η ∂φ ∂x = v 0 ∂φ ∂x , ( 40 
)
where the term v 0 is given by the previous time step.

A uniform resolution grid is chosen and we use the following notations: x j = j∆x (corresponding to the nodes of the pixels introduced in the FFT algorithm), t n = n∆t and φ n j = U p 13 (x j , t n ), where ∆x and ∆t are respectively the spatial scale and the time step. Assuming that the point values of U p 13 at time t = t n φ n j are known, we are looking for the point values of U p 13 at time t = t n+1 φ n+1 j .

Step 1: construction of a continuous piecewise interpolant. We start with the construction of the continuous piecewise interpolant φ(x, t n ) in order to avoid spurious oscillations. The quadratic interpolant over the interval [x j , x j+1 ] reads φ(x,

t n ) = φ n j + (∆φ) n j+1/2 ∆x (x -x j ) + (∆φ) j+1/2 2(∆x) 2 (x -x j )(x -x j+1 ), (41) 
where

∆φ n j+1/2 = φ n j+1 -φ n j . ( 42 
)
The term (∆φ) j+1/2 /(∆x) 2 is an approximation of the second derivative φ xx (x j+1/2 , t n ). A nonlinear limiter is used to compute this derivative in order to ensure the nonoscillatory nature of φ(x, t n ). A one-parameter family of the minmod limiters is used

(∆φ) j+1/2 = minmod θ (∆φ) n j+3/2 -(∆φ) n j+1/2 , 1 2 (∆φ) n j+3/2 -(∆φ) n j-1/2 , θ (∆φ) n j+1/2 -(∆φ) n j-1/2 , ( 43 
)
where θ ∈ [1, 2] and the minmod function is defined by

minmod(x 1 , x 2 , ...) =        min j {x j } if x j > 0 ∀j, max j {x j } if x j < 0 ∀j, 0 otherwise. ( 44 
)
Step 2: estimation of the one-sided local speed of propagation. We estimate the one-sided speed of propagation at the grid point x j , which are given by

a + j = max{H (φ + x ), H (φ - x ), 0}; a - j = min{H (φ + x ), H (φ - x ), 0}, (45) 
where φ ± x = φx (x j ± 0, t n ). Using the continuous piecewise quadratic polynomial (41), one gets

φ ± x = (∆φ) n j±1/2 ∆x ∓ (∆φ) j±1/2 2∆x . ( 46 
)
Step 3: approximate solution of the Hamilton-Jacobi equation at intermediate grid points.

The Hamilton-Jacobi equation ( 39) is exactly solved at intermediate points defined as

x j± = x j + a ± j ∆t: φ n+1 j± = φ(x j± , t n ) - t n+1 t n H φx (x j± , t) dt. ( 47 
)
With an appropriate CFL number condition (see [START_REF] Kurganov | Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations[END_REF]), the integral on the right-hand side can be evaluated within second-order accuracy by the midpoint rule; this yields to the following approximate Riemann solver

φ n+1 j± = φ(x j± , t n ) -∆tH φx (x n j± , t n ) . ( 48 
)
Step 4: projection of the intermediate solution onto the original grid. The solution previously obtained at the intermediate points x j± is projected onto the original grid

φ n+1 j = a + j a + j -a - j φ n+1 j-- a - j a + j -a - j φ n+1 j+ , ( 49 
)
which leads to the fully discrete scheme

φ n+1 j = a + j a + j -a - j φ(x j-, t n ) -∆tH φx (x n j-, t n ) - a - j a + j -a - j φ(x j+ , t n )) -∆tH φx (x n j+ , t n ) . ( 50 
)

Resolution of the evolution problem -2D case

We continue with the resolution of the evolution problem in the two-dimensional case. We consider the prototype equation

∂φ ∂ t + H ∂φ ∂x , ∂φ ∂y = 0, (51) 
where φ = U p 13 , x = x1 and y = x2 . The Hamiltonian H reads

H ∂φ ∂x , ∂φ ∂y = cos φ β τy -τ13 η ∂φ ∂x 2 + ∂φ ∂y 2 = v 0 ∂φ ∂x 2 + ∂φ ∂y 2 , ( 52 
)
where the term v 0 is given by the previous time step.

Again, a uniform resolution grid (corresponding to the pixels' nodes) is chosen with the following notations: x j = j∆x, y k = k∆y, t n = n∆t and φ n jk = U p 13 (x j , y k , t n ), where ∆x, ∆y and ∆t are respectively the spatial scales and the time step. Assuming that the point values of U p 13 at time t = t n φ n jk are known, we are looking for the point values of U p 13 at time t = t n+1 φ n+1 jk .

Step 1: construction of a continuous piecewise interpolant. We start with the construction of the continuous piecewise interpolant φ(x, y, t n ) in order to avoid spurious oscillations. The extension of the quadratic interpolant written in the one-dimensional case (41) to the two-dimensional case is tedious but straightforward (see [START_REF] Kurganov | New High-Resolution Semi-discrete Central Schemes for Hamilton-Jacobi Equations[END_REF] for the full detail).

Step 2: estimation of the one-sided local speed of propagation. Then we evaluate the one-sided local speeds of propagation in the x-and y-directions. These values at the grid point (x j , y k ) are given by

a + jk = max ± ∂H ∂φ x (φ ± x , φ ± y ), 0 , a - jk = min ± ∂H ∂φ x (φ ± x , φ ± y ), 0 , b + jk = max ± ∂H ∂φ y (φ ± x , φ ± y ), 0 , b - jk = min ± ∂H ∂φ y (φ ± x , φ ± y ), 0 , ( 53 
)
where φ ± x = φx (x j ±0, y k , t n ) and φ ± y = φy (x j , y k ±0, t n ) are the right and the left derivatives in the x-and y-direction, deduced from the two-dimensional interpolant [START_REF] Kurganov | New High-Resolution Semi-discrete Central Schemes for Hamilton-Jacobi Equations[END_REF].

Step 3: approximate solution of the Hamilton-Jacobi equation at intermediate grid points. The Hamilton-Jacobi equation ( 51) is then solved at the intermediate points (x n j± = x j + a ± jk ∆t, y n k± = y k + b ± jk ∆t). This leads to the approximate Riemann solver

φ n+1 j±,k± = φ(x n j± , y n k± , t n ) -∆tH φx (x n j± , y n k± , t n ), φy (x n j± , y n k± , t n ) . ( 54 
)
Step 4: projection of the intermediate solution onto the original grid. The solution previously obtained at the intermediate points x j± and y k± is projected onto the original grid which leads to the fully discrete scheme

φ n+1 jk = a - jk b - jk (a + jk -a - jk )(b + jk -b - jk ) φ(x n j+ , y n k+ , t n ) -∆tH φx (x n j+ , y n k+ , t n ), φy (x n j+ , y n k+ , t n ) + a - jk b + jk (a + jk -a - jk )(b + jk -b - jk ) φ(x n j+ , y n k-, t n ) -∆tH φx (x n j+ , y n k-, t n ), φy (x n j+ , y n k-, t n ) + a + jk b - jk (a + jk -a - jk )(b + jk -b - jk ) φ(x n j-, y n k+ , t n ) -∆tH φx (x n j-, y n k+ , t n ), φy (x n j-, y n k+ , t n ) + a + jk b + jk (a + jk -a - jk )(b + jk -b - jk ) φ(x n j-, y n k-, t n ) -∆tH φx (x n j-, y n k-, t n ), φy (x n j-, y n k-, t n ) .
(55)

Numerical results: uncoupled problems

Preliminaries

The aim of this section is to study numerically the evolution of the pointwise dislocation density tensor by considering only the transport problem. To do so, we assume a prescribed constant stress field (in time and space) and a null stress threshold (τ y = 0). In this way, we have to solve the hyperbolic equation

∂U p 13 ∂ t + v 0 ∂U p 13 ∂ x1 2 + ∂U p 13 ∂ x2 2 = 0, ( 56 
)
where the "celerity" of dislocation v 0 = -τ 13 /η is constant since we do not consider the coupling with the static problem. This first step is needed in order to assess solely the algorithm proposed for the hyperbolic Hamilton-Jacobi system because in the particular case of equation ( 56), analytical solutions and mathematical properties may be exhibited. Indeed, in terms of the dislocation densities α 11 and α 12 , the hyperbolic equation ( 56

) reads α11 = -(α 11 V 2 -α 12 V 1 ) ,2 α12 = -(α 12 V 1 -α 11 V 2 ) ,1 (57) 
where the velocities V 1 and V 2 are given by

             V 1 = - τ13 η α 12 α 2 11 + α 2 12 = v 0 α 12 α 2 11 + α 2 12 V 2 = τ13 η α 11 α 2 11 + α 2 12 = -v 0 α 11 α 2 11 + α 2 12 . ( 58 
)
Then, let us study the derivative of α = α 2 11 + α 2 12 in the velocity V defined as

d α dt = ˙ α + V.∇ α , ( 59 
)
where

           ˙ α = 1 α ( α11 α 11 + α12 α 12 ) V.∇ α = 1 α (α 11 α 11,1 + α 12 α 12,1 )V 1 + (α 11 α 11,2 + α 12 α 12,2 )V 2 . ( 60 
)
According to the definition of V 1 and V 2 given by ( 58), the transport equation ( 57) reduces to

   α11 = -α 11,2 V 2 + α 12,2 V 1 α12 = α 11,1 V 2 -α 12,1 V 1 . ( 61 
)
Thus the derivative of α (59) in the velocity field V reads

d α dt = α 11 V 1 + α 12 V 2 α (α 11,1 + α 12,2 ) = 0 (62)
due to the relation (2). This means that the transport of α modeled by equation ( 56) is thus conservative in the velocity field considered2 : no damping and no spreading of α should be observed in the numerical simulations. It should be noted that this property only holds for the constitutive law ( 14) and under the hypothesis of constant and uniform velocity v 0 . This provides however, under these hypotheses, a valuable assessment to test the accuracy of the time-integration algorithm for the transport equation. An explicit Euler algorithm would not satisfy this condition.

Description of the simulations

In the sequel, the FDM approach is used for two model problems with single dislocations lines or loops, namely (i) the annihilation of edge dislocations and (ii) the expansion of dislocation loops. To perform the simulations, dislocation densities and material parameters need to be prescribed. We consider only a 2D unit-cell domain (since we do not solve the static problem) of 320b × 320b corresponding to the layer, with b the norm of the chosen Burgers vector b = b e 1 . The dislocation is supposed to be spread uniformly on an arbitrary surface S 0 (of dimensions the layer's height and dislocation's width), with normal n, so that the Burgers vector and the dislocation density tensor are related by b =

S 0 α.n dS. ( 63 
)
For the 2D problem the initial dislocation density components are

α 0 11 = α 0 12 = b S 0 . ( 64 
)
Here the surface S 0 is supposed to be square with the layer's height and dislocation's width both taken equal to 10b. Material data corresponding to aluminum are considered: the norm of the Burgers vector is b = 0.286 nm, the viscous drag coefficient is η = 10 5 Pa.s.m -1 [START_REF] Cho | Mobility law of dislocations with several character angles and temperatures in FCC aluminum[END_REF], the elastic constants are µ = 26.1 GPa and λ = 46.3 GPa, and the density is ρ = 2700 kg.m -3 . With the considered surface S 0 = 100b 2 , the dislocation densities are α 0 11 = α 0 12 = 3.5 × 10 7 m -1 , (or equivalently α0 11 = α0 12 = 10 -2 ). Finally, a uniform remote stress τ 13 = V s η ≈ ±310 MPa is considered so that the celerity of dislocations reads v 0 = ±1.

1D example: annihilation of dislocations

As a first example, we consider a 1D version of the transport equation:

∂U p 13 ∂ t + v 0 ∂U p 13 ∂ x1 = 0. ( 65 
)
In this case, only straight parallel edge dislocations are considered in the slip plane, that is α 11 = 0 and α 12 = α 12 (x 1 ). Physical phenomena such as the propagation of a sole dislocation and annihilation of two dislocations of opposite sign can be investigated using this 1D equation. Here we focus on the process of dislocation annihilation, resulting of the shock of two dislocations of opposite sign (see Figure 2). This prototype equation was investigated in previous works [START_REF] Varadhan | Dislocation transport using an explicit Galerkin/least-squares formulation[END_REF][START_REF] Djaka | A numerical spectral approach to solve the dislocation density transport equation[END_REF][START_REF] Xia | Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals[END_REF] and was found to generate numerical artifacts such as oscillations and damping. Two initial edge dislocation density distributions, modeled by half-square waves of amplitude α0 12 = ±10 -2 are embedded in a uniform velocity field v 0 = -1. The unit-cell of size 320b is discretized on a regular grid of 2048 pixels, so the spatial scale is ∆x 1 ≈ 0.16b, or equivalently ∆x 1 ≈ 0.16. In this case, the CFL number considered is

|v 0 | ∆ t ∆x 1 = 0.25 (66)
so the dimensionless time step is ∆ t ≈ 0.04, or equivalently ∆t ≈ 3.6 × 10 -15 s.

The results are represented in Figure 3 at several time steps. The two half-square waves move towards each other and collide when they meet at the center of the unit-cell. In this unidimensional case, the evolution of the dislocation density predicted by the numerical scheme coincides almost exactly with the exact evolution calculated using the method of characteristics. (The exact solution is not represented since it would be indistinguishable from the numerical solution). In particular the dislocation densities are transported without damping and oscillation. This is in contrast with previous works where strong oscillations and damping were observed, requiring numerical heuristic methods such as diffusion terms [START_REF] Varadhan | Dislocation transport using an explicit Galerkin/least-squares formulation[END_REF] or spectral filters [START_REF] Djaka | A numerical spectral approach to solve the dislocation density transport equation[END_REF], even in the case of smooth sinusoidal signals. 

2D examples: expansion dislocation loops

As a second example, we consider the 2D version of the transport equation:

∂U p 13 ∂ t + v 0 ∂U 13 ∂ x1 2 + ∂U 13 ∂ x2 2 = 0. ( 67 
)
In this case, both edge and screw dislocations (α 12 = 0, α 11 = 0) are considered in the slip plane. Physical phenomena such as the expansion and shrinkage of planar dislocation loops can be investigated with this equation.

Smooth circular dislocation loop

Here we focus on the process of expansion of a smooth circular dislocation loop (see Figure 4). This example was also investigated in previous works where important spreading and damping was observed. The initial dislocation density, characterized by α 0 = (α 0 11 ) 2 + (α 0 12 ) 2 = 3.5 × 10 7 m -1 and represented in Figure 4, is again embedded in a uniform velocity field v 0 = -1. The unit-cell is discretized on a regular grid of 512 × 512 pixels, so the spatial scale is ∆x = 0.62b, (or ∆x = 0.62). The CFL number considered is still

|v 0 | ∆ t ∆x 1 = 0.25 (68) 
so the dimensionless time step is ∆ t ≈ 0.16, or equivalently ∆t ≈ 1.44 × 10 -14 s.

The results are represented in Figure 5 at several time steps. The mechanism of expansion is well reproduced by the scheme and, again, the dislocation density is transported without any damping and spreading, in contrast with previous works. 

Polygonal dislocation loop

We continue with the case of a dislocation loop with corners as defined in Figure 6. This is an interesting case because it admits non-unique weak solutions [START_REF] Acharya | Driving forces and boundary conditions in continuum dislocation mechanics[END_REF]. In particular, following [START_REF] Varadhan | Dislocation transport using an explicit Galerkin/least-squares formulation[END_REF]'s comments, some entropy condition needs to be specified in order to choose between the so-called expansion fan solution (a moving corner turns into an arc of constant radius) or the shock solution (a moving corner remains sharp). First, we consider the case of expansion of the polygonal loop, which corresponds to a uniform velocity v 0 = -1. The parameters considered in Section 4.4.1 are again used. The mechanism of expansion is well reproduced in Figure 7 by the scheme without notable damping and spreading. The corners do not stay sharp which means that the scheme automatically chooses the expansion fan solution. It should be noted that if the process is reversed at the end of the expansion by imposing v 0 = -1, the dislocation loop takes its initial polygonal shape.

Then, we consider the case of shrinkage of an initially polygonal loop (defined in Figure 6), which corresponds to a uniform velocity v 0 = 1. (Again, the same other parameters are considered). The mechanism of shrinkage is well reproduced in Figure 8 by the scheme without regularizing the corners as in the expansion process. 

Discussion

As shown in Section 4.1, the transport of α modeled by equation ( 56) is conservative in the velocity field considered, which means that no damping and no spreading of α should be observed. The numerical scheme considered in this work has permitted to respect this property. The present results thus improve the prediction of dislocation motion formulated in the field dislocation mechanics framework in a simplified case where the plastic distortion tensor reduces to one component; indeed previous works suffer, in the same simplified problem, from numerical discrepancies such as oscillations, spreading and damping of dislocation densities. It is pointed out that predicting correctly the dislocation density motion is of the highest importance in coupled problems where the magnitude of the dislocation density will determine the stress level. In particular, an inaccurate transport of the dislocation density with damping, spreading and oscillations would induce spurious errors in the predictions of the stress and thus a poor prediction of the elastoplastic mechanical behavior.

Numerical results: coupled problems

Preliminaries

The aim of this section is to study numerically the evolution of the pointwise dislocation density tensor by considering the simplified FDM layer problem defined in Section 3.2 with no a priori assumptions on the velocity of dislocations v 0 : the stress field is neither constant nor uniform and the stress threshold is strictly positive; the evolution equation ( 51) is coupled to the static problem (relations ( 18) and ( 19)).

In the sequel, we consider several 3D microstructures since the static problem is solved on a 3D cell made of elastic regions and a layer governed by FDM equations; in all cases, the unit-cell of 320b × 320b × 320b is discretized on a regular grid of 256 × 256 × 256 pixels, so the spatial scale is ∆x = 3.58 × 10 -1 nm. The thickness h of the layer is chosen to be very small (h = 5b) so that the layer may be seen as a slip plane. This permits to reduce the possible fluctuation of the stress σ 13 in the x 3 -direction so that that the average stress τ 13 is very close to the stress σ 13 . Again, material data corresponding to aluminum are considered (see Section 4.2). The parameters for the non-convex energy function are taken as follows: β = 10 -8 and τ y = 1 MPa. The value of the threshold τ y has been taken to coincide with the Peirls stress of aluminum [START_REF] Kamimura | Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure[END_REF].

Dislocation microstructures (such as a dislocation dipole for instance) produce initially an internal stress field [START_REF] Brenner | Numerical implementation of static Field Dislocation Mechanics theory for periodic media[END_REF]. Thus, an initial microstructure can evolve without any macroscopic stress field applied, due to the local stress field produced by the dislocation density. Consequently we first need to study the possible equilibrium aspects of initial dislocation densities before any mechanical macroscopic loading. It should be noted that, in absence of lattice friction effects, initial microstructures will evolve and the dislocation will spread [START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF]; thus equilibrium positions of dislocation field may be allowed only by the introduction of nonconvex energy density functions [START_REF] Zhang | A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations[END_REF]. In order to investigate the possible equilibrium of the initial dislocation density field, we study its evolution while keeping a macroscopic zero stress field. Thus, the cell is subjected to a macroscopic loading path ε13 given by ε13

= U p 13 2 , ( 69 
)
which imposes that the stress σ13 is nil. Then, when the microstructure stops evolving, an equilibrium position is reached. Equilibrated microstructures are then subjected to a mechanical loading in order to investigate the evolution of the dislocation density field. An increasing macroscopic strain ε13 = ε13 t is applied. The strain rate ε13 is chosen low enough so the evolution may be considered as rate-independent.

Evolution of a dislocation loop

We consider the previous case of a circular dislocation loop. The initial dislocation density is characterized by α 0 = (α 0 11 ) 2 + (α 0 12 ) 2 = 10 3 m -1 and is represented in Figure 4.

The CFL number considered is

|v 0 | ∆ t ∆x 1 = 0.25 (70)
where the celerity of dislocation v 0 = (cos U p 13 β τy -τ13 )/η depends on the stress level. The time step ∆t is adjusted to ensure the value of the CFL number.

First we let the initial microstructure evolve in order to study its possible equilibrium position. The simulation reveals that the dislocation density field slightly oscillates around an equilibrium position that is represented in Figure 9. It is interesting to note that the dislocation field is somehow "noisy" after this equilibrium process. This is due to the fact that the mobility of dislocations oscillates very rapidly in space around the value zero, due to the non-convex energy contribution which implies an alternation of positive, negative and zero velocity. The equilibrated microstructure represented in Figure 9 is then subjected to an increasing macroscopic strain. The results are represented in Figure 10 at several strains: ε13 = 0, ε13 = 5.5 × 10 -5 , ε13 = 8.4 × 10 -5 and ε13 = 1.1 × 10 -4 . The increase of the total strain ε13 induces an expansion of the circular loop which is due to an increase of the local stress field. In contrast with the uncoupled problem, the velocity of the dislocation is not prescribed here and is only a consequence of the local mechanical state induced by the macroscopic straining and the dislocation density. It is interesting to note that the noisy effect observed in the equilibrated field disappears during the loading because lattice effects are less dominant when the dislocation starts moving. It is worth noting that the dislocation remains compact during the evolution.

x 1 x 2 ε 13 =0 ε 13 =5.5×10 -5 ε 13 =8.4×10 -5 ε 13 =1.1×10 -4

Figure 10: Evolution of the dislocation density α / α 0 max of an initially circular loop subjected to an increasing macroscopic strain.

Orowan's mechanism

As a second example we investigate the interaction between a dislocation loop and a precipitate, which is known as Orowan's mechanism. This mechanism consists in the formation of residual dislocation loops after the bowing of a dislocation around a precipitate. Such mechanism has important consequences on the strength of metallic alloys (i.e. precipitation hardening). In order to account for the presence of particles, we consider a heterogeneous distribution of the viscous drag coefficient η. We assume here that particles do not allow the motion of dislocations so they can be modeled by an infinite value of η which implies that the dislocation velocity ( 14) is zero. Two initial distributions are considered, one with dual symmetrical precipitates (see Figure 11(a)) and the second with a random distribution of precipitates (see Figure 11(b)). We consider as before a circular dislocation loop whose equilibrium position is given in Figure 9.

The equilibrated microstructure is then subjected to an increasing macroscopic strain ε13 . In the case of dual symmetrical precipitates, the results are represented in Figure 12 at several strains: ε13 = 5.5 × 10 -5 , ε13 = 8.4 × 10 -5 , ε13 = 1.1 × 10 -4 and ε13 = 1.2 × 10 -4 . The simulations show that the dislocation loop cuts itself in two parts while it gets around the precipitate. Once the precipitate is passed, the two parts of the dislocation density merge and form again a loop. After this process, a residual dislocation loop remains around the precipitate.

x 1

x 2 ε 13 =0 ε 13 =5.5×10 -5 ε 13 =8.4×10 -5 ε 13 =1.1×10 -4

Figure 12: Evolution of the dislocation density α / α 0 max of an initially circular loop subjected to an increasing macroscopic strain in the case of dual symmetrical precipitates.

In the case of a random distribution of precipitates, the results are represented in Figure 13 at several strains: ε13 = 0 (equilibrium), ε13 = 5.5 × 10 -5 , ε13 = 8.4 × 10 -5 and ε13 = 1.1 × 10 -4 . The simulations show that the dislocation loop gets around each precipitate with the same mechanism and a residual dislocation density remains around each precipitate.

x 1 x 2 ε 13 =5.5×10 -5 ε 13 =8.4×10 -5 ε 13 =1.2×10 -4 ε 13 =1.1×10 -4

Figure 13: Evolution of the dislocation density α / α 0 max an initially circular loop subjected to an increasing macroscopic strain in the case of a random distribution of precipitates.

Random microstructures

We finally the possible emergence of spatial inhomogeneity of the Nye dislocation field (i.e. dislocation patterning). To do so, we consider the equilibrium and evolution of initially random distributions of the plastic distortion U p 13 . A first microstructure (microstructure A) is generated in the plastic layer using a random number generator which ensures that α 0 max = 10 3 m -1 and U p 13 = 0 (see Figure 14(a)). Since the random number generation is done in each pixel, the distribution of U p 13 is noisy, which may induce damping during the evolution problem. Thus, a second microstructure is generated by applying a smoother [START_REF] Garcia | Robust smoothing of gridded data in one and higher dimensions with missing values[END_REF] which permits to keep the same properties ( α 0 max = 10 3 m -1 and U p 13 = 0) while gaining in smoothness (see Figure 14(b)). The aim of this study is only to illustrate the possible emergence of patterning, so no attempt is done here to characterize thoroughly these microstructures in terms of morphology and representativity [START_REF] Jeulin | Morphology and effective properties of multi-scale random sets: A review[END_REF]. Microstructure A. First we let the "noisy" random microstructure evolve in order to study its equilibrium position. The dislocation density reaches an equilibrium position (see Figure 15 upper left snapshot) consisting in an organized lamellar microstructure mimicking tortuous dislocation cells. The value of the dislocation density α is ten times lower than its initial value, due to an important damping. (The evolution of α is not conservative since the hypotheses of Section 4.1 are not met in the coupled case). The equilibrated microstructure is then subjected to an increasing macroscopic strain ε13 . The results are represented in Figure 15 at several strains: ε13 = 0 (equilibrium), ε13 = 1.3 × 10 -5 , ε13 = 2.2 × 10 -5 and ε13 = 3 × 10 -5 . The "lamellar" microstructure is followed by a "globular" microstructure made of dislocation loops separated by thin walls. This type of microstructure evolution, obtained from a random distribution of plastic distortion, resembles the formation of dislocation cells. This apparent dislocation seems very similar to the formation of crystal grains. However, the cells boundaries do not act here as classical grain boundaries where dislocation loops can stack up. Indeed, if the loading is increased, dislocations loops will continue interacting and will annihilate in absence of dislocation nucleation and no pile-up is observed. Microstructure B. Then we consider the case of the "smooth microstructure". Again, the dislocation density reaches an equilibrium position (see Figure 16 upper left snapshot) consisting in an organized lamellar microstructure. The initial cells are more apparent due to a bigger size. It is worth noting that no damping of α is observed, in contrast with the noisy microstructure. The equilibrated microstructure is then subjected to an increasing macroscopic strain ε13 . The results are represented in Figure 16 at several strains: ε13 = 0 (equilibrium), ε13 = 1.3 × 10 -5 , ε13 = 2.2 × 10 -5 and ε13 = 3 × 10 -5 . Again, the "lamellar" microstructure is followed by a "globular" microstructure made of dislocation loops separated by thin walls. In that case, the formation of dislocation cells is more patent because they are bigger. This microstructure is very similar to crystal grains in which dislocation loops grow. Again, no pile-up is observed due to dislocation annihilation between loops of neighboring cells. In both cases, it is worth noting that strain unloading, up to a nil macroscopic stress, permits to stop the evolution of the microstructure and thus leads to a stabilization of the pattern.

Conclusion

The aim of this work was to investigate dislocation-mediated plasticity using the Field Dislocation Mechanics theory. First, the mesoscale FDM theory was recalled which has permitted to clearly identify two distinct problems to be solved, the static problem consisting in the determination of the local stress field for a given dislocation density (elliptic equation), and the evolution problem consisting in the transport of the dislocation density (hyperbolic equation). An efficient numerical integration procedure was then proposed. The static problem was solved in a general case using the FFT-based scheme proposed by [START_REF] Brenner | Numerical implementation of static Field Dislocation Mechanics theory for periodic media[END_REF]. The evolution problem, consisting in a vectorial tridimensional Hamilton-Jacobi hyperbolic equation, was solved in a simplified layer case using a high resolution Godunov-type scheme. Model problems were finally considered in order to investigate the predictions of the theory. First, uncoupled problems with constant velocity were explored: the numerical scheme considered has permitted to reproduce accurately physical phenomena such as the annihilation of dislocations and the expansion of a dislocation loop. Then, the FDM theory was applied to coupled problems in order to investigate several problems of dislocation-mediated plasticity. In a model problem of interactions between a dislocation and precipitates, the formation of residual dislocation loops around the precipitates has been observed. Finally, the evolution of random microstructures has been studied as a possible way to access dislocation patterning.

The present work permits to confirm the expectations funded in the Field Dislocation Mechanics theory for predicting several mechanisms of dislocation-mediated plasticity [START_REF] Acharya | New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale[END_REF]. The present formulation is not complete since only one component of the plastic distortion tensor was considered. Future developments concerning the numerical integration of the 3-d FDM theory are thus necessary to tackle more general problems of plasticity. A future important task will notably consist in developing numerical algorithms to solve vectorial multi-dimensional Hamilton-Jacobi equations. This would permit to develop a computational implementation of the 3-d FDM theory whose outcome would be a complete description of multiple slips, anisotropy, arbitrary loadings and complex polycrystalline microstructures.
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 1 Figure 1: Simplified layer problem.
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 2 Figure 2: Mechanism of annihilation of dislocations. (a) Discrete edge dislocations, (b) 3D density of edge dislocations.
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 3 Figure 3: Evolution of the edge dislocation density distribution α 12 / α 0 12 max in the process of annihilation of dislocations. (a) t = 0, (b) t = 35.2, (c) t = 74.2, (d) t = 105 (e) t = 109 (f) t = 113.
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 4 Figure 4: Mechanism of expansion of a circular dislocation loop. (a) Discrete dislocation line, (b) 3D density of dislocation, (c) 2D problem considered.

Figure 5 :

 5 Figure

Figure 6 :

 6 Figure 6: 2D problem considered in the case of a polygonal dislocation loop.
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 9 Figure 9: Distribution of the dislocation density after equilibrium.

Figure 11 :

 11 Figure 11: Distribution of the viscous drag coefficient η in the case of (a) dual symmetrical precipitates and (b) a random distribution of precipitates. The white color corresponds to η = ∞ and the black color corresponds to η = 10 5 Pa.s.m -1 .
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 14 Figure 14: Distribution of the initial plastic distortion U p 13 /U p 13,max . (a) Noisy random microstructure (microstructure A), (b) Smoothed random microstructure (microstructure B).
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 15 Figure 15: Evolution of the dislocation density α / α 0 max of an initially noisy random microstructure (microstructure A) subjected to an increasing macroscopic strain.

Figure 16 :

 16 Figure 16: Evolution of the dislocation density α / α 0 max of an initially smooth random microstructure (microstructure B) subjected to an increasing macroscopic strain.

It should be noted that this constitutive assumption has already been formulated by[START_REF] Acharya | New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale[END_REF].

It should be noted that, if annihilation occurs, the velocity is no longer well defined at the shock front, and thus equation (62) is no longer valid.
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Appendix A. Plastic dissipation and driving force

The identification of the driving force F from the expression of the intrinsic dissipation [START_REF] Acharya | Driving forces and boundary conditions in continuum dislocation mechanics[END_REF] is briefly recalled and its components are given as a function of σ and U p components.

By definition (Clausius-Duhem inequality), the intrinsic dissipation is defined by

with w the volumic density of free (stored) energy. With the constitutive assumption for the free energy w = 1 2 e : C : e + G(U p ), the intrinsic dissipation reads

The driving force associated to the velocity field V can thus be defined as

where is the Levi-Civita tensor whose components are given by

Besides, a constitutive assumption, ensuring the positivity of the dissipation D, has to be made for the velocity field V (see Section 2.3).