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Abstract
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen

a surge in interest in the mechanics community. The present contribution addresses the
critical question of determining local mechanical fields using the FFT method in the
presence of interfacial defects. Precisely, the present work introduces a numerical ap-
proach based on intrinsic discrete Fourier transforms for the simultaneous treatment of
material discontinuities arising from the presence of disclinations, i.e. rotational discon-
tinuities, and inhomogeneities. A centered finite difference scheme for differential rules
are first used for numerically solving the Poisson-type equations in the Fourier space
to get the incompatible elastic fields due to disclinations and dislocations. Second, cen-
tered finite differences on a rotated grid are chosen for the computation of the modified
Fourier-Greens operator in the Lippmann-Schwinger-Dyson type equation for heteroge-
neous media. Elastic fields of disclination dipole distributions interacting with inhomo-
geneities of varying stiffnesses, grain boundaries seen as DSUM (Disclination Structural
Unit Model), grain boundary disconnection defects, and, phase boundary “terraces” in
anisotropic bi-materials are numerically computed as applications of the method.

Keywords disclinations; dislocations; disconnections; inhomogeneities; anisotropic;
grain boundary; numerical method; FFT

1. Introduction

Interfaces play a critical role on the mechanical properties of many engineering ma-

terials. Continuum micromechanics based modeling of interfacial defects is a funda-

mental issue to predict the mechanical behavior of nanocrystalline materials and to

understand the mechanical interactions between bulk and interfacial defects. The

paper deals with a continuous description of elasto-plastic materials with bulk and
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interfacial defects combining both dislocation and disclination mechanics to model

grain boundaries and phase boundaries in anisotropic and heterogeneous materials.

Dislocations and disclinations were mathematically introduced in a linear elas-

tic medium by Volterra as displacement and rotation discontinuities respectively

[Volterra, 1907]. If only dislocations are present in the body, the discontinuity of

the (elastic) displacement vector (the so-called Burgers vector) derives from the

incompatibility of the elastic distortion (i.e. lattice incompatibility), whereas the

elastic curvature tensor remains compatible. This incompatibility was described

smoothly in the elastic theory of continuum-based dislocation mechanics originated

from the fifties [Kröner, 1958; Bilby et al., 1955; Mura, 1963; Willis, 1967; Lard-

ner, 1969; Simmons and Bullough, 1970; Kröner, 1981; Teodosiu, 1982; Mura, 1987].

This continuous rendition of incompatibilities uses the dislocation density tensor in-

troduced by Nye [1953] and Kröner [1955, 1958]. The Green’s function method was

used to derive the so-called Mura-Willis formula which gives the elastic distortion

in an infinite homogeneous anisotropic medium as function of dislocation density

tensor, see e.g. [Mura, 1987; Lazar, 2016]. The continuum dislocation theory was

also revisited by Acharya [2001] through the so-called Field Dislocation Mechanics

(FDM) theory. The finite element formulation of the FDM theory was reported in

Roy and Acharya [2005].

In crystalline solids, the presence of disclinations in addition to dislocations leads

to (elastic) multi-valued displacement and rotation vectors [Anthony et al., 1968;

Anthony, 1970; deWit, 1970, 1973a; Huang and Mura, 1969; Mura, 1972, 1987].

Therefore, in the presence of disclinations, both the elastic strain and the elas-

tic curvature tensors are incompatible. The disclination density tensor was first

introduced and discussed in the contributions by Anthony et al. [1968], Schaefer

[1968] and deWit [1970]. Later, a mathematical theory for disclination dynamics

was provided in Kossecka and DeWit [1977]. A non linear theory of dislocations

and disclinations was reported by Zubov [1997]. More recently, the Field Disloca-

tion and Disclination Mechanics (FDDM) theory was introduced as an extension of

the FDM theory to non-local fields due to both disclination and dislocation defects

that are smooth over an interatomic length scale [Fressengeas et al., 2011; Upadhyay

et al., 2013; Fressengeas et al., 2014; Taupin et al., 2017]. The finite element for-

mulation of the FDDM theory was reported in Fressengeas et al. [2011] and Taupin

et al. [2013]. One of the key features of the FDM and FDDM theories in contrast

with classic micromechanical methods based on eigenstrains is the Stokes-Helmholtz

decomposition of the elastic fields into incompatible and compatible parts. The in-

compatible part is related to the presence of non-zero dislocation and disclination

densities within the body, while the compatible part is needed to ensure balance of

the stress field and boundary conditions. Such a decomposition allows determining

a unique solution for the elastic fields associated with prescribed dislocation and
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disclination densities. Therefore, it provides a rigorous basis for the description of

the incompatibility of the elastic strain and the elastic curvature due to the presence

of bulk and interfacial defects as dislocations and disclinations in crystalline media.

Disclination kinematics was seen to be useful in the case of grain and subgrain

boundaries that can be simulated in terms of array of disclination dipoles, see e.g.

Li [1972]; Romanov and Vladimirov [1992]; Hurtado et al. [1995]; Seefeldt et al.

[2001]; Romanov and Kolesnikova [2009]; Upadhyay et al. [2011]; Fressengeas et al.

[2014]; Dingreville and Berbenni [2016]. Elastic fields and energy of grain boundaries

were simulated using the Disclination Structural Unit Model (DSUM) [Gertsman

et al., 1989; Nazarov et al., 2000; Nazarov and Romanov, 1989]. Disclinations are

also commonly invoked to explain plastic deformation in nanocrystalline materi-

als [Gutkin and Ovid’ko, 2003, 2004] and the formation of twin junctions in the

case of secondary (or hierarchical) twinning [Müllner and King, 2016]. Triple junc-

tions in polycrystals can also be described by disclinations [Bollmann, 1991]. It is

noteworthy that a few contributions studied the mechanical interactions between

disclination dipoles and inhomogeneities [Liu et al., 2006]. Elastic fields of discli-

nation dipoles were used to study the internal stresses and rotations in graphene

[Wu and Wei, 2013; Ren and Cao, 2016]. Recently, disclination densities were mea-

sured by the EBSD technique (Electron Back-Scattered Diffraction) with different

post-treatments [Beausir and Fressengeas, 2013; Leff et al., 2017]. Lastly, a com-

bination of dislocation and disclination line defects were used in the literature to

model disconnection defects. Such defects are interfacial line defects with disloca-

tion and step characters first introduced by Hirth and Pond [1996, 2011]. Hirth

et al. [2006] showed that disconnections can be formed as new interfacial defects

during slip transfer at grain boundaries. Khater et al. [2012], Rajabzadeh [2013] and

Rajabzadeh et al. [2014] demonstrated that coupled grain boundary migration and

shear is based on a disconnection mechanism. Elastic fields of such disconnections

calculated in isotropic elasticity were reported in Akarapu et al. [2008]. Some arrays

of disconnections can be also used to model martensitic interfaces (habit planes)

or hetero-interfaces forming a terrace structure observed with TEM (transmission

electron microscopy) [Pond et al., 2003, 2007; Wang et al., 2011]. Numerical calcu-

lations with the finite element method (FEM) were provided by Zhang et al. [2018]

for such complex defects in small and finite deformation settings considering gener-

alized disclinations [Acharya and Fressengeas, 2012].

Due to computational efficiency as compared to the usual finite element method

(FEM), spectral methods taking advantage of the Fast Fourier Transform algo-

rithm [Frigo and Johnson, 1998] were reported mostly to solve the integral equation

for periodic heterogeneous elastic media without or with eigenstrains [Moulinec

and Suquet, 1994; Müller, 1996; Moulinec and Suquet, 1998; Dreyer et al., 1999;

Vinogradov and Milton, 2008; Willot and Pellegrini, 2008; Brisard and Dormieux,
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2010; Anglin et al., 2014; Willot, 2015]. Indeed, the FFT numerical scheme allows

solving the so-called Lippmann-Schwinger-Dyson integral equation of the periodic

boundary-value problems, by the means of Green’s function of a well-chosen refer-

ence medium, using an iterative scheme in the Fourier space, while the resulting

elastic fields are obtained in the real space by the inverse Fourier transform. The

most well known and pioneering iterative scheme is the “basic scheme” based on

a fixed-point algorithm as reported in Moulinec and Suquet [1994, 1998] and by

Lebensohn [2001]. The convergence of this numerical scheme is based on fulfillment

of stress equilibrium in the Fourier space and depends on the elasticity moduli

contrast and on the choice of the homogeneous reference medium. Fast Fourier

Transform-based micromechanics was recently developed to numerically solve the

static FDM theory [Brenner et al., 2014; Berbenni et al., 2014; Djaka et al., 2017]

and the dislocation density transport equation [Djaka et al., 2015]. However, the

numerical resolution by FFT of the elasto-static equations of FDDM (Field Dislo-

cation and Disclination Mechanics) within a general heterogeneous and anisotropic

linear elastic framework has not been explored yet. The difficulty lies in the nu-

merical resolution of the balance of linear momentum (discarding body force and

inertial effects), which requires solving an implicit Lippmann-Schwinger-Dyson in-

tegral equation in heterogeneous and anisotropic media with incompatible elastic

fields arising from the presence of both dislocation and disclination densities. Such

resolution is different from the classic Eshelby transformation problem where dislo-

cations were described as eigendistortions [Eshelby, 1957, 1961; Lazar, 2016, 2017]

and disclinations as eigenstrains/eigencurvatures [deWit, 1973a] in homogeneous

elastic media only. Here, a numerical spectral approach based on the efficient Fast

Fourier Transform (FFT) method is developed to accurately solve both disloca-

tion and disclination mechanical fields in heterogeneous media like bi-materials,

inclusion-based composite materials.

The paper is organized as follows. Notations are introduced in section 2. The elasto-

static field equations of the continuum mechanics of defects (static FDDM equa-

tions) in a small deformation setting are introduced in Section 3 as well as the

Lippmann-Schwinger-Dyson integral equation with incompatibilities. In section 4,

the static field equations are solved using the FFT-based algorithm. The incompat-

ible and compatible elastic strains, elastic curvatures as well as the stress fields are

obtained from the solutions of Poisson and Lippmann-Schwinger-Dyson equations

in the Fourier space. The stress fields in the vicinity of the defects are accurately

solved by the proposed discrete Fourier transform method, devoid of spurious nu-

merical oscillations. Section 5 displays the numerical applications on different bulk

and interfacial line defects: (i) Disclination dipole distributions interacting with in-

homogeneities, (ii) Grain boundaries seen as DSUM (Disclination Structural Unit

Model) (iii) Disconnection defect and phase boundary terraces in anisotropic bi-

materials. Finally, in section 6, the conclusions of the paper are outlined.
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2. Notations

A bold symbol denotes a tensor or a vector. The symmetric part of second order

tensor A is denoted Asym. When needed, a symmetric tensor will be denoted using

component form A(ij) with Aij = Aji. The transpose of a second order tensor A

is denoted by At with At
ij = Aji using indicial notation. The tensor A · B, with

rectangular Cartesian components AikBkj , results from the dot product of tensors

A and B, and A⊗B is their tensorial product, with components AijBkl. The vector

A·V, with rectangular Cartesian components AijVj , results from the dot product of

tensor A and vector V. A symbol “:” represents the trace inner product of the two

second order tensors A : B = AijBji, in rectangular Cartesian components, or the

product of a higher order tensor with a second order tensor, e.g., A : B = AijklBkl.

In rectangular Cartesian components, the cross product “×” of a second-order ten-

sor A and a vector V, the grad of a vector V, the div, curl of A are given by:

(A×V)ij = ejklAikVl

(gradV)ij = Vj,i

(divA)i = Aji,j

(curl A)il = eimkAkl,m

where epmk is a component of the third-order alternating Levi-Civita tensor and the

spatial derivative with respect to a Cartesian coordinate is indicated by a comma

followed by the component index. For convenience, the same convention for nota-

tions is used as in deWit [1973a].

3. Continuum theory of defects

3.1. Dislocation and disclination densities

The theory is developed in the framework of linear kinematics (small strains and

rotations). Let us consider the elastic curvature tensor κe and the elastic strain

tensor εe in a body V containing disclination and dislocation-type defects that

may be present in crystalline solids and interfaces. Let us define a closed circuit C

delimiting a surface S of unit normal n so that disclination and dislocation lines

cross the surface S.

In the case where the resulting Frank and Burgers vectors of all threading discli-

nation/dislocation lines are non-zero, there is incompatibility, in the sense that the

rotation and displacement fields become multi-valued. A measure of this incompat-

ibility for simply-connected body is precisely the net Frank vector ω and the net

general Burgers vector b respectively. Here, a FS/RH convention is used for their

definitions as in deWit [1973a]. These two quantities are defined along the Burgers
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circuit C using Weingarten’s theorem, see e.g. deWit [1970, 1973a]:

ω =

∫
C

κe · dl

b =

∫
C

(εe − κe × x) · dl

(1)

Using the component form of Eq. 1 and notations defined in Section 2 yields:

ωi =

∫
C

κejidlj

bi =

∫
C

(
εeki − eiqrκekqxr

)
dlk

(2)

From Stokes’ theorem, Eq. 1 yields:

ω =

∫
S

θ · ndS

b =

∫
S

(α− θ × x) · ndS

(3)

where n is the unit normal to the surface S delimited by the circuit C. Using the

component form of Eq. 1 yields:

ωi =

∫
S

θjinjdS

bi =

∫
S

(αki − eiqrθkqxr)nkdS

(4)

Therefore, both θ and α are defined from Eqs. 2 and 4 as:

θmi = emjkκ
e
ki,j

αmi = emjk

(
εe(ki),j + eipkκ

e
ip

) (5)

The continuous defect density that is associated with incompatible elastic curvature

is the disclination density tensor θ, see e.g. Anthony et al. [1968]. The second order

tensor α is the dislocation density tensor [Nye, 1953]. In a Cartesian reference frame

(e1, e2, e3), the components j, i of θ (θji in component form), resp. α (αji) provide

the net Frank, resp. Burgers, vector in direction ei per unit surface of S with a unit

line vector along ej. The following conservation equations immediately follow from

Eq. 5:

θji,j = 0

αji,j + eikmθkm = 0
(6)

Physically speaking, the first of these equations means that disclinations cannot

end inside the body, while the second one means that dislocations can only terminate

on disclinations [deWit, 1973a]. Here, we will assume that the disclination and

dislocation density tensors θ and α are prescribed periodic fields over the unit

cell V to make use of Fast Fourier Transform-based micromechanics in periodic

heterogeneous media, see Section 4.
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3.2. Stokes-Helmholtz orthogonal decomposition

The elastic fields, namely the elastic strain tensor εe and the elastic curvature tensor

κe, can be decomposed according to the Stokes-Helmholtz orthogonal decomposi-

tion. Indeed, there exists a unique periodic tensor field χ (up to a constant second

order tensor) and a unique periodic vector field w (up to a constant vector) such

that εe can be written as the sum of the symmetric part of the rotational of χ and

the symmetric part of the gradient of w:

εe = εe,⊥ + εe,‖ = (curl χ)
sym

+ (grad w)
sym

, (7)

with the orthogonality condition
∫
V

curl χ : grad wdV = 0 and where εe,⊥ =

(curl χ)
sym

and εe,‖ = (grad w)
sym

represent respectively the incompatible and

compatible parts of εe. In turn, the Stokes-Helmholtz orthogonal decomposition of

κe yields:

κe = κe,⊥ + κe,‖ = curl ψ + grad z, (8)

with the orthogonality condition
∫
V

curl ψ : grad zdV = 0 and where κe,⊥ =

curl ψ and κe,‖ = grad z represent respectively the incompatible and compatible

parts of κe. Since div curl χ = 0 and div curl ψ = 0:

divκe,⊥ = 0

div εe,⊥ = 0
(9)

By applying the Stokes-Helmholtz decompositions (Eqs. 7 and 8), since

curl grad z = 0 and curl grad w = 0, Eq. 5 yields:

θmi = emjkκ
e,⊥
ki,j

αmi = emjk

(
εe,⊥(ki),j + eipkκ

e,⊥
ip

) (10)

and:

emjkκ
e,‖
ki,j = 0

emjk

(
ε
e,‖
(ki),j + eipkκ

e,‖
ip

)
= 0

(11)

Furthermore, εe,‖, κe,‖ are respectively given by:

ε
e,‖
(ij) =

1

2
(wi,j + wj,i)

κ
e,‖
ij = zj,i =

1

2
ejklwl,ki

(12)

.

3.3. Solutions for incompatible fields

Using the identity curl curl= grad div−M where M is the Laplacian and using Eq.

9, the incompatible elastic curvature and elastic strain are solutions of the following
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Poisson equations:

κe,⊥ji,kk = −ejklθli,k

εe,⊥(lr),kk = −erqi
(
αil,q − eljseijkκe,⊥ks,q

)
(lr)

(13)

where (lr) denotes a symmetry with respect to l and r indices. Let us note that

using the identity eljseijk = δskδli − δsiδlk, the expression of εe,⊥ can be further

simplified to:

κe,⊥ji,kk = −ejklθli,k

εe,⊥(lr),kk = −erqi
(
αil,q − δilκe,⊥pp,q + κt e,⊥

il,q

)
(lr)

(14)

where κt e,⊥
il = κe,⊥li and κe,⊥pp is the trace of κe,⊥.

Eq. 14 will be transformed in the Fourier space in section 4 and numerically

solved using discrete Fourier transforms together with the FFT algorithm. The

incompatible elastic fields εe,⊥ and κe,⊥ are strictly related to a prescribed dis-

tribution of disclination and dislocation densities θ and α (source terms) within

the periodic unit cell V . In contrast, the compatible elastic strain εe,‖ satisfies

the balance of linear momentum, which will be solved by introducing the elastic

Green’s function method and the associated Lippmann-Schwinger-Dyson equation

in heterogeneous and anisotropic media with incompatibilities.

3.4. Lippmann-Schwinger-Dyson equation: solutions for

compatible fields in heterogeneous and anisotropic media with

incompatibilities

In the absence of body force and inertia effects, an overall uniform stress σ is applied

as traction boundary conditions. This corresponds to the spatial average of stress

〈σ〉 over the unit cell V using spatial average theorem. For any periodic stress field

σ, the stress equilibrium equation reads:

divσ = 0 in V . (15)

Here, we consider a linear elastic constitutive law (i.e. Hooke’s law) of the form:

σ = C : εe, (16)

where C is the fourth order tensor of spatially heterogeneous elastic moduli with

classic symmetries for Cartesian components: Cijkl = Cjikl = Cijlk = Cklij .

Using Eq. 7 together with Eq. 16, the balance of linear momentum (Eq. 15)

can be rewritten in the form of a heterogeneous Navier equation in V including

compatible and incompatible fields:

div C : εe,‖ + f⊥ = 0, (17)
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where the fictitious body force density f⊥ = div C : εe,⊥ reflects the incompatibili-

ties arising from the presence of disclinations and dislocations. Assuming a homoge-

neous reference medium with linear elastic moduli C0, such that C(x) = C0+δC(x)

(x being a position vector in the unit cell), Eq. 17 yields, in component form:

C0
ijklwl,kj + τij,j = 0, (18)

where the stress polarization tensor τ is introduced and defined as follows:

τ = C : εe,⊥ + δC : grad w. (19)

In Eq. 19, the first term σ⊥ = C : εe,⊥ represents the stress due to incompatible

elastic strains obtained from the resolution of the incompatibility problem only,

see Eq. 14. Since τ contains the unknown compatible elastic strain εe,‖, Eq. 18 is

solved starting from an integral equation as described now. Introducing the Green’s

function technique, Eq. 18 can be solved in the form of an integral Lippmann-

Schwinger-Dyson equation for the unknown compatible elastic strain εe,‖, with the

additional presence of an incompatible term due to prescribed disclination and

dislocation densities:

εe,‖(x) = 〈εe,‖〉 −
(
Γ0 ? τ

)
(x), (20)

where ? denotes spatial convolution product and Γ0 is the well known “modified”

Green’s tensor in micromechanics and homogenization theories, which is associated

with the homogeneous reference elastic medium C0 [Kröner, 1990; Willis, 1981].

〈εe,‖〉 represents the spatial average of εe,‖ over the unit cell V . As shown in Djaka

et al. [2017], 〈εe,‖〉 writes 〈εe,‖〉 = C0−1 : (σ − 〈τ 〉) where 〈τ 〉 is the averaged stress

polarization over the unit cell V . Then, the field solution of Eq. 20 is given by series

expansion as:

εe,‖(x) =

+∞∑
n=0

[(
−Γ0 ? δC

)
(x)
]n

:
[
〈εe,‖〉 −

(
Γ0 ? σ⊥

)
(x)
]
. (21)

The integral equation (Eq. 20) and the traction boundary conditions set an elasticity

problem for the unknown field εe,‖. This equation is similar to the classic integral

Lippmann-Schwinger-Dyson equation for elastic composites. Here, we will use in

the next section a fixed-point algorithm (the so-called “basic scheme”) as in the

pioneering work by Moulinec and Suquet [1994] and Moulinec and Suquet [1998]

to solve Eq. 21 except for the boundary conditions expressed in terms of tractions.

Furthermore, the Poisson equations (Eqs. 13 and 14) for solving εe,⊥ and κe,⊥ are

first solved in the Fourier space by FFT from prescribed disclination and dislocation

density tensors θ and α, respectively. Hence, the numerical spectral method is

different from classic eigenstrain-like problems earlier presented by Vinogradov and

Milton [2008] or by Anglin et al. [2014]. Here, the numerical FFT algorithm is based

on two different procedures which are (i) the calculation of incompatible elastic fields

κe,⊥ and εe,⊥ (ii) the iterative resolution of εe,‖.
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4. Numerical spectral approach

4.1. Fourier transform method

The Poisson equations (Eqs. 13, 14) and the series expansion (Eq. 21) are solved

in the following by using the Fourier Transform method. Indeed, as shown below,

the incompatible fields κe,⊥, εe,⊥ and the compatible one εe,‖ can be solved in the

Fourier space and the obtained elastic fields are finally computed in the real space

by using the inverse Fourier Transform.

In the Fourier space, let ξ be the Fourier vector of magnitude ξ =
√
ξ · ξ and

with components ξi in Cartesian coordinates. The complex imaginary number is

denoted by i and defined as i =
√
−1. Let θ̂(ξ), α̂(ξ), κ̂e,⊥(ξ) and ε̂e,⊥(ξ) be the

Fourier transforms of θ(x), α(x), κe,⊥(x) and εe,⊥(x). Then, the Poisson equations

are solved using the differentiation theorem in Fourier space.

Using component notations, Eqs. 13 and 14 write in the Fourier space:

κ̂e,⊥ji (ξ) = i
ξk
ξ2
ejklθ̂li(ξ) ∀ξ 6= 0,

κ̂e,⊥ji (0) = 0,

ε̂e,⊥(lr)(ξ) = i
ξq
ξ2
erqi

(
α̂il(ξ)− δilκ̂e,⊥pp (ξ) + κ̂t e,⊥

il (ξ)
)
(lr)
∀ξ 6= 0,

ε̂e,⊥(lr)(0) = 0,

(22)

Let ε̂e,‖(ξ) and Γ̂
0
(ξ) be the continuous Fourier transform of εe,‖(x) and Γ0(x),

respectively. The Fourier transform of the integral Lippmann-Schwinger-Dyson type

equation (Eq. 20) yields:

ε̂e,‖(ξ) = −Γ̂
0
(ξ) : τ̂ (ξ) ∀ξ 6= 0,

ε̂e,‖(0) = 〈εe,‖〉.
(23)

The Fourier Transform of the modified Green operator Γ0 can be calculated in

Fourier space for anisotropic materials as follows:

Γ̂0
ijkl(ξ) =

1

4
(Ĝ0

ikξjξl + Ĝ0
ilξjξk + Ĝ0

jkξiξl + Ĝ0
jlξiξk) (24)

where Ĝ0 is the Fourier transform of the elastic Green tensor defined as [Mura,

1987]: {
Ĝ0

ij(ξ) =
Nij(ξ)
D(ξ) ∀ξ 6= 0

Ĝ0
ij(0) = 0

(25)

where Nij(ξ) denotes the rectangular components of the cofactor matrix related

to the acoustic tensor Kij = Co
ijklξkξl and D(ξ) is the determinant of Kij [Mura,

1987]. Due to the symmetry properties of Co
ijkl, Nij(ξ) satisfies: Nij(ξ) = Nji(ξ),
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therefore Ĝ0
ij = Ĝ0

ji and Γ̂0
ijkl = Γ̂0

jikl = Γ̂0
ijlk = Γ̂0

klij . In the particular case of

isotropic elasticity, the components of Γ̂
0
(ξ) are given by:

Γ̂0
ijkl(ξ) =

1

4µ0ξ2
(δikξjξl + δilξjξk + δjkξiξl + δjlξiξk)

−
(
λ0 + µ0

)
µ0 (λ0 + 2µ0)

ξiξjξkξl
ξ4

.

(26)

where µ0 and λ0 are elastic shear and Lamé moduli, respectively.

4.2. Fast Fourier Transform-based algorithm

The direct and the inverse Fourier transforms are computed by using the Fast

Fourier Transform (FFT) algorithm [Frigo and Johnson, 1998]. The unit cell V is

assumed to have spatial dimensions T1, T2 and T3 along the e1, e2 and e3 directions,

respectively, and is discretized by a regular rectangular grid with N1×N2×N3 voxels

with position vector x = (i1δ1, i2δ2, i3δ3), where i1 = 0→ N1− 1, i2 = 0→ N2− 1,

i3 = 0 → N3 − 1 and δ1, δ2, δ3 are the voxel sizes in the e1, e2, e3 directions,

respectively. For three-dimensional (3D) problems, the total number of FFT grid

points is Ntot = N1 × N2 × N3 and δ = δ1 = δ2 = δ3. The discrete Fourier

transform (DFT) of a given spatial function f is f̂ = FFT (f). Its inverse Fourier

transform is f = FFT−1
(
f̂
)

. In the forthcoming applications (see section 5), we

will consider two-dimensional (2D) applications with bulk and interfacial line defects

where Ntot = N1 ×N2 and δ = δ1 = δ2 for illustration of the method.

The numerical algorithm used to solve the balanced elastic fields associated

with any disclination and dislocation density distributions within periodic media is

constituted of two major procedures: (i) the initialization of the iterative scheme

corresponds to the initialization of εe,‖ for a macroscopic imposed stress σ after

computing κ̂e,⊥(ξ) and ε̂e,⊥(ξ) using Eq. 22, and, (ii) the global iterative procedure

based on the basic scheme (fixed-point algorithm) to solve Eq. 21, where εe,‖ is

calculated after convergence is reached.

Hence, the algorithm works as follows: Once, the disclination density θ(x) and

the dislocation density α(x) are prescribed in the real space, the initialization pro-

cedure begins with the computation of θ̂(ξ) and α̂(ξ) by using direct FFT (step

1). Then, Eq. 22 is used to first obtain κ̂e,⊥(ξ) and then ε̂e,⊥(ξ) in the Fourier

space (step 2), and, εe,⊥(x) in real space using inverse FFT (step 3). The initial

compatible elastic strain ε
e,‖
0 is taken as the homogeneous elastic solution C0−1 : σ

(step 4). The initialization procedure is concluded by the computation of the initial

stress field σ0(x) set to C(x) :
(
ε
e,‖
0 + εe,⊥(x)

)
(step 5).

In the global iterative loop at iteration (n+1), the stress field known from itera-

tion (n) denoted σn(x), is transformed in the Fourier space by direct FFT to obtain

σ̂n(ξ) (step 6), and is used to test the convergence criterion based on stress equilib-

rium in the Fourier space (step 7). If the convergence is reached then the iterative
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procedure is stopped, otherwise the polarization stress tensor τ̂n(ξ) is computed in

the Fourier space by calculating the FFT of C0 : ε
e,‖
n , and subtracting it from σ̂n(ξ)

(step 8). The compatible elastic strain is computed in the Fourier space at step 9

using Eq. 23 to obtain ε̂
e,‖
n+1(ξ) (∀ξ 6= 0) and ε̂

e,‖
n+1(0) is taken as 〈εe,‖〉 from iter-

ation (n) considering traction boundary conditions as in Djaka et al. [2017]. Then,

the compatible elastic strain is given in the real space from inverse FFT (step 10).

The latter is used to update the stress field in the real space (step 11). The iterative

loop starts again with the updated compatible elastic strain and stress fields until

convergence is reached, see Eq. 27.

Algorithm 1 FFT-based algorithm for elasto-static field equations

Initialization: θ(x) and α(x) are prescribed

1: θ̂(ξ)←FFT(θ) and α̂(ξ)←FFT(α)

2: Solve Poisson equations to obtain ε̂e,⊥(ξ) and κ̂e,⊥(ξ):

(i) κ̂e,⊥ji (ξ) = i
ξk
ξ2
ejklθ̂li(ξ) ∀ξ 6= 0 , κ̂e,⊥ji (0) = 0

(ii) ε̂e,⊥(lr)(ξ) = i
ξq
ξ2
erqi

(
α̂il(ξ)− δilκ̂e,⊥pp (ξ) + κ̂t e,⊥

il (ξ)
)
(lr)
∀ξ 6= 0

ε̂e,⊥(lr)(0) = 0

3: εe,⊥(x)←FFT−1(ε̂e,⊥)

4: ε
e,‖
0 ← 〈εe,‖〉0 = C0−1 : σ

5: σ0(x)← C(x) :
(
ε
e,‖
0 + εe,⊥(x)

)
Iterate : n+ 1 (ε

e,‖
n (x) and σn(x) being known)

6: σ̂n(ξ) =FFT(σn)

7: Convergence test based on Eq. (27)

8: τ̂n(ξ)← σ̂n(ξ)− Ĉ0 : ε
e,‖
n (ξ)

9: ε̂
e,‖
n+1(ξ)← −Γ̂

0
(ξ) : τ̂n(ξ) ∀ξ 6= 0 and ε̂

e,‖
n+1(0)← 〈εe,‖〉n

10: ε
e,‖
n+1(x)←FFT−1(ε̂

e,‖
n+1(ξ))

11: σn+1(x)← C(x) :
(
ε
e,‖
n+1(x) + εe,⊥(x)

)

The stress equilibrium convergence criterion used at step 7 reads:

en =
‖div(σn)‖2
|〈σn〉|

=
‖ξ.σ̂n(ξ)‖2
|σ̂n(0)|

≤ ε, (27)

where ‖.‖2 denotes the L2 norm, |.| is the Euclidian norm of a second order tensor

and en is the error at iteration n. The convergence is reached when the error is

smaller than a given precision ε (typically 10−5 − 10−6 in our simulations). Then,

the elastic strain (incompatible and compatible parts) and stress field are obtained

in the real space.
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An important issue inherent to Fourier-based numerical methods is to predict

accurate local stress fields near materials discontinuities like defects and inhomo-

geneities, in particular to avoid spurious oscillations that occur with the use of the

classic FFT approximation initially proposed by Moulinec and Suquet [1994, 1998].

To achieve this goal, methods based on finite difference schemes for the computation

of partial spatial derivatives of first and second orders were proposed together with

the discrete Fourier transform (DFT). A first one based on centered finite differ-

ence formulae was used to compute partial derivatives in the Fourier space to solve

the elasto-static field equations of linear heterogeneous solids [Müller, 1996; Dreyer

et al., 1999]. Later, this method was successfully used to solve the elasto-static

fields of FDM in a linear homogeneous isotropic elastic medium with incompatibili-

ties [Berbenni et al., 2014], in a couple stress medium with generalized disclinations

[Berbenni et al., 2016], and, in the elasto-viscoplastic FFT algorithm for polycrys-

tals with non local plasticity [Lebensohn and Needleman, 2016]. It was observed

that such “intrinsic” DFT technique allows avoiding spurious oscillations that oc-

cur with the use of the classic FFT approximation, especially when narrow defect

cores, possibly assigned on a single pixel, are considered [Berbenni et al., 2014].

Other “intrinsic” discrete Fourier transforms (DFT) schemes based on forward and

backward finite differences were first introduced by Willot and Pellegrini [2008] for

elastic-perfectly plastic porous media. A recent scheme for the computation of par-

tial derivatives, based on centered finite differences on a rotated grid, was proposed

by Willot [2015] to compute the discrete Green operator present in the Lippmann-

Schwinger-Dyson equation. Such a scheme, referred to as “rotated scheme”, was

shown to be efficient to give accurate local fields, devoid of spurious oscillations

when computing the local stress/strain fields in very crude situations, such as cubic

inclusions or voids embedded in a matrix phase. In the case of dislocations only, an

efficient and accurate method named PC − LSR was developed to combine a DFT

approximation with a centered finite difference scheme for second order derivatives

in the Poisson equations (PC) and a DFT approximation with a “rotated scheme”

for solving the Lippmann-Schwinger-Dyson equation (LSR). The details of this ap-

proximation were given in [Djaka et al., 2017]. Here, the PC − LSR approximation

is reutilized for the numerical applications presented in section 5.

5. Numerical applications

5.1. Disclination dipole distributions interacting with

inhomogeneities

A first application of the FFT-based method using the PC − LSR procedure for

disclination and dislocation mechanics is the case of a centered wedge disclination

dipole with arm length of the dipole a (total length: 2a) interacting with a circu-

lar inhomogeneity I with radius R = 80δ, see Fig. 1. Assuming heterogeneous and

isotropic elasticity, the shear modulus of the inhomogeneity is denoted µI whereas
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the shear modulus of the embedding matrix is denoted µM . The linear elastic be-

havior of the matrix phase M is isotropic with Young’s modulus EM = 62780 MPa

and Poisson ratio νM=0.3647. The elastic Poisson ratio of the inhomogeneity I is

the same as the one of the matrix, i.e. νI = νM=0.3647. The mechanical contrast

k between the inhomogeneity and the matrix is k = EI/EM = µI/µM with µI and

µM denoting the shear moduli of inhomogeneity and matrix phases, respectively.

For illustrations, studied mechanical contrasts will be k = 1, k = 0.1 and k = 10.

With such elastic constants, the value for the Young’s modulus of the reference

medium for the iterative basic scheme is given by E0 = β(EM +EI) with β = 0.505

as in Djaka et al. [2017]. For a pure positive straight wedge disclination (using the

FS/RH convention), both the Frank and line vectors are along the e3 axis, so the

only non zero prescribed disclination density tensor component is θ33 defined as (see

Eq. 3):

ω = ω3 =

∫
S

θ33dS (28)

where ω is the Frank’s vector magnitude, i.e. the strength of the disclination.

Therefore, for the centered wedge disclination dipole with arm length a as repre-

sented in Fig. 1, the disclination densities are prescribed on one pixel at both poles

as follows: θ33 = +ω/δ2 at location (x1 = 0, x2 = +a) and θ33 = −ω/δ2 at location

(x1 = 0, x2 = −a) with ω = 5/6 rad and a = 2δ. Furthermore, for these simulations,

a large unit cell has been discretized using a 2D computation grid constituted of

1024 × 1024 pixels, with a pixel size δ = 1nm. The numerical convergence of the

FFT-based algorithm is achieved when the error ε in Eq. 27 is smaller than 10−6.

This is the case after 1, 39, 55 iterations for k = 1, k = 0.1 and k = 10, respectively.

Here, internal stresses due to the defects are computed. In order to avoid a null

denominator in the stress-based convergence criterion (Eq. 27), a slight non zero

macroscopic stress σ11 =1MPa is imposed as traction boundary conditions without

any consequence on the reported values for stress profiles due to the defect. For

k = 1, the simulated normal and shear stress components σ11 and σ12 normalized

by Dω with D =
µM

2π(1− νM )
are reported in Fig. 2. These 2D stress profiles are

consistent with analytical solutions [deWit, 1973b; Romanov and Vladimirov, 1992]

and with previous FFT-based simulations using homogeneous isotropic elasticity

[Berbenni et al., 2014]. The stresses due to mechanical interactions between the

circular inhomogeneity and the wedge disclination dipole is more complex for a me-

chanical contrast k different from 1. In these cases, analytical formulae in isotropic

elasticity classically used for wedge disclination dipoles do not hold and this is why

the present FFT-based numerical procedure was developed. For example, Fig. 3 re-

ports the two-dimensional profiles in the (x1, x2) plane simulated by the FFT-based

method for the normal stress component σ11 (top) and the shear stress component

σ12 (bottom) both normalized by Dω in the case of k = 0.1, i.e. an inhomogene-

ity more compliant than the matrix. In contrast, Fig. 4 reports the 2D profiles for
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the normal stress component σ11 (top) and the shear stress component σ12 both

normalized by Dω in the case of k = 10 (an inhomogeneity stiffer than the matrix).

These results show that the numerical method using periodic boundary condi-

tions inherent to the FFT-based method and disclination dipole gives profiles and

internal stress magnitudes as those obtained by the analytical method considering

linear elasticity and equivalent edge dislocation with an infinite medium embedding

the inhomogeneity, see e.g. Hirth and Lothe [1982]; Dundurs and Sendeckyj [1965].

Generally, the equivalent Burgers vector magnitude b for this edge dislocation is

given by the equivalence a = b/(4tan(ω/2)) [Li, 1972; Romanov and Vladimirov,

1992] and similar 2D profiles can be obtained using classic dislocation formulas.

However, here the interest was to offer the possibility to provide a numerical for-

mulation using disclination density sources instead of dislocation sources.

Fig. 1. Configuration representing a wedge disclination dipole interacting with a circular inho-
mogeneity.
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Fig. 2. Normal and shear stress components σ11 (top) and σ12 (bottom) normalized by Dω

(with D =
µM

2π(1 − νM )
) are simulated by FFT-based method with a resolution of 1024 × 1024

pixels and disclination density θ33 specified in the text. The elastic moduli contrast k between the
inhomogeneity and the matrix is k = 1.

5.2. Grain boundaries seen as DSUM (Disclination Structural

Unit Model)

Grain boundaries are constructed using the disclination structural unit model

(DSUM) originally proposed by Li [1972] and later improved by Gertsman et al.
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Fig. 3. Normal and shear internal stress components σ11 (top) and σ12 (bottom) normalized by

Dω (with D =
µM

2π(1 − νM )
) are simulated by FFT-based method with a resolution of 1024×1024

pixels and disclination density θ33 specified in the text. The elastic moduli contrast k between the
inhomogeneity and the matrix is k = 0.1 for which 39 iterations were required to reach an error ε
less than 10−6.

[1989]. The DSUM constructs a grain boundary with a misorientation angle θ by

decomposing it into a contiguous and alternating sequence of special (favored) M

“majority” and N “minority” structural units with an associated misorientation θM
and θN respectively such that: θM < θ < θN . In the DSUM, the grain boundaries
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Fig. 4. Normal and shear internal stress components σ11 (top) and σ12 (bottom) normalized by

Dω (with D =
µM

2π(1 − νM )
) are simulated by FFT-based method with a resolution of 1024×1024

pixels and disclination density θ33 specified in the text. The elastic moduli contrast k between the
inhomogeneity and the matrix is k = 10 for which 55 iterations were required to reach an error ε
less than 10−6.

(GB) are represented in the form of a wall of wedge disclination dipoles associated

with the minority structural units.

As an example, let us consider the case of symmetric tilt GB (STGB)
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Σ41(540)[001] in aluminium (Al) with misorientation angle around the [001] tilt

axis θ = 12.68◦ where 0◦ ≤ θ < 36.87◦. Therefore, the structural unit model

(SUM) [Sutton and Vitek, 1983] for this symmetric tilt GB is composed of the

sequence |AAAB.AAAB| where A and B are the structural units characterized

by θM = θA = 0◦ (perfect lattice) and θN = θB = 36.87◦ (corresponding to a

STGB Σ5(210)[001]). The lattice parameter for Al is a = 0.40495 nm. Here, for

the DSUM, we consider M = 3, N = 1. Then, the period H of the GB is given

by: H = M × (2LA) + N × (2LB) where LA and LB are defined by the geometric

relationship [Nazarov and Romanov, 1989]:

LA = 0.5DA cos

(
θ − θA

2

)
LB = 0.5DB cos

(
θB − θ

2

) (29)

with DA = a
√

2/2 and DB = a
√

5/2. Then, the strength of the wedge disclination

dipoles is given by ω = θB − θA, the arm of the dipoles is fixed and set to LB .

For numerical calculations, Al is supposed elastically isotropic, hence k = 1, which

means only one iteration is required for stress equilibrium in the FFT-based algo-

rithm. The elastic constants for Al were supposed to be isotropic and homogeneous:

µ = 26GPa and ν = 0.35. To form the STGB, alternating sequences of disclination

density tensor component θ33 = ±ω/δ2 with period H at distances ±LB from the

center of each dipole along e2 are prescribed. The computational grid is composed of

1024× 1024 pixels with δ = H/64. In Fig. 5 (top,middle) normal and shear stresses

are normalized by Dω =
µω

2π(1− ν)
. It is seen that the stress profiles are similar to

the ones given by analytical solutions in isotropic elasticity [Hurtado et al., 1995;

Upadhyay et al., 2011; Dingreville and Berbenni, 2016]. In Fig. 5 (bottom), the axial

(elastic) strain εe22 directed along e2 is reported. It is seen that our predictions of

internal strain level both regarding the shape of the strain profile and the magni-

tudes along the GB (from −0.13% to 0.13%) are consistent with experimental High

Resolution TEM (transmission electron microscopy) results found by Rajabzadeh

[2013] (see their figure 3.1b on page 50) using the Geometric Phase Analysis (GPA)

method for which such axial strain values for same GB varies from −0.17% to 0.12%.
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Fig. 5. Elastic fields for a STGB Σ41(540)[001] in Al considered as an array of disclination dipoles
modeled by FFT-based method: normal stress σ11 (top) and shear stress σ12 (middle) normalized
by Dω, axial (elastic) strain εe22 is also simulated (bottom).
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5.3. Disconnection defect and phase boundary “terrace” in

anisotropic bi-materials

Disconnection defects and hetero-interfaces or martensitic interfaces can be mod-

eled by combinations of dislocations and disclination dipoles. Hirth and Pond [1996,

2011] used a Burgers circuit to define the equivalent Burgers vector of the discon-

nection defect. This step character can be modeled using wedge disclination dipoles

[Hirth et al., 2006]. Let us first consider a typical single disconnection defect embed-

ded in an isotropic elastic elastic medium. The isotropic elastic constants of copper

(Cu) are used with Young’s modulus E = 130GPa and Poisson ratio ν = 0.34. The

single disconnection defect is defined in three steps as a combination of rotation

and displacement discontinuities (see Fig. 6 for details). Therefore, the resulting

defect contains one wedge disclination dipole characterized by a non zero disclina-

tion density component with θ33 = ±ω/δ2 and ω = π/4 rad. The remaining edge

dislocation is defined by a dislocation density tensor containing two non zero com-

ponents: α31 = a cos(π/4)/δ2 and α32 = a sin(π/4)/δ2 where a = 0.3615nm is the

lattice parameter of Cu. The computational grid is composed of 512 × 512 pixels

with δ = 0.11nm. Normal and shear stresses σ11 and σ12 normalized by the shear

modulus µ are simulated by the FFT-based method and reported in Fig. 7. It is

also found that the calculated elastic energy per unit volume for this disconnection

defect is 1.7 times lower than an equivalent edge dislocation located at the center

of the unit cell with Burgers vector b=(-3ae1,5ae2). Such result stems from more

elastic screening for the disconnection in the case of disclination dipoles.
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Fig. 6. Definition of a single disconnection defect: definition of material discontinuities between
brown (upper) material and black (lower) material (top left), first step: a positive wedge disclination
is introduced to define the rotational discontinuity on the lower part with a given angle (an
overlap wedge occurs on the upper part with same angle) (top right), second step: a negative
wedge disclination is introduced to eliminate the overlap wedge (bottom left), third step: an edge
dislocation is introduced to define the displacement discontinuity (bottom right).

Some arrays of disconnections can also be used to model martensitic interfaces

(habit planes) or hetero-interfaces forming a “terrace” structure observed with TEM

(transmission electron microscopy) [Pond et al., 2003, 2007; Wang et al., 2011].

Following a case treated with atomistic simulations [Wang et al., 2011], a Cu/Ag

phase boundary “terrace” with anisotropic and heterogeneous elasticity is consid-

ered with the present numerical spectral approach. This configuration is represented

in Fig. 8. The computational grid used for the FFT-based method is composed of

1024× 1024 pixels with δ = 0.11nm. The period of the defects along the “terrace”

is given by L = 1.852nm, the angle between the “terrace” planes and the habit

plane denoted θ (see Fig. 8) is given by θ = 6.47◦. Due to lattice mismatch be-

tween Cu and Ag (aCu=0.3615nm, aAg=0.4085nm) a misfit strain of εmisfit=0.122

is present at the interface. Thus, the “terrace” first contains a periodic distribu-

tion of misfit dislocations (colored in orange) with a characteristic Burgers vec-

tor magnitude bmisfit=0.236nm. In addition, the periodic step structure with con-
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Fig. 7. Elastic fields for a single disconnection defect in Cu considered as a combination of a
disclination dipole and a dislocation modeled by FFT-based method: normal stress (top) and
shear stress (bottom) normalized by the shear modulus µ.

stant step height h = 0.2084nm is related to disconnection defects [Wang et al.,

2011]. It is first represented by wedge disclination dipoles of arms fixed to h/2

and with strength ω = 5.33◦ so that the disclination density components are given

on one pixel by θ33 = ±ω/δ2. Second, the disconnection is completed as previ-

ously by dislocations centered on the disclination dipoles with a Burgers vector

given by bi-cristallography: bdislo=0.0274nm. The common crystallographic plane

in the face centered cubic structure between both phases is the (111) plane (habit

plane). For numerical calculations, anisotropic (cubic) elasticity in both Cu and

Ag is considered. For Cu, the elastic moduli defined in the cubic lattice frame

are: C11=168.4GPa, C12=121.4GPa, C44=75.4GPa with an anisotropic factor of
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A = 2C44/(C11−C12) = 3.21. For Ag, the elastic moduli defined in the cubic lattice

frame are: C11=124GPa, C12=93.4GPa, C44=46.1GPa with an anisotropic factor of

A = 3.01. The numerical convergence of the FFT-based algorithm is achieved when

the error ε in Eq. 27 is smaller than 10−5. Because of low elastic moduli contrast

between Cu and Ag, the number of iterations for numerical calculation is only 6.

The numerical results on normal and shear stress fields are reported in Fig. 9 and

for comparison the same fields are reported in Fig. 10 without the presence of misfit

dislocations. It is found that the stress magnitudes are lower than the ones in Fig.

9. As a last remark, it is here highlighted that the numerical method is very fast for

complex anisotropic and heterogeneous elasticity as the phase boundary “terrace”

in anisotropic bi-materials. Even though the Fourier-based approach is developped

in small deformation, the numerical results are consistent with the FEM results

reported by Zhang et al. [2018] who used a more general framework in a finite de-

formation setting. Furthermore, the method is an alternative numerical method to

analytical methods based on the sextic equation and Stroh formalism for anisotropic

elasticity which was more developed for the dislocation theory [Stroh, 1958; Barnett

and Lothe, 1974].

Fig. 8. Cu/Ag phase boundary “terrace” configuration composed of an infinite periodic array of
disconnections (each step in “terrace” is formed by a disclination dipole and a dislocation located
in the center of the dipole) and misfit dislocations due to lattice mismatch at the interface of the
anisotropic bi-material.
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Fig. 9. Elastic fields for a Cu/Ag phase boundary “terrace” with anisotropic and heterogeneous
elasticity considered as a periodic array of disconnection defects in addition to misfit dislocations
and simulated by the FFT-based method: normal stress (top) and shear stress (bottom) normalized
by the shear modulus µ.

6. Concluding remarks and outlook

This paper aimed at developing a numerical FFT-based general approach for con-

tinuum Field Dislocation and Disclination Mechanics (continuum defect mechanics)

and for heterogeneous isotropic or anisotropic linear elastic media. After the iden-

tification of disclination and dislocation densities that are sources of incompatible

elastic curvature and elastic strain, the numerical spectral approach was able to

compute in a fast and efficient way (i.e. without numerical artefacts like spurious

oscillations) the elastic fields of different bulk and interfacial defects. The numer-

ically studied defects were disclination dipoles interacting with inhomogeneities,
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Fig. 10. Elastic fields for a Cu/Ag phase boundary “terrace” with anisotropic and heterogeneous
elasticity considered as a periodic array of disconnection defects without misfit dislocations and
simulated by the FFT-based method: normal stress (top) and shear stress (bottom) normalized
by the shear modulus µ.

grain boundaries seen as DSUM, grain boundary disconnection defects and phase

boundary“terraces” in anisotropic bi-materials. For heterogeneous cases, a few iter-

ations were needed even for mechanical contrasts of 10 between the different phases

were needed. Infinite contrasts like voids are also possible with the present PC−LSR

procedure but not rigid inhomogeneities [Willot, 2015; Djaka et al., 2017], which is

left for further studies. The numerical FFT-based algorithm can also be accelerated

with more recent refined gradient schemes [Schneider, 2017]. It is also of interest
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in forthcoming studies to extend the present FFT-based approach to more gener-

alized micro-continuum field theories with disclination defects and with numerical

calculations of configurational forces [Lazar and Maugin, 2007; Maugin, 2011] .
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