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Abstract

We develop a crystal plasticity model to investigate the coupled actions of crystal orien-
tation, grain neighborhood and grain-to-grain elasto-plastic interactions on dynamic strain
aging (DSA) and the onset and development of associated plastic strain localization in Al–Li
alloys. Considering simple model multilayered microstructures with preferred orientations
representative of rolled alloys, the aim is to identify grain orientation couples that can limit
dynamic strain aging induced strain localization without compromising the flow stress and
strain hardening properties. To this end, a slip system-based formulation of dynamic strain
aging is implemented in a crystal plasticity finite element framework. The model validity is
first checked with the simulation of a tensile specimen loaded at quasi-static applied strain
rate. The introduction of dynamic strain aging allows predicting complex propagation of in-
tense plastic localization bands. We further investigate the influence of crystal orientations on
early strain localization in Al–Cu–Li–Mg alloys, by performing simulations representative of
the early stage of a Kahn Tear test for single crystals and layered polycrystals. Using experi-
mentally reported crystal orientations for rolled microstructures, the simulation results show
that in both single and multilayered crystals, there is a strong influence of dynamic strain
aging on localization patterns, as well as a significant orientation dependence. In multilay-
ered crystals, the nature of strain localization can be remarkably modified when stand-alone
crystals of a certain orientation are coupled with other orientations: strain localization may
intensify or fades away depending on the coupling with neighboring orientations.

Keywords: Dynamic strain aging; Al–Li alloys; strain localization; grain orientation;
crystal plasticity finite element modeling.

1. Introduction1

This paper focuses on early plastic strain localization issues in Al–Cu–Li–Mg alloys used2

as light weight material solutions in the aerospace industry where the primary challenge is3

to reduce the overall weight of the aircrafts for enhanced fuel efficiency and reduced carbon4

emission [1–4]. In addition to their low density, these alloys offer an excellent resistance5

to corrosion and a combination of weldability, mechanical strength and damage tolerance6

not achieved in conventional alloys [5–7]. However, strain localization phenomena occurring7

in these alloys which can result into reduced toughness, and the limited understanding of8

∗Correspondence: guptas15@msu.edu; Tel +15174889302
Email addresses: guptas15@msu.edu (Satyapriya Gupta ), vincent.taupin@univ-lorraine.fr (Vincent

Taupin), claude.fressengeas@univ-lorraine.fr (Claude Fressengeas), juliette.chevy@constellium.com
(Juliette Chevy)

Preprint submitted to Elsevier September 9, 2019



the complex relationships between localization, damage and material properties such as so-9

lute/precipitate hardening/softening and crystallographic/morphological texture, still ham-10

per their widespread usage [8–10]. Extensive experimental and theoretical efforts have been11

made in the recent past for a better understanding of these relationships [11–15].12

13

In this work, focus is placed on the role of solute strengthening and dynamic strain ag-14

ing (DSA) induced Portevin–Le Chatelier (PLC) effect, which is thought to be the primary15

phenomena responsible for plastic strain localization in such alloys. In general, PLC effect16

is manifested as serrated stress-strain curve and visible strain localizations in the form of17

inclined deformation bands and caused by repeated interaction between the moving dislo-18

cations and diffusing solute atoms in dilute Al alloys. Although, in contrast to PLC effect,19

some precipitates, such as so-called T1 precipitates present in the AA-2198-T8 alloy, were20

experimentally suggested to favor homogenization of plastic deformation [16–19], the effect of21

precipitation is not considered here and it is left for a forthcoming study. Few experimental22

studies explored the role of DSA in the early strain localization processes leading to failure23

[20–24], and even fewer discussed the issue in Al–Cu–Li–Mg type alloys [25, 13, 26, 27]. Al-24

though such alloys usually do not display the typical serrated stress-strain curves commonly25

observed in monotonic uniaxial tensile loading of conventional Al–Mg alloys, recent experi-26

mental observations in the AA2024 and AA2139 alloys [28, 29] suggested that DSA could be27

activated during interrupted tensile tests, or after jumps in the loading strain rate. Thus, DSA28

cannot be ignored in complex forming operations, despite possibly evanescent manifestations29

in monotonic loading. Recent in-situ experimental studies combining X-ray laminography30

and 3D digital image correlation methods during Kahn tear tests on a AA-2198-T8 rolled31

material, and on other similar alloys, clearly evidenced the occurrence of early plastic strain32

localization [13, 30]. It was observed that intense plastic localization bands form away from33

the crack tip at the very beginning of deformation, and these bands are intermittent in time34

but not in space. This is very detrimental as plastic deformation will accumulate in bands,35

which inevitably leads to fracture of the specimens due to progressive void nucleation and36

coalescence at intermetallic particles in these slanted bands. By performing Kahn tear tests37

simulations using a finite element model that couples crystal plasticity, dynamic strain aging,38

damage and fracture, it was affirmative that dynamic strain aging is responsible for these39

early strain localization phenomena [26]. Localization bands intermittent in time but less40

in space were indeed predicted in good agreement with experimental data, which lead to41

damage and eventual fracture of the samples.42

43

Motivated by the above studies [13, 30, 26], present work contributes to further investiga-44

tion in terms of modeling the role of crystal orientations, plastic anisotropy, grain neighbor-45

hood, and grain-to-grain interactions on the intensity of dynamic strain aging effects. In a46

recent study, simple model lamellar grain structures representative of rolled microstructures47

were modeled, using experimentally reported preferred crystal orientations [31]. Plastic het-48

erogeneity and anisotropy was observed in the simulations. Such anisotropy and a significant49

soft-stiff grain-to-grain contrast was further reported both experimentally and theoretically50

in similar Al-Li rolled alloys [32–34], where in particular Brass and S orientations exhibit a51

strong stiff-soft behavior contrast. As such, with the eventual aim of minimizing or avoiding52

the detrimental effects of DSA on strain localization and the subsequent fracture process of53

Al–Cu–Li–Mg alloys through adequate material design, we strive to understand how DSA54

interacts with typical crystallographic and morphological orientation patterns. In the present55

work, we probe these interactions using a crystal plasticity finite element (CPFE) model. For56

capturing the key features of these interactions, a slip system-based dynamic strain aging57

module is added to the modeling framework. In studying the roles of grain morphology58

and orientation on strain localization, experimentally observed layered microstructures and59

dominant crystal orientations are employed. More precisely, we will perform simulations60

representative of the early stage deformation of a Kahn tear test, considering first, single61
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Table 1: Grain orientations used in the simulations. The Euler angles (φ1, φ, φ2) (in ◦) provide the orientation
of the crystal with respect to the rolling frame.

Orientation φ1 φ φ2
Brass-b 35.26 45.0 0.0

S-d −121.02 143.3 26.57

Cube 0.0 0.0 0.0

Goss 0.0 45.0 0.0

TCX 72.9 22.6 36.9

crystals and specific orientations (see Table 1). In particular we have considered a variant of62

the Brass texture component (called Brass-b hereafter), a variant of the S texture compo-63

nent (presented as S-d hereafter), Cube and Goss texture components, as well as an unknown64

texture component X (will be called TCX hereafter).65

As we neglect precipitation here, the material modeled can be considered as a AA-2198-66

T3 type alloy instead of the AA-2198-T8 alloy, where strong nanosize precipitates have67

been formed during additional aging. The aim is not to fit as close as possible available68

experimental curves here, but rather to identify which orientations are better in terms of69

limiting plastic strain localization initiating at the crack tip and very quickly propagating70

through the material and in terms of flow stress and strain hardening. Second, based on71

lamellar structures typical of 2198, we will simulate the same test for model microstructures72

with two major grain orientations, for instance, stacks of alternate Brass-b and S-d lamellar73

grains will be modeled and simulated. This study tries to be useful in terms of materials74

design as it allows probing the effect of coupling a given orientation with other neighboring75

orientations on the plastic heterogeneity and anisotropy.76

The following sections of the paper are therefore organized as follows. The small strain77

crystal plasticity framework accounting for DSA is presented in Section 2. Proper working78

of the DSA-embedded CPFE model is numerically validated in Section 3. CPFE simulation79

results obtained for different crystal orientations and several layered morphologies of orien-80

tation couples are presented and discussed in Section 4 . Finally, conclusions of the work are81

listed in Section 5.82

2. DSA-enabled CPFE model83

The unknown field is the displacement field u in a body B subjected to displacement84

and/or traction boundary conditions. In the absence of inertial and body forces, the momen-85

tum balance equation and boundary conditions can be written as86

div T = 0 , (1)

T · n = t̄ on St , (2)

u = ū on Su , (3)

where T is the stress tensor and (t̄, ū) are prescribed tractions and displacements at external87

boundaries of unit normal n, respectively. Homogeneous linear isotropic elasticity of the88

material is assumed:89

Tij = λεekkδij + 2µεeij . (4)

In this relation, λ and µ are the Lamé constants, and εe the elastic strain tensor. In a small90

strain setting, εe = ε− εp , where ε and εp are the total and plastic strain tensors.91
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2.1. Crystal plasticity module92

In the present crystal plasticity model, we follow the formulation used for aluminium93

crystals in [35]. The plastic velocity gradient Lp (whose symmetric part is the plastic strain94

rate tensor ε̇p) is obtained in a classical manner from the summation of the shear rates arising95

from dislocation glide on all activated slip systems:96

Lp =
∑
s

γ̇sPs =
∑
s

ρms bvsms ⊗ ns. (5)

In this relation, Ps = ms⊗ns is known as the orientation Schmid tensor of the slip system s97

with slip direction ms and unit normal ns. The shear rate γ̇s on the slip system s is given by98

the Orowan relationship γ̇s = ρms bvs, where b is the magnitude of the Burgers vector on all99

slip systems, ρms denotes the mobile dislocation density and vs is the dislocation velocity on100

slip system s. The plastic slip on system s is driven by the resolved shear stress τs = T : Ps101

through the power law relationship102

vs = v0

(
|τs|

τhs + τ sols

)n

sgn(τs) (6)

reflecting hardening from thermally activated obstacle overcoming, where v0 is a reference103

velocity and n a power law exponent. The stress τhs reflects forest hardening on the slip104

system s, and is assumed to be of the following form:105

τhs = µb

√∑
j

ajsρ
f
j , (7)

where ajs is a latent hardening coefficient providing the contribution of the dislocation forest106

density ρfj on system j to the hardening of system s [36]. A mean value amean will be taken107

for all these coefficients, except for the collinear interactions where the (larger) value acol will108

be used. In the provisional absence of DSA, the rates of change of the mobile ρms and forest109

ρfs dislocation densities on slip system s are taken as110

ρ̇ms
ρm0

=

Km −Kf +
C1√
ρm0

∑
j

√
ρfj −

C2

ρm0

∑
j

√
ρms ρ

f
j

 |γ̇s|, (8)

ρ̇fs
ρm0

=

Kf +
C2

ρm0

∑
j

√
ρms ρ

f
j −

C3

ρm0
ρfs

 |γ̇s|. (9)

In the above, Km is connected with the multiplication and Kf with the immobilization of111

mobile dislocations on obstacles initially present in the crystal. C1 reflects the contribution112

of the forest dislocations to mobile dislocation sources. C2 accounts for the immobilization of113

mobile dislocations due to their interactions with the forest. C3 stands for dynamic recovery.114

ρm0 is a reference dislocation density value. By handling separately the dislocation densities115

on each slip system, these evolution laws are designed to account for the effects of crystal116

orientation on the flow stress and work hardening rate [35]. In addition, Eq.(8) is meant to117

reflect the quick increase and saturation of the mobile dislocation density on an activated118

slip system.119

120

2.2. Dynamic strain aging module121

In Eq.(6), τ sols is an additional hardening stress arising from DSA, i.e., from recurrent122

pinning by diffusing solute atoms and eventual breakaway of mobile dislocations arrested123

on their obstacles. Its evolution with the aging time of arrested dislocations and the solute124
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concentration at these dislocations is now described, together with their effects on the dislo-125

cation density evolutions. A slip-system based Kubin Estrin McCormick (KEMC) model was126

recently applied to Al-Cu-Li-Mg alloys [26]. Here, as our crystal plasticity model couples the127

evolution of both mobile and forest dislocation densities, we consider another dynamic strain128

aging constitutive model that also distinguish the dynamics of mobile and sessile dislocation129

densities [37]. The chosen DSA module couples the time evolution of mobile and forest dis-130

location densities (ρms , ρ
f
s ) with the variations of the aging time tas and solute concentration131

Csol
s at arrested dislocations on particular slip system s. To this aim, the equations (8,9) are132

augmented as follows:133

ρ̇ms
ρm0

=

Km −Kf +
C1√
ρm0

∑
j

√
ρfj −

C2

ρm0

∑
j

√
ρms ρ

f
j

 |γ̇s| − A1

tls
ρms p(γ̇s), (10)

ρ̇fs
ρm0

=

Kf +
C2

ρm0

∑
j

√
ρms ρ

f
j −

C3

ρm0
ρfs

 |γ̇s|+ A1

tls
ρms p(γ̇s). (11)

In Eqs.(10,11), the effects of DSA on the time evolution of the dislocation densities are taken
into account through the terms involving A1, as they effectively integrate the dynamics of
dislocations and solute atoms. These terms control the exchange of dislocations between ρms
and ρfs by arrest and breakaway of mobile dislocations in relation with solute diffusion. The
characteristic time tls (also called loading time) are defined from the elementary incremental
strain Ωs and the overall loading strain rate ε̇a:

tls =
Ωs

ε̇a
=
b ρ̄ms /

√
ρ̄fs

ε̇a
. (12)

The incremental strains Ωs depend only on the slow time scale evolutions of ρms and ρfs , as
determined from Eqs.(8,9) and denoted (ρ̄ms , ρ̄

f
s ), but the characteristic times tls set the time

scales for the fast dislocation dynamics associated with DSA. p(γ̇s) represents the probability
density for dislocations to get pinned at obstacles by clouds of solute atoms on slip system
s. Expressed in terms of the plastic strain rate γ̇s, it reflects the elastic dislocation-solute
interactions on slip system s and can be taken as

p(γ̇s) =
2γ̇s

ε̇0
2 exp(−(γ̇s/ε̇0)

2) . (13)

where the reference strain rate ε̇0 is an input parameter regulating the type of serration134

achieved from the model. In the presence of DSA, a switch occurs repeatedly between low135

and high solute concentration Csol
s along the master curve described in Eq.(14) as a function136

of the dislocation aging time tas .137

Csol
s = 1− exp(−(

tas
tD

)2/3) (14)

In relation (14), tD is a time scale characterizing solute diffusion. The switch is therefore138

controlled by the aging time, which in turn primarily depends on the magnitude of the local139

plastic strain rate γ̇s. In the model [37], this switch is achieved through a relaxation process,140

according to which the aging time tas follows the waiting time tws (mobile dislocations wait141

on their obstacles in slip system s) with some delay:142

dtas
dt

= 1− tas
tws

(15)

tws =
Ωs

|γ̇s|
. (16)
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Hence, the PLC instability occurs when the waiting time tws , which indirectly depends on143

the flow stress, drops down to zero, reflecting the unpinning of dislocations from solute144

atmospheres. The solute-related resistance τ sols on slip system s is now taken as the product145

of the solute concentration Csol
s on arrested dislocations and a saturation stress level f reached146

at large aging times tas :147

τ sols = fCsol
s . (17)

Note that all the CP and DSA material parameters are listed in Table 2. The parameters148

for DSA and latent hardening are taken from previous works [38, 37, 35].149

2.3. Numerical strategy150

The standard Galerkin finite element method is used for the spatial discretization and151

numerical solution of the problem set out be Eqs.(3) through (17). Note that the differential152

equations and relations (10-17) presented above constitute a stiff differential system involving153

fast variables undergoing large changes in a small amount of time. An explicit time-marching154

scheme is employed with sufficiently small time steps, to ensure numerical stability of the155

solution. The choice of time step ∆t is chosen based on limited relative evolution of both Lp,156

tas and γ̇s quantities. The model is implemented in the framework provided by Freefem++,157

a free software based on the finite element method having a high level integrated develop-158

ment environment for the numerical solution of partial differential equations in two or three159

dimensions [39].160

3. DSA endorsed strain localization in single crystal tension: validation of model161

Single crystal stretching simulations are performed using the above described DSA-162

enabled model to examine the proper working, capabilities and flexibility of the CPFE code.163

The simulation results are compared with conventional CP response to highlight the influ-164

ence of DSA on the mechanical response. A classical dog bone-shaped sample is simulated165

with uniaxial tension velocity driven boundary conditions in the X direction. Note that166

X,Y,Z in FE model correspond to RD,TD and ND. The FE domain (generated by the mesh167

module of Freefem++) is discretized with cubes composed of tetrahedral elements and the168

crystal lattice is assigned Euler angles characteristic of the cubic orientation, typically close169

to experimentally used orientations in tensile samples. The material properties and initial170

condition parameters used for the simulations are listed in Table 2. The applied strain rate171

is 10−4/s. In all forthcoming simulations, the mesh is chosen fine enough such that realis-172

tic plastic localization bands can develop. However, in a more realistic setup, one should173

consider strain gradient plasticity or field dislocation mechanics [40] approaches, where a174

characteristic internal length scale related to width of localization bands can be explicitly175

or inherently introduced to removes any mesh size dependence of the plastic bands [41]. In176

our simulations, there is no physical size introduced, only the effect of grain morphologies,177

its distribution and the ratio of lamellar grain thicknesses in our multilayered simulations is178

important.179

180

Two different regimes of plastic activity were observed. Fig. 1(a) shows a zoomed-in view181

of the macroscopic stress-strain curve obtained from the DSA-enabled model featuring a se-182

quence of irregular events, which can be compared with the very smooth curves obtained183

from conventional CP modeling in Fig. 1(b). The magnitude of the stress serrations is very184

small (which is realistic for Al–Cu–Li-Mg alloys) for the adopted DSA parameters. In ad-185

dition, a higher flow stress (an increase of the yield stress of about 50 MPa) together with186

larger yield drop is observed for DSA-enabled model as compared to the conventional CP187

model. This is due to the fact that, in the latter case, the yield point originates in a burst of188

the mobile dislocation density (due to very small initial mobile dislocation densities ρms (0)),189
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whereas the former case also involves the breakaway of statically aged mobile dislocations.190

191

(a) (b)

Figure 1: Macroscopic deformation behavior of dogbone-shaped single crystal in tension, (a) with DSA enabled
crystal plasticity; (b) In the absence of DSA (crystal plasticity only).

The simulation results are also analyzed at a more local level using the longitudinal192

strain rate fields (primarily plastic strain rate) obtained from both the DSA-enabled CP193

and conventional CP models. The dogbone shape of the simulated sample provides natural194

opportunity for stress concentration at the shoulders, and thereby a region to initiate strain195

localization. As shown in Fig. 2(a), nucleation, motion and intermittency of strain localiza-196

tion in the form of bands can be observed in the DSA-enabled model. For instance, a closer197

look on the maps at time steps (ts) 190, 250, and 300 demonstrates the formation of two new198

bands at the specimen shoulders and disappearance of the band in the middle of the mesh.199

The manifestations of these plastic instability events are clearly the attributes of repeated200

collective pinning and breakaway of mobile dislocations.201

202

On the contrary, strain localization is completely absent from the strain rate fields ob-203

tained from the conventional CP model (see Fig. 2(b)), which confirms the proper working204

of the DSA-enabled model and also highlights the influence of DSA on the local deformation205

behavior of the material. We indeed observe a very homogeneous strain rate field throughout206

the gauge length of the specimen in Fig. 2(b). The initial burst of mobile dislocations due to207

low initial mobile dislocation densities ρms (0) is seen to temporarily fill up the gauge length208

with high strain rate.209

4. Strain localization in Al–Cu–Li-Mg alloys: Influence of crystal orientation and210

morphological texture211

As already mentioned, the present study is grounded on the presumption that strain212

localization is a middle link of deformation and ultimate fracture. Strain localization is213

therefore the primary focus of our investigation. The following study is conducted to investi-214

gate how the crystal orientation and layered morphology can influence the strain localization215

process ahead and away from a crack tip in the presence of DSA. In the bigger picture, this216

investigation aims at tailoring a textured alloy, in order to make it less susceptible to strain217

localization and thus to have better damage /fracture resistance.218

4.1. Edge cracked single crystal: effect of crystal orientation219

The simulation results presented in the previous section demonstrate that DSA can trig-220

ger plastic instabilities in dilute Al alloys, which are otherwise absent when DSA is omitted.221
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✏̇11
ts=40 ts=58 ts=68 ts=120 ts=190 ts=250 ts=300 ts=400 ts=450 ts=520

ts=560 ts=570 ts=590 ts=630 ts=670 ts=715 ts=730 ts=745 ts=760 ts=830

0.0003

0.00025

0.0002

0.00015

0.0001

(a)

ts=20 ts=25 ts=27 ts=30 ts=32 ts=38 ts=48 ts=80 ts=120

ts=150 ts=180 ts=210 ts=240 ts=260

✏̇11
0.0003

0.00025

0.0002

0.00015

0.0001

(b)

Figure 2: Longitudinal strain rate field ε̇11 at gradually increasing simulation time steps for the dog bone-
shaped single crystal (a) simulated with DSA enabled crystal plasticity where destabilizing influence of DSA
is manifested in the form of the nucleation, motion and intermittency of localized deformation bands; (b)
simulated with crystal plasticity in the absence of DSA (standard CP model) where the complete absence of
plastic instability and localized bands with a homogeneous strain rate field across the gauge section highlights
the significant influence of DSA.
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Table 2: Material and simulation parameters used for crystal plasticity (CP) and dynamic strain aging (DSA).

CP model parameters Notation Value

Power law exponent n 10
Reference dislocation velocity v0 5× 10−10m/s
Reference mobile dislocation density ρm0 1× 107m−2

Latent hardening coefficients amean 0.12
acol 1.265

Burgers vector magnitude b 2.86× 10−10m
Dislocation interaction with obstacles Km 2.4× 104

Kf 1.4× 104

Hardening/softening parameters C1 2.2× 103

C2 80.0
C3 0.0

Lamé constants λ 62 GPa
µ 23 GPa

DSA model parameters Notation Value

Diffusion time tD 10 sec
Arrest term A1 1× 10−3s−1

Solute hardening constant f 37 MPa
Reference strain rate ε̇0 5× 10−4 s−1

Applied strain rate ε̇a 1× 10−4 s−1

Initial aging time ta0 1 sec

Initial conditions Notation Value

Initial mobile dislocation density ρm(0) 1× 107m−2

Initial forest dislocation density ρf (0) 1× 1012m−2

However, we conjecture that the DSA-endorsed plastic instabilities may be orientation de-222

pendent, and may therefore have significant or negligible impact on the overall mechanical223

response of the sample, depending on the crystal orientation. As a consequence, DSA-224

controlled nucleation, propagation, and intermittency of deformation bands might promote,225

leave unaffected, delay or impede crack propagation depending on the crystal orientation of226

the grain associated with the crack. Therefore, a study highlighting the influence of crystal227

orientation on DSA-triggered strain localization is now conducted.228

229

To trigger the strain localization process, we introduce a sharp crack in the FE mesh (see230

Fig.3) by using the element dilution method where elements constituting the edge crack are231

assigned a negligible stiffness. A stiffness parameter K is used for this element degradation232

where the modified stiffness of the element is described as233

Cmod = (1−K)C, (18)

where C is the original elastic moduli tensor. Ideally, the parameter K for the elements234

shaping the edge crack should be 1. However, numerical stability puts a limit of K ≈ 1,235

whereas K is zero for the rest of the elements in the mesh. The single crystal with edge crack236

is discretized in 50×50×10 cubic elements (each cube being filled with tetrahedral elements)237

in the X, Y and Z directions. It is uniaxially loaded in y direction with fixed displacement238

rate, leading initially to mode-I type fracture stress concentration fields near the crack tip.239

This specifically serves as the source of early plastic strain localization and we do not con-240

sider any damage and crack propagation in this study. Frequently observed orientations,241

specific to rolled Al–Cu–Li-Mg alloys, (see Table 1) are chosen for this investigation. The242

Euler angles listed in Table 1 are taken from a previous work [31].243

244
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0.02

1.0

Element  Stiffness

Figure 3: Single crystal with edge crack and uniaxial tension boundary condition used for FE simulations.

(a) (b)

Figure 4: Orientation dependence of global deformation behavior of edge cracked single crystal loaded in frac-
ture mode-I, (a) simulated with DSA-enabled crystal plasticity; (b) simulated with standard crystal plasticity
(DSA absent).
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As shown in Fig. 4, common to all crystal orientations and already observed in Fig.2,245

the average flow stress obtained from DSA-enabled CP is 50 to 100 MPa higher than from246

the standard CP model (absent DSA). As already discussed, higher flow stress and larger247

yield drop for the DSA-enabled CP model is the result of solute hardening and first solute-248

dislocation breakaway event, respectively. As expected, the DSA-enabled model captures the249

pinning and breakaway events manifested as stress serrations in the macroscopic stress strain250

curve (see Fig. 4(a)), as compared to smooth flow stress curves obtained from the CP only251

model in Fig. 4(b). Apart from the Brass-b orientation, which exhibits much higher strength,252

all other orientations fall into a category of approximately comparable flow stresses. How-253

ever, DSA alters the relative strength of the latter crystal orientations, if counterpart results254

obtained from standard CP are taken as reference.255

256

Brass-b TCX Cube Goss S-d eVMp
0.014
0.012
0.01
0.008
0.006

0.003

(a)

0.046
0.04
0.035
0.03
0.025
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Figure 5: Equivalent von Mises plastic strain (eVMp) fields at gradually increasing global strains for different
crystal orientations simulated using DSA-enabled CP model. The orientation dependence of DSA effects is
manifested as divergent plastic zone extensions for the different crystal orientations under investigation, (a)
eVMp at 1% global strain; (b) eVMp at 3% global strain; (c) eVMp at 5% global strain.

The influence of DSA is now examined at a local level in terms of the plastic strain257

fields ahead of the crack tip and their evolutions with the applied overall strain, as compared258

to standard CP predictions. The development of the plastic zones in the presence of DSA259

(see Fig. 5) is observed to be less symmetric, more intense and more heterogeneous than for260

the plastic zones obtained with standard CP shown in Fig.6. The comparison also suggests261

that DSA may be beneficial in delaying fracture nucleation and growth by shifting the strain262

localization area away from the crack tip. In contrast, the absence of DSA results in strain lo-263
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calization right ahead of the crack tip, while producing more homogeneous strain fields away264

from the crack. In addition, the above-mentioned influence of DSA is observed to be strongly265

orientation dependent. Fig. 5 shows indeed a prominent crystal orientation dependence of266

the DSA-triggered heterogeneous plastic zones (both ahead and away from the crack tip) at267

gradually increasing global strain. A closer look at the plastic zones of individual orienta-268

tions reveals that the Brass-b and Cubic orientations favor a relatively homogeneous plastic269

strain field, whereas Goss, S-d and TCX promote a more localized plastic strain field within270

the domain of simulation. Therefore, we may tentatively conclude that, while choosing the271

crystal orientations to tailor a sample configuration less susceptible to strain localization in272

the presence of DSA, the Brass-b and Cube orientations should be preferred over the S-d,273

Goss and TCX orientations. In particular, the Brass-b orientation further exhibits a strong274

increase of flow stress in the presence of DSA. However, forthcoming results for multilayered275

crystal will show that such a conclusion is only provisional. In addition to the plastic strain276

fields shown here, the reader may want to examine the nucleation, motion and intermittency277

of the localized deformation bands by means of the equivalent strain rate fields provided as278

videos in supplementary multimedia data. However, more details on the dynamics of strain279

localization and the intermittency of dislocation activity will be provided in the next Section280

(see Fig.11).281

282
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Figure 6: Equivalent von Mises plastic strain (eVMp) fields at gradually increasing global strains for different
crystal orientations simulated with standard CP (DSA module absent), (a) eVMp at 1% global strain; (b)
eVMp at 3% global strain; (c) eVMp at 5% global strain.
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4.2. Edge cracked multi-layered polycrystal: effect of orientation couples283

In the series of efforts made to generate a texture that is resistant to strain localization,284

investigating the contribution of individual orientations is necessary but not sufficient. Grain285

interactions may play a significant role, and the deformation behavior for a particular crystal286

orientation may substantially differ from that obtained in the presence of neighboring grains287

with different orientations. Therefore, we now conduct investigations using combinations of288

orientation couples.289

290

Figure 7: Edge-cracked multi-layered polycrystal with embedded orientation couples (here Cube-Goss) and
uniaxial tension boundary conditions.

All of the C5
2 = 10 possible orientation couples obtained by considering the five frequently291

observed orientations: Brass-b–Goss, Cube–TCX, Goss–S-d,..etc., were simulated in uniaxial292

tension, both in presence and in absence of DSA. As before, the simulations performed with293

the CP only model (without DSA) are used as references highlighting the influence of DSA294

on the local fields and macroscopic stress-strain behavior. As shown in Fig. 7, a multi-layered295

FE mesh inspired from the experimental observation of rolled microstructures of Al–Cu–Li–296

Mg alloys is adopted to investigate the interaction of orientation couples.297

298

(a) (b)

Figure 8: Averaged flow stress of edge cracked layered orientation couples loaded in fracture mode-I, (a)
simulated with DSA enabled crystal plasticity; (b) simulated with standard crystal plasticity (DSA absent).
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Similar to single crystal results, the layered polycrystalline morphology exhibits promi-299

nent differences in the macroscopic stress-strain curves obtained from the DSA-enabled CP300

model as compared to standard CP calculations (see Fig. 8). As already found, higher flow301

stresses and larger yield drops obtained for the DSA-enabled model can be associated with302

the solute stress and first solute-dislocation breakaway event, respectively. The macroscopic303

stress-strain curves obtained from DSA-enabled CP can be relatively divided in two cat-304

egories: orientation couples containing Brass-b and others excluding Brass-b. Indeed, it is305

observed that coupling any orientation with the Brass-b orientation results in a 50 to 100 MPa306

boost in the macroscopic flow stress, with the notable exception of TCX–Brass-b. The in-307

fluence of DSA is also evident from small but crucial changes in the relative flow stresses for308

different orientation couples as compared to results obtained using standard CP.309

310
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Figure 9: Equivalent plastic strain (eVMp) fields at gradually increasing global strains for different orientation
couples. DSA plays a significant role in changing the behavior of a particular orientation in the presence of
other crystal orientations, (a) eVMp at 0.6% global strain; (b) eVMp at 2% global strain.

The analysis of the predicted plastic strain fields is now conducted to investigate the311

joint influences of grain orientation couples and DSA on strain localization leading to failure.312

To this end, Fig. 9 presents the equivalent plastic strain (eVMp) fields predicted for the ten313

orientation couples at two distinct strain levels: 0.6%, which is close to the elasto-plastic314
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transition, and 2%, that is in the hardening regime. For most of the orientation couples,315

the initiation of the plastic zone swiftly migrates away from the crack tip in the presence of316

DSA, which may have again a stabilizing influence on incoming crack propagation, and the317

high strain zones are found to be rather independent of the edge crack location. The plastic318

strain fields for the various orientation couples can be broadly divided into two categories:319

orientation couples exhibiting highly heterogeneous strain distributions, and orientation cou-320

ples displaying rather homogeneous strain distributions (see Fig. 9(b)). Most notably and321

in strong contrast with the beneficial properties of the Brass-b orientation for single crys-322

tal simulations, nearly all the orientations coupled with Brass-b now demonstrate strong323

strain localization and heterogeneous plastic strain fields as compared to other couplings, a324

property that can be detrimental with respect to strain localization leading to fracture. In325

particular, TCX–Brass-b shows the strongest strain localization trend, which can be related326

to its relatively low hardening rate in Fig.8. Such a result highlights the importance of con-327

sidering the effects of grain neighborhood and grain–to–grain interactions. On the contrary,328

mutual couplings of S-d, Goss and Cube orientations promote a rather homogeneous plastic329

strain distribution, and therefore could well be better candidates while choosing orientation330

distributions less prone to strain localization. Note that the simulations predict a strong331

anisotropy of plastic deformation in grains, with possible high contrast between grains, in332

particular for Brass-b/S-d couples, which is in good agreement with available experimental333

and modeling data [32–34].334

335

(a) (b)

Figure 10: Cumulative probability distributions of the equivalent plastic strain at 0.02 average tensile strain
for edge cracked layered orientation couples loaded in fracture mode-I, (a) simulated with DSA-enabled CP;
(b) simulated with standard CP (DSA absent).

A more synthetic presentation of the above-discussed strong vs. weak strain localization336

patterns pertaining to different orientation couples is shown in Fig. 10 where the cumulative337

probability of equivalent plastic strain (eVMp) is computed and plotted at 2% global strain338

for all orientation couples. To interpret these plots, note that a narrow cumulative probability339

of plastic strain suggests a small scatter of plastic strain throughout the sample, and hence a340

rather homogeneous plastic strain field. As compared to standard CP results, a larger spread341

in the cumulative probability obtained from DSA-enabled CP is a direct indication of DSA342

triggered stronger heterogeneity in eVMp (see Fig. 10(a) and 10(b)). In addition, the cumu-343

lative probability spread is found to be larger in the presence of the Brass-b orientation, as344

compared to mutual couplings of the S-d, Goss and Cube orientations, which again points to345

a stronger strain heterogeneity. In particular, the TCX–Brass-b orientation couple exhibits346

the larger spread and higher strain heterogeneity, with local strains nearly reaching 0.1 at a347

macroscopic strain of 0.02.348
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349

(a)

(b)

Figure 11: Time evolution of strain rate for randomly chosen nodes in the mesh, (a) simulated with DSA
enabled crystal plasticity; (b) simulated with standard crystal plasticity (DSA absent).

Finally, the intermittency of the equivalent strain rate field ε̇eq is examined in relation with350

its heterogeneity by plotting this quantity in Fig. 11, normalized by the overall applied strain351

rate ε̇a, at ten different (randomly chosen) locations in the sample. In comparison to smooth352

strain rate variations obtained from standard CP and shown in Fig. 11(b), DSA-enabled CP353

clearly yields a recurrence of sharp peaks, i.e. a highly intermittent behavior often associated354

with the PLC effect (Fig. 11(a)). Further, the heterogeneity apparent in Fig. 11(b), which355

simply derives from location and orientation differences, is found to be amplified by DSA in356

Fig. 11(a), and intermittency usually appears to be highest at locations where the equivalent357

strain rate is the largest. Of course, the calculations shown in Fig. 11 confirm that the358

intermittency observed in the DSA-enabled CP simulations is a direct consequence of the359

dislocation-solute interactions, by which every peak in the strain rate spatiotemporal field is360

associated with a particular set of pinning and breakaway events.361

5. Conclusions362

The primary findings of the presented investigation can be summarized as follows:363

1. A successful slip system-based implementation of a DSA constitutive model, coupling364

the dynamics of mobile and sessile dislocation densities in standard small scale crystal365

plasticity, allows accurately mimicking the experimental observations for dilute Al–Cu–366

Li-Mg alloys. We are able to capture both macroscopic serrated stress-strain curves367

and plastic strain and strain rate fields involving recurrent nucleation and propagation368

of strain localization bands on various slip systems, as observed in experiments. In369

contrast, a smooth flow stress and complete absence of plastic instabilities is seen for370

the standard CP model (DSA module absent).371
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2. Simulations of edge cracked single crystals loaded in fracture mode-I demonstrated a372

strong orientation dependence of the destabilizing effects of DSA. The development of373

a plastic strain localization area is observed to be quite localized for orientations such374

as Goss, S-d and TCX, whereas the Brass-b and Cube orientations favor a relatively375

homogeneous plastic strain field.376

3. The results obtained from investigating orientation couples highlight the strong influ-377

ence of the latter on the destabilizing effects of DSA. Nearly all the orientations in the378

presence of Brass-b demonstrate stronger strain localization patterns and more hetero-379

geneous plastic strain fields than the mutual couplings of S-d, Goss and Cube. The380

latter are therefore found to be beneficial in terms of homogeneous strain distribution.381

The rather opposite influences of the Brass-b orientation, paradoxically seen as a sta-382

bilizing factor in single crystal simulations and a destabilizing one when neighboring383

grains are taken into account, highlight the importance of grain neighborhood as well384

as grain–to–grain interactions in microstructures.385

It is important to note that above mentioned outcomes are true for solicitation in the trans-386

verse directions and propagation in the rolling direction. We expect a significant changes387

in conclusion for traction in the rolling direction and propagation in the transverse direc-388

tion, which could be a potential outlook for the present work. Further steps in this research389

involve the simulation of a more realistic Kahn tear test with a sample containing a large390

number of grains, such as to investigate in more details the role of texture and grain-to-grain391

interactions in the early localization phenomena. To this end, a numerical spectral method392

using Fast Fourier transforms (FFT) algorithms [42, 43] will be considered. Spectral CP-FFT393

methods are computationally much more efficient than the CP-FEA methods, which allows394

dealing with much larger polycrystalline samples, with foreseeable benefits in the prediction395

of textures at large strains. The only inherent rigidity attached to spectral methods, i.e.396

need of periodic boundary conditions can be averted by using buffer zones at the sample397

boundaries. Further, in AA-2198-T8 alloys, the beneficial role of nanosize T1 precipitates398

in terms of strength and strain homogenization will be investigated [16–19]. It was recently399

demonstrated that certainly such platelet precipitates, which form mostly on dislocation lines400

on {111} slip planes during an artificial heat treatment applied to T3 alloys, have a hetero-401

geneous spatial distribution and cannot be sheared twice by dislocation lines at the same402

location, which limits dislocation avalanches. While early strain localization is still observed403

in the Kahn tear tests of AA-2198-T8 alloys [13], the competition between T1 precipitates404

and dynamic strain aging on strain localization is thought to be important and a constitutive405

law accounting for precipitates will be developed, which will allow refining microstructure406

design in view of limiting strain localization phenomena.407

Acknowledgments408

Authors would like to acknowledge the support and funding from C-TEC Constellium409

Technology Center, by the French State through the National Research Agency (ANR) under410

the program Investment in the future (LabEx DAMAS referenced as ANR-11-LABX-0008-411

01) and from the Région Grand-Est.412

413

Declaration of interest414

None415

References416

[1] T. S. Srivatsan, T. Hoff, S. Sriram, A. Prakash, The effect of strain rate on flow stress,417

strength and ductility of an Al-Li-Mg alloy, Journal of Materials Science Letters 9 (3)418

(1990) 297–300. doi:10.1007/BF00725830.419

17

http://dx.doi.org/10.1007/BF00725830


[2] T. Warner, Recently-developed aluminium solutions for aerospace applications, in: Alu-420

minium Alloys 2006 - ICAA10, Vol. 519 of Materials Science Forum, Trans Tech Publi-421

cations, 2006, pp. 1271–1278. doi:10.4028/www.scientific.net/MSF.519-521.1271.422

[3] J. Liu, Advanced Aluminium and Hybrid Aerostructures for Future Aircraft, Materials423

Science Forum 519-521 (2006) 1233–1238. doi:10.4028/www.scientific.net/MSF.424

519-521.1233.425

URL http://www.scientific.net/MSF.519-521.1233426

[4] R. Wanhill, Chapter 15 - aerospace applications of aluminum-lithium alloys,427

in: N. E. Prasad, A. A. Gokhale, R. Wanhill (Eds.), Aluminum-lithium Al-428

loys, Butterworth-Heinemann, Boston, 2014, pp. 503 – 535. doi:https:429

//doi.org/10.1016/B978-0-12-401698-9.00015-X.430

URL http://www.sciencedirect.com/science/article/pii/431

B978012401698900015X432

[5] R. J. Rioja, J. Liu, The evolution of Al-Li base products for aerospace and space appli-433

cations, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials434

Science 43 (9) (2012) 3325–3337. doi:10.1007/s11661-012-1155-z.435

[6] N. D. Alexopoulos, E. Migklis, A. Stylianos, D. P. Myriounis, Fatigue behavior of the436

aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading, Interna-437

tional Journal of Fatigue 56 (2013) 95–105. doi:10.1016/j.ijfatigue.2013.07.009.438

URL http://dx.doi.org/10.1016/j.ijfatigue.2013.07.009439

[7] A. Steuwer, M. Dumont, J. Altenkirch, S. Birosca, A. Deschamps, P. B. Prangnell, P. J.440

Withers, A combined approach to microstructure mapping of an Al-Li AA2199 friction441

stir weld, Acta Materialia 59 (8) (2011) 3002–3011. doi:10.1016/j.actamat.2011.01.442

040.443

URL http://dx.doi.org/10.1016/j.actamat.2011.01.040444

[8] S. Choi, F. Barlat, Prediction of macroscopic anisotropy in rolled aluminum-lithium445

sheet, Scripta Materialia 41 (9). doi:10.1016/S1359-6462(99)00241-9.446

[9] Y. Lin, Z. Zheng, S. Li, X. Kong, Y. Han, Microstructures and properties of 2099 Al-Li447

alloy, Materials Characterization 84 (2013) 88–99. doi:10.1016/j.matchar.2013.07.448

015.449

URL http://dx.doi.org/10.1016/j.matchar.2013.07.015450

[10] A. Bois-Brochu, C. Blais, F. A. T. Goma, D. Larouche, J. Boselli, M. Brochu, Charac-451

terization of Al-Li 2099 extrusions and the influence of fiber texture on the anisotropy452

of static mechanical properties, Materials Science and Engineering A 597 (2014) 62–69.453

doi:10.1016/j.msea.2013.12.060.454

URL http://dx.doi.org/10.1016/j.msea.2013.12.060455

[11] A. A. Csontos, E. A. Starke, The effect of inhomogeneous plastic deformation on the456

ductility and fracture behavior of age hardenable aluminum alloys, International Journal457

of Plasticity 21 (6) (2005) 1097–1118. doi:10.1016/j.ijplas.2004.03.003.458

[12] T. F. Morgeneyer, J. Besson, Flat to slant ductile fracture transition: Tomography459

examination and simulations using shear-controlled void nucleation, Scripta Materialia460

65 (11) (2011) 1002–1005. doi:10.1016/j.scriptamat.2011.09.004.461

URL http://dx.doi.org/10.1016/j.scriptamat.2011.09.004462

[13] T. F. Morgeneyer, T. Taillandier-Thomas, L. Helfen, T. Baumbach, I. Sinclair, S. Roux,463

F. Hild, In situ 3-D observation of early strain localization during failure of thin Al alloy464

(2198) sheet, Acta Materialia 69 (2014) 78–91. doi:10.1016/j.actamat.2014.01.033.465

18

http://dx.doi.org/10.4028/www.scientific.net/MSF.519-521.1271
http://www.scientific.net/MSF.519-521.1233
http://dx.doi.org/10.4028/www.scientific.net/MSF.519-521.1233
http://dx.doi.org/10.4028/www.scientific.net/MSF.519-521.1233
http://dx.doi.org/10.4028/www.scientific.net/MSF.519-521.1233
http://www.scientific.net/MSF.519-521.1233
http://www.sciencedirect.com/science/article/pii/B978012401698900015X
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-401698-9.00015-X
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-401698-9.00015-X
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-401698-9.00015-X
http://www.sciencedirect.com/science/article/pii/B978012401698900015X
http://www.sciencedirect.com/science/article/pii/B978012401698900015X
http://www.sciencedirect.com/science/article/pii/B978012401698900015X
http://dx.doi.org/10.1007/s11661-012-1155-z
http://dx.doi.org/10.1016/j.ijfatigue.2013.07.009
http://dx.doi.org/10.1016/j.ijfatigue.2013.07.009
http://dx.doi.org/10.1016/j.ijfatigue.2013.07.009
http://dx.doi.org/10.1016/j.ijfatigue.2013.07.009
http://dx.doi.org/10.1016/j.ijfatigue.2013.07.009
http://dx.doi.org/10.1016/j.actamat.2011.01.040
http://dx.doi.org/10.1016/j.actamat.2011.01.040
http://dx.doi.org/10.1016/j.actamat.2011.01.040
http://dx.doi.org/10.1016/j.actamat.2011.01.040
http://dx.doi.org/10.1016/j.actamat.2011.01.040
http://dx.doi.org/10.1016/j.actamat.2011.01.040
http://dx.doi.org/10.1016/j.actamat.2011.01.040
http://dx.doi.org/10.1016/S1359-6462(99)00241-9
http://dx.doi.org/10.1016/j.matchar.2013.07.015
http://dx.doi.org/10.1016/j.matchar.2013.07.015
http://dx.doi.org/10.1016/j.matchar.2013.07.015
http://dx.doi.org/10.1016/j.matchar.2013.07.015
http://dx.doi.org/10.1016/j.matchar.2013.07.015
http://dx.doi.org/10.1016/j.matchar.2013.07.015
http://dx.doi.org/10.1016/j.matchar.2013.07.015
http://dx.doi.org/10.1016/j.msea.2013.12.060
http://dx.doi.org/10.1016/j.msea.2013.12.060
http://dx.doi.org/10.1016/j.msea.2013.12.060
http://dx.doi.org/10.1016/j.msea.2013.12.060
http://dx.doi.org/10.1016/j.msea.2013.12.060
http://dx.doi.org/10.1016/j.msea.2013.12.060
http://dx.doi.org/10.1016/j.msea.2013.12.060
http://dx.doi.org/10.1016/j.ijplas.2004.03.003
http://dx.doi.org/10.1016/j.scriptamat.2011.09.004
http://dx.doi.org/10.1016/j.scriptamat.2011.09.004
http://dx.doi.org/10.1016/j.scriptamat.2011.09.004
http://dx.doi.org/10.1016/j.scriptamat.2011.09.004
http://dx.doi.org/10.1016/j.scriptamat.2011.09.004
http://dx.doi.org/10.1016/j.actamat.2014.01.033


[14] M. R. Joyce, M. J. Starink, I. Sinclair, Assessment of mixed mode loading on macroscopic466

fatigue crack paths in thick section Al-Cu-Li alloy plate, Materials and Design 93 (2016)467

379–387. doi:10.1016/j.matdes.2015.12.116.468

URL http://dx.doi.org/10.1016/j.matdes.2015.12.116469

[15] A. Abd El-Aty, Y. Xu, X. Guo, S. H. Zhang, Y. Ma, D. Chen, Strengthening mechanisms,470

deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review,471

Journal of Advanced Research 10 (2018) 49–67. doi:10.1016/j.jare.2017.12.004.472

URL https://doi.org/10.1016/j.jare.2017.12.004473

[16] P. Donnadieu, Y. Shao, F. D. Geuser, G. Botton, S. Lazar, M. Cheynet, M. de Boissieu,474

A. Deschamps, Atomic structure of t1 precipitates in al-li-cu alloys revisited with haadf-475

stem imaging and small-angle x-ray scattering, Acta Materialia 59 (2) (2011) 462 – 472.476

doi:https://doi.org/10.1016/j.actamat.2010.09.044.477

URL http://www.sciencedirect.com/science/article/pii/S135964541000621X478

[17] A. Deschamps, B. Decreus, F. D. Geuser, T. Dorin, M. Weyland, The influence of479

precipitation on plastic deformation of al-cu-li alloys, Acta Materialia 61 (11) (2013)480

4010 – 4021. doi:https://doi.org/10.1016/j.actamat.2013.03.015.481

URL http://www.sciencedirect.com/science/article/pii/S1359645413002255482

[18] V. Araullo-Peters, B. Gault, F. de Geuser, A. Deschamps, J. M. Cairney, Microstructural483

evolution during ageing of al-cu-li-x alloys, Acta Materialia 66 (2014) 199 – 208. doi:484

https://doi.org/10.1016/j.actamat.2013.12.001.485

URL http://www.sciencedirect.com/science/article/pii/S1359645413009361486

[19] T. Dorin, A. Deschamps, F. D. Geuser, F. Robaut, Impact of grain microstructure on487

the heterogeneity of precipitation strengthening in an al-li-cu alloy, Materials Science488

and Engineering: A 627 (2015) 51 – 55. doi:https://doi.org/10.1016/j.msea.2014.489

12.073.490

URL http://www.sciencedirect.com/science/article/pii/S0921509314015731491

[20] D. Delafosse, G. Lapasset, L. Kubin, Dynamic strain ageing and crack propagation in492

the 2091 Al-Li alloy, Scripta Metallurgica et Materialia 29 (11) (1993) 1379 – 1384.493

doi:https://doi.org/10.1016/0956-716X(93)90323-K.494

URL http://www.sciencedirect.com/science/article/pii/0956716X9390323K495

[21] L. Fournier, D. Delafosse, T. Magnin, Oxidation induced intergranular cracking and496

Portevin-Le Chatelier effect in nickel base superalloy 718, Materials Science and Engi-497

neering A 316 (1-2) (2001) 166–173. doi:10.1016/S0921-5093(01)01224-2.498

[22] H. Wang, C. Berdin, M. Mazière, S. Forest, C. Prioul, A. Parrot, P. Le-Delliou, Portevin-499

Le Chatelier (PLC) instabilities and slant fracture in C-Mn steel round tensile specimens,500

Scripta Materialia 64 (5) (2011) 430–433. doi:10.1016/j.scriptamat.2010.11.005.501

[23] A. R. Das, T. Chowdhury, S. Sivaprasad, H. N. Bar, N. Narasaiah, S. Tarafder, Influence502

of dynamic strain ageing on fracture behaviour and stretch zone formation of a reactor503

pressure vessel steel, International Journal of Fracture 202 (1) (2016) 79–91. doi:504

10.1007/s10704-016-0134-6.505

[24] V. Garat, J. M. Cloue, D. Poquillon, E. Andrieu, Influence of Portevin-Le Chatelier506

effect on rupture mode of alloy 718 specimens, Journal of Nuclear Materials 375 (1)507

(2008) 95–101. doi:10.1016/j.jnucmat.2007.10.009.508

[25] J. Chen, Y. Madi, T. F. Morgeneyer, J. Besson, Plastic flow and ductile rupture of a509

2198 Al-Cu-Li aluminum alloy, Computational Materials Science 50 (4) (2011) 1365–510

1371. doi:10.1016/j.commatsci.2010.06.029.511

URL http://dx.doi.org/10.1016/j.commatsci.2010.06.029512

19

http://dx.doi.org/10.1016/j.matdes.2015.12.116
http://dx.doi.org/10.1016/j.matdes.2015.12.116
http://dx.doi.org/10.1016/j.matdes.2015.12.116
http://dx.doi.org/10.1016/j.matdes.2015.12.116
http://dx.doi.org/10.1016/j.matdes.2015.12.116
https://doi.org/10.1016/j.jare.2017.12.004
https://doi.org/10.1016/j.jare.2017.12.004
https://doi.org/10.1016/j.jare.2017.12.004
http://dx.doi.org/10.1016/j.jare.2017.12.004
https://doi.org/10.1016/j.jare.2017.12.004
http://www.sciencedirect.com/science/article/pii/S135964541000621X
http://www.sciencedirect.com/science/article/pii/S135964541000621X
http://www.sciencedirect.com/science/article/pii/S135964541000621X
http://dx.doi.org/https://doi.org/10.1016/j.actamat.2010.09.044
http://www.sciencedirect.com/science/article/pii/S135964541000621X
http://www.sciencedirect.com/science/article/pii/S1359645413002255
http://www.sciencedirect.com/science/article/pii/S1359645413002255
http://www.sciencedirect.com/science/article/pii/S1359645413002255
http://dx.doi.org/https://doi.org/10.1016/j.actamat.2013.03.015
http://www.sciencedirect.com/science/article/pii/S1359645413002255
http://www.sciencedirect.com/science/article/pii/S1359645413009361
http://www.sciencedirect.com/science/article/pii/S1359645413009361
http://www.sciencedirect.com/science/article/pii/S1359645413009361
http://dx.doi.org/https://doi.org/10.1016/j.actamat.2013.12.001
http://dx.doi.org/https://doi.org/10.1016/j.actamat.2013.12.001
http://dx.doi.org/https://doi.org/10.1016/j.actamat.2013.12.001
http://www.sciencedirect.com/science/article/pii/S1359645413009361
http://www.sciencedirect.com/science/article/pii/S0921509314015731
http://www.sciencedirect.com/science/article/pii/S0921509314015731
http://www.sciencedirect.com/science/article/pii/S0921509314015731
http://dx.doi.org/https://doi.org/10.1016/j.msea.2014.12.073
http://dx.doi.org/https://doi.org/10.1016/j.msea.2014.12.073
http://dx.doi.org/https://doi.org/10.1016/j.msea.2014.12.073
http://www.sciencedirect.com/science/article/pii/S0921509314015731
http://www.sciencedirect.com/science/article/pii/0956716X9390323K
http://www.sciencedirect.com/science/article/pii/0956716X9390323K
http://www.sciencedirect.com/science/article/pii/0956716X9390323K
http://dx.doi.org/https://doi.org/10.1016/0956-716X(93)90323-K
http://www.sciencedirect.com/science/article/pii/0956716X9390323K
http://dx.doi.org/10.1016/S0921-5093(01)01224-2
http://dx.doi.org/10.1016/j.scriptamat.2010.11.005
http://dx.doi.org/10.1007/s10704-016-0134-6
http://dx.doi.org/10.1007/s10704-016-0134-6
http://dx.doi.org/10.1007/s10704-016-0134-6
http://dx.doi.org/10.1016/j.jnucmat.2007.10.009
http://dx.doi.org/10.1016/j.commatsci.2010.06.029
http://dx.doi.org/10.1016/j.commatsci.2010.06.029
http://dx.doi.org/10.1016/j.commatsci.2010.06.029
http://dx.doi.org/10.1016/j.commatsci.2010.06.029
http://dx.doi.org/10.1016/j.commatsci.2010.06.029


[26] S. C. Ren, G. Rousselier, T. F. Morgeneyer, M. Mazière, S. Forest, Numerical investiga-513

tion of dynamic strain ageing and slant ductile fracture in a notched specimen and com-514

parison with synchrotron tomography 3D-DVC, Procedia Structural Integrity 2 (2016)515

3385–3392. doi:10.1016/j.prostr.2016.06.422.516

URL http://linkinghub.elsevier.com/retrieve/pii/S2452321616304413517

[27] A. F. Buljac, L. Helfen, F. Hild, T. F. Morgeneyer, Early strain localization in strong518

work hardening aluminum alloy (2198 T3): 3D laminography and DVC measurement,519

in: L. Lamberti, M.-T. Lin, C. Furlong, C. Sciammarella (Eds.), Advancement of optical520

methods in experimental mechanics, volume 3, Proceedings of the 2017 Annual Confer-521

ence on Experimental and Applied Mechanics, Springer, 2018, pp. 15–17.522

URL https://hal-mines-paristech.archives-ouvertes.fr/hal-01634158523

[28] S. Gupta, A. J. Beaudoin, J. Chevy, Strain rate jump induced negative strain rate524

sensitivity (NSRS) in aluminum alloy 2024: Experiments and constitutive modeling,525

Materials Science and Engineering: A 683 (September 2016) (2017) 143–152. doi:526

10.1016/j.msea.2016.12.010.527

URL http://linkinghub.elsevier.com/retrieve/pii/S0921509316314927528

[29] S. C. Ren, T. F. Morgeneyer, M. Mazière, S. Forest, G. Rousselier, Portevin-le chatelier529

effect triggered by complex loading paths in an al-cu aluminium alloy, Philosophical530

Magazine 99 (6) (2019) 659–678. arXiv:https://doi.org/10.1080/14786435.2018.531

1550296, doi:10.1080/14786435.2018.1550296.532

URL https://doi.org/10.1080/14786435.2018.1550296533

[30] T. F. Morgeneyer, T. Taillandier-Thomas, A. Buljac, L. Helfen, F. Hild, On strain and534

damage interactions during tearing: 3D in situ measurements and simulations for a535

ductile alloy (AA2139-T3), Journal of the Mechanics and Physics of Solids 96 (2016)536

550–571. doi:10.1016/j.jmps.2016.07.012.537

URL http://dx.doi.org/10.1016/j.jmps.2016.07.012538

[31] V. Taupin, J. Chevy, C. Fressengeas, Effects of grain-to-grain interactions on shear strain539

localization in Al-Cu-Li rolled sheets, International Journal of Solids and Structures 99540

(2016) 71–81. doi:10.1016/j.ijsolstr.2016.07.023.541

URL http://dx.doi.org/10.1016/j.ijsolstr.2016.07.023542

[32] A. Beaudoin, M. Obstalecki, W. Tayon, M. Hernquist, R. Mudrock, P. Kenesei,543

U. Lienert, In situ assessment of lattice strain in an al-li alloy, Acta Materialia 61 (9)544

(2013) 3456 – 3464. doi:https://doi.org/10.1016/j.actamat.2013.02.037.545

URL http://www.sciencedirect.com/science/article/pii/S1359645413001596546

[33] M. Messner, A. Beaudoin, R. Dodds, An interface compatibility/equilibrium mechanism547

for delamination fracture in aluminum-lithium alloys, Engineering Fracture Mechanics548

133 (2015) 70 – 84. doi:https://doi.org/10.1016/j.engfracmech.2014.11.003.549

URL http://www.sciencedirect.com/science/article/pii/S0013794414003658550

[34] M. C. Messner, A. J. Beaudoin, R. H. Dodds, Jr., Mesoscopic modeling of crack ar-551

restor delamination in Al-Li: primary crack shielding and T-stress effect, INTER-552

NATIONAL JOURNAL OF FRACTURE 188 (2) (2014) 229–249. doi:{10.1007/553

s10704-014-9957-1}.554

[35] T. Richeton, G. Wang, C. Fressengeas, Continuity constraints at interfaces and their555

consequences on the work hardening of metal–matrix composites, Journal of the Me-556

chanics and Physics of Solids 59 (10) (2011) 2023 – 2043. doi:https://doi.org/10.557

1016/j.jmps.2011.07.006.558

URL http://www.sciencedirect.com/science/article/pii/S0022509611001438559

20

http://linkinghub.elsevier.com/retrieve/pii/S2452321616304413
http://linkinghub.elsevier.com/retrieve/pii/S2452321616304413
http://linkinghub.elsevier.com/retrieve/pii/S2452321616304413
http://linkinghub.elsevier.com/retrieve/pii/S2452321616304413
http://linkinghub.elsevier.com/retrieve/pii/S2452321616304413
http://dx.doi.org/10.1016/j.prostr.2016.06.422
http://linkinghub.elsevier.com/retrieve/pii/S2452321616304413
https://hal-mines-paristech.archives-ouvertes.fr/hal-01634158
https://hal-mines-paristech.archives-ouvertes.fr/hal-01634158
https://hal-mines-paristech.archives-ouvertes.fr/hal-01634158
https://hal-mines-paristech.archives-ouvertes.fr/hal-01634158
http://linkinghub.elsevier.com/retrieve/pii/S0921509316314927
http://linkinghub.elsevier.com/retrieve/pii/S0921509316314927
http://linkinghub.elsevier.com/retrieve/pii/S0921509316314927
http://dx.doi.org/10.1016/j.msea.2016.12.010
http://dx.doi.org/10.1016/j.msea.2016.12.010
http://dx.doi.org/10.1016/j.msea.2016.12.010
http://linkinghub.elsevier.com/retrieve/pii/S0921509316314927
https://doi.org/10.1080/14786435.2018.1550296
https://doi.org/10.1080/14786435.2018.1550296
https://doi.org/10.1080/14786435.2018.1550296
http://arxiv.org/abs/https://doi.org/10.1080/14786435.2018.1550296
http://arxiv.org/abs/https://doi.org/10.1080/14786435.2018.1550296
http://arxiv.org/abs/https://doi.org/10.1080/14786435.2018.1550296
http://dx.doi.org/10.1080/14786435.2018.1550296
https://doi.org/10.1080/14786435.2018.1550296
http://dx.doi.org/10.1016/j.jmps.2016.07.012
http://dx.doi.org/10.1016/j.jmps.2016.07.012
http://dx.doi.org/10.1016/j.jmps.2016.07.012
http://dx.doi.org/10.1016/j.jmps.2016.07.012
http://dx.doi.org/10.1016/j.jmps.2016.07.012
http://dx.doi.org/10.1016/j.jmps.2016.07.012
http://dx.doi.org/10.1016/j.jmps.2016.07.012
http://dx.doi.org/10.1016/j.ijsolstr.2016.07.023
http://dx.doi.org/10.1016/j.ijsolstr.2016.07.023
http://dx.doi.org/10.1016/j.ijsolstr.2016.07.023
http://dx.doi.org/10.1016/j.ijsolstr.2016.07.023
http://dx.doi.org/10.1016/j.ijsolstr.2016.07.023
http://www.sciencedirect.com/science/article/pii/S1359645413001596
http://dx.doi.org/https://doi.org/10.1016/j.actamat.2013.02.037
http://www.sciencedirect.com/science/article/pii/S1359645413001596
http://www.sciencedirect.com/science/article/pii/S0013794414003658
http://www.sciencedirect.com/science/article/pii/S0013794414003658
http://www.sciencedirect.com/science/article/pii/S0013794414003658
http://dx.doi.org/https://doi.org/10.1016/j.engfracmech.2014.11.003
http://www.sciencedirect.com/science/article/pii/S0013794414003658
http://dx.doi.org/{10.1007/s10704-014-9957-1}
http://dx.doi.org/{10.1007/s10704-014-9957-1}
http://dx.doi.org/{10.1007/s10704-014-9957-1}
http://www.sciencedirect.com/science/article/pii/S0022509611001438
http://www.sciencedirect.com/science/article/pii/S0022509611001438
http://www.sciencedirect.com/science/article/pii/S0022509611001438
http://dx.doi.org/https://doi.org/10.1016/j.jmps.2011.07.006
http://dx.doi.org/https://doi.org/10.1016/j.jmps.2011.07.006
http://dx.doi.org/https://doi.org/10.1016/j.jmps.2011.07.006
http://www.sciencedirect.com/science/article/pii/S0022509611001438


[36] P. Franciosi, M. Berveiller, A. Zaoui, Latent hardening in copper and aluminium single560

crystals, Acta Metallurgica 28 (3) (1980) 273–283. doi:https://doi.org/10.1016/561

0001-6160(80)90162-5.562

URL http://www.sciencedirect.com/science/article/pii/0001616080901625563

[37] C. Fressengeas, A. J. Beaudoin, M. Lebyodkin, L. P. Kubin, Y. Estrin, Dynamic strain564

aging: A coupled dislocation-Solute dynamic model, Materials Science and Engineering565

A 400-401 (1-2 SUPPL.) (2005) 226–230. doi:10.1016/j.msea.2005.02.073.566

[38] S. Kok, M. Bharathi, A. Beaudoin, C. Fressengeas, G. Ananthakrishna, L. Kubin,567

M. Lebyodkin, Spatial coupling in jerky flow using polycrystal plasticity, Acta Materialia568

51 (13) (2003) 3651 – 3662. doi:https://doi.org/10.1016/S1359-6454(03)00114-9.569

URL http://www.sciencedirect.com/science/article/pii/S1359645403001149570

[39] H. F., New development in freefem++, J. Num. Math. 20 (2012) 251–266.571

[40] A. Acharya, A model of crystal plasticity based on the theory of continuously distributed572

dislocations, Journal of the Mechanics and Physics of Solids 49 (4) (2001) 761–784.573

doi:10.1016/S0022-5096(00)00060-0.574

[41] A. Marais, M. Mazière, S. Forest, A. Parrot, P. L. Delliou, Identification of a strain-aging575
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