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of fully coupled FBSDEs
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Abstract

We present a new method for checking global solvability of fully coupled
forward-backward stochastic differential equations (FBSDEs), where all func-
tion parameters are Lipschitz continuous, the terminal condition is monotone
and the diffusion coefficient of the forward part depends monotonically on
z, the control process component of the backward part. We show that one
can reduce, via a linear transformation, the FBSDE to an auxiliary FBSDE
for which the Lipschitz constant of the forward diffusion coefficient w.r.t. z is
smaller than the inverse of the Lipschitz constant of the terminal condition
w.r.t. the forward component x. The latter condition allows to verify exis-
tence of a global solution by analyzing the space derivative of the decoupling
field. We illustrate with several examples how the transformation method can
be used for proving global solvability of FBSDEs.

1 Introduction

Let T > 0 and let W = (Wt)t∈[0,T ] be a Brownian motion defined on a complete
filtered probability space (Ω,F , (Ft)t∈[0,T ],P), where the filtration is defined by Ft :=
σ(N , (Ws)s∈[0,t]) with N denoting the set of all P-null sets.

In this article we introduce a new method for checking whether the forward-
backward stochastic differential equation (FBSDE)

Xt = x+

∫ t

0

µ(r,Xr, Yr, Zr) dr +

∫ t

0

σ(r,Xr, Yr, Zr) dWr,

Yt = ξ(XT )−
∫ T

t

f(r,Xr, Yr, Zr) dr −
∫ T

t

Zr dWr, t ∈ [0, T ],

(1)

possesses a solution, where we make the following assumptions on the parameter
functions µ, σ, ξ and f :

(A1) µ, σ, f : Ω × [0, T ] × R × R × R → R are progressively measurable, meaning
that for all t ∈ [0, T ] the functions µ, σ, f restricted to Ω× [0, t]× R× R× R
are Ft ⊗ B([0, t])⊗ B(R)⊗ B(R)⊗ B(R)-measurable,
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(A2) µ, σ, f are Lipschitz continuous in (x, y, z) with Lipschitz constant L, i.e. for
all t ∈ [0, T ] and almost all ω ∈ Ω we have

|µ(t, x1, y1, z1)− µ(t, x2, y2, z2)| ≤ L(|x1 − x2|+ |y1 − y2|+ |z1 − z2|),
|σ(t, x1, y1, z1)− σ(t, x2, y2, z2)| ≤ L(|x1 − x2|+ |y1 − y2|+ |z1 − z2|),
|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤ L(|x1 − x2|+ |y1 − y2|+ |z1 − z2|),

for all xi, yi, zi ∈ R, i = 1, 2.

(A3) ‖µ(·, ·, 0, 0, 0)‖∞ + ‖σ(·, ·, 0, 0, 0)‖∞ + ‖f(·, ·, 0, 0, 0)‖∞ <∞,

(A4) ξ : Ω×R→ R is measurable, Lipschitz continuous in the second variable and
satisfies ‖ξ(·, 0)‖∞ <∞.

(A5) ξ is monotonically increasing in the second variable, while σ is monotonically
decreasing in z.

Notice that (A1)-(A4) are standard assumptions on the measurability, Lipschitz
continuity and growth of the parameters. Observe that the FBSDE (1) is fully
coupled, that is, the dynamics of the forward part depend on the solution of the
backward component and, vice versa, the dynamics of the backward part depend
on the forward component. Recall that for fully coupled FBSDEs the assumptions
(A1)-(A4) are not sufficient for the existence of a solution (see Example 1.1 below for
a counterexample). We obtain a sufficient condition for the existence of a solution,
on a sufficiently small time interval, by adding the assumption

Lξ,x < L−1σ,z, (2)

where Lξ,x denotes the smallest Lipschitz constant of ξ w.r.t. the second component
x; and Lσ,z denotes the smallest Lipschitz constant of σ w.r.t. the last component
z. By L−1σ,z = 1

Lσ,z
we mean 1

Lσ,z
if Lσ,z > 0 and ∞ otherwise. We interpret L−1ξ,x in

the same way.
We refer to condition (2) as the contraction condition, as it guarantees that one

can define, via a Picard iteration, a process sequence (Xn, Y n, Zn) that is contracting
with respect to some nice norm, defined on a sufficiently small time interval. The
limit of the Picard sequence can be shown to converge to a solution of (1) on the
small time interval considered. Thus, the contraction condition (2), together with
(A1)-(A4), is sufficient for the existence of a local solution of (1) (see Theorem 3.4
below for a precise statement). In the following we refer to the union of the five
conditions (A1)-(A4) and (2) as the standard Lipschitz condition (SLC).

A method for checking global solvability for FBSDEs satisfying SLC is to verify
that the so-called decoupling field (see Section 3 for the definition) is Lipschitz
continuous with a Lipschitz constant bounded away from L−1σ,z, uniformly on the
maximal existence interval (see [7] for details). We refer to this method as the method
of decoupling fields. Based on a similar approach reyling strongly on decoupling
fields, the article [9] provides a collection of various sufficient conditions for global
solvability.
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The aim of the present article is to provide a method for checking global solv-
ability of (1) if the contraction condition (2) is not satisfied. Our idea is to formally
apply a linear transformation to the process pair (X, Y ) in order to arrive at an
auxiliary FBSDE satisfying the contraction condition. We prove that if the auxil-
iary FBSDE has a solution, then so does the original FBSDE (1). Indeed, from a
solution of the auxiliary FBSDE we construct a solution of (1).

Thus, for checking whether the FBSDE (1) has a solution it is enough to study
the auxiliary FBSDE. Since the latter satisfies SLC, the method of decoupling fields
applies to it. In Section 5 we illustrate with several explicit examples how the trans-
formation method can be used for proving that a fully coupled FBSDE satisfying
(A1)-(A5), but not (2), has a solution on the whole interval [0, T ].

The method works under the monotonicity assumption (A5). In particular, the
monotonicity of σ in z allows to choose the transformation in such a way that the
control process Z is uniquely determined by the control process of the auxiliary
FBSDE. Concerning (A5) we want to point out the following:

• If σ is monotonically increasing while ξ is monotonically decreasing one can
define (X̂, Ŷ , Ẑ) := (−X, Y, Z) to obtain a new FBSDE with diffusion coeffi-
cient σ̂ := −σ and terminal condition ξ̂ := ξ(−·) that satisfies (A5). Note that
this transformation is invertible, this means that if one FBSDE has a solution
on some time interval so does the other.

• If σ and ξ are both monotonically increasing or decreasing in z and x, re-
spectively, there does not have to exist a solution in general as Example 1.1
indicates. Therefore, we cannot develop a general theory in this case what
makes our restriction to the setting of assumption (A5) reasonable.

There are several other approaches for checking global solvability of fully coupled
FBSDEs. In [8] and [5] the link between FBSDEs and PDEs is exploited in order to
prove global solvability of FBSDEs, where the diffusion coefficient σ does not depend
on z and satisfies a non-degeneracy condition. Notice that we do not assume that σ
is non-degenerate. More importantly, our method is developed particularly for the
case where σ depends on z.

There are several probabilistic approaches for proving solvability under some
monotonicity conditions on the function parameters. [11] make a monotonicity as-
sumption on µ with respect to x and f with respect to y. Another condition for
the existence of a global solution to an FBSDE is provided in [12], imposing a kind
of monotonicity on the parameter functions with respect to all variables x, y and
z. In contrast, in the present article we impose monotonicity of σ in z and of ξ in
x. Note, however, that our conditions do not guarantee global existence, but they
allow to apply the method of decoupling fields to verify this.

We finally mention the monograph [10] and the article [9] for a more detailed
overview on existing approaches.

We close the introduction with an example showing that if an FBSDE satisfies
(A1)-(A4), but neither (A5) nor (2), then a solution needn’t to exist, even on an
arbitrarily small interval.
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Example 1.1 (cf. Example 2.3.1 in [7]). Let σ0 ∈ R\{0} be a constant. We consider
for some t ∈ [0, T ) the FBSDE

Xs = x+

∫ s

t

(σ0 + Zr) dWr,

Ys = XT −
∫ T

s

Zr dWr, s ∈ [t, T ].

(3)

This means that

• µ and f vanish,

• σ is defined via σ(s, x, y, z) = σ0 + z,

• ξ = IdR.

We now claim that equation (3) cannot have a progressively measurable solution,
no matter how small T − t > 0 is chosen.
In fact, the forward equation implies

XT −Xs =

∫ T

s

(σ0 + Zr) dWr = σ0(WT −Ws) +

∫ T

s

Zr dWr

or

XT −
∫ T

s

Zr dWr = Xs + σ0(WT −Ws), s ∈ [t, T ].

Together with the backward equation we obtain

Ys = Xs + σ0(WT −Ws),

which for s = t means
Yt − x = σ0(WT −Wt).

This cannot be true, however, since Yt is Ft-measurable and σ0(WT − Wt) is a
non-degenerate Gaussian random variable independent of Ft.

2 Deriving the transformation

In this section we motivate the choice of the transformation that we consider in
this paper. We want to find a linear transformation of the processes X and Y such
that the transformed FBSDE satisfies SLC. In other words, our goal is to determine
a, b, c, d ∈ R such that the processes X̂, Ŷ , Ẑ, given by(

X̂s

Ŷs

)
:=

(
a b
c d

)(
Xs

Ys

)
and Ẑt := cσ(t,Xt, Yt, Zt) + dZt, “fulfill” a FBSDE with parameters that satisfy
SLC. Our goal is then to examine the solvability of the new FBSDE and transfer the
results to our original one. In order to make this work, we have to assume that the
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transformation is invertible, i.e. that we can recover (X, Y, Z) from (X̂, Ŷ , Ẑ). Thus,
we have to choose a, b, c, d such that ad−bc 6= 0 and the map z 7→ cσ(ω, t, x, y, z)+dz
is invertible for all (ω, t, x, y) ∈ Ω× [0, T ]× R× R.

Whether the choice of the parameters a, b, c, d is suitable depends on the mono-
tonicity of the functions σ and ξ. To explain this dependence we introduce the
constants Kσ,z, Kξ,x ≥ 0 as the largest constants satisfying

|σ(t, x, y, z1)− σ(t, x, y, z2)| ≥ Kσ,z|z1 − z2|,
|ξ(x1)− ξ(x2)| ≥ Kξ,x|x1 − x2|,

(4)

for all x1, x2, y, z1, z2 ∈ R and t ∈ [0, T ]. Note that such constants always exist since
the above inequalities are satisfied by replacing Kσ,z or Kξ,x with 0. In case Kσ,z > 0
or Kξ,x > 0 we have strict monotonicity for σ or ξ with slope of at least Kσ,z or
Kξ,x, respectively.

For the sake of simplicity we restrict our considerations in this section to the case
where ξ(ω, ·) and σ(ω, x, y, ·) are differentiable for all ω ∈ Ω, x, y ∈ R, and Kξ,x = 0
holds true. However, we prove in the following section that the properties derived
in this section also hold true in the more general setting of this paper requiring only
Lipschitz continuity and Kξ,x ≥ 0.

Note that the transformed FBSDE takes the form

X̂t = x+

∫ t

0

µ̂(s, X̂s, Ŷs, Ẑs) ds+

∫ t

0

σ̂(s, X̂s, Ŷs, Ẑs) dWs,

Ŷt = ξ̂(X̂T )−
∫ T

t

f̂(s, X̂t, Ŷs, Ẑs) ds−
∫ T

t

Ẑs dWs, t ∈ [0, T ],

(5)

where the parameters are given by

µ̂(ω, s, x, y, z) := aµ (ω, s,Φ(s, x, y, z)) + bf (ω, s,Φ(s, x, y, z)) ,

σ̂(ω, s, x, y, z) := aσ (ω, s,Φ(s, x, y, z)) + bϕ̂ (ω, s, x, y, z) ,

f̂(ω, s, x, y, z) := cµ (ω, s,Φ(s, x, y, z)) + df (ω, s,Φ(s, x, y, z)) ,

ξ̂(ω, x) :=
(
(cId + dξ(ω, ·)) ◦ (aId + bξ(ω, ·))−1

)
(x),

and

ϕ(ω, s, x, y, z) := (cσ(ω, s, x, y, ·) + dId)−1 (z),

ϕ̂(ω, s, x, y, z) := ϕ

(
ω, s,

dx− by
ad− bc

,
−cx+ ay

ad− bc
, z

)
,

Φ(s, x, y, z) :=

(
dx− by
ad− bc

,
−cx+ ay

ad− bc
, ϕ̂(s, x, y, z)

)
,

for (ω, s, x, y, z) ∈ Ω × [0, T ] × R × R × R. We emphasize that without loss of
generality we can assume that a, c ≥ 0, because one can just replace (a, b) with
(−a,−b) if a ≤ 0, and (c, d) with (−c,−d) if c ≤ 0. That does not change the
Lipschitz constants Lσ̂,z, Lξ̂,x. Consequently, we consider only the case where a, c ≥
0. Moreover, we assume the following to ensure that the above definitions make
sense and we can estimate the Lipschitz constants of ξ̂ and σ̂ by Lξ̂,x ≤ 1 < Lσ̂,z:
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(i) a > 0 and b ≥ 0,

(ii) d ≤ 0, in particular, d < 0 if Kσ,z = 0,

(iii) c > 0 and |d| small enough.

The first point ensures that the mapping aId + bξ : R → R is a bijection and thus
ξ̂ is well-defined. The second point implies that the function cσ(s, x, y, ·) + dId is
invertible which is necessary for the definition of ϕ. The last point finally allows to
derive a nice estimate for Lξ̂,x in (7) because then 0 ≤ c+ dξ′(x) ≤ c.

Now, since we have established that a, c > 0 and b ≥ 0, d ≤ 0 should hold
true, we claim that, without loss of generality, we can assume that a, c = 1 (with
adaptation of b, d) as the following Lemma proves.

Lemma 2.1. Let a, c > 0, b ≥ 0, d ≤ 0. The transformation with(
a b
c d

)
transforms the FBSDE (1) into an FBSDE satisfying SLC if and only if the trans-
formation with (

1 b
a

1 d
c

)
does so.

Proof. Let σ̂, ξ̂,Φ be defined as above, and σ̃ and ξ̃ be the diffusion coefficient and
terminal condition of the transformed FBDSE with ã := 1, b̃ := b

a
, c̃ := 1, d̃ := d

c
.

Assume that Lξ̃,x < L−1σ̃,z. Then we obtain that∣∣∣∣∂σ̂∂z (s, x, y, z)

∣∣∣∣ =

∣∣∣∣∣a∂σ∂z (s,Φ(s, x, y, z)) + b

c∂σ
∂z

(s,Φ(s, x, y, z)) + d

∣∣∣∣∣ =
a

c

∣∣∣∣∂σ̃∂z (s, xa , yc , z)
∣∣∣∣ ≤ a

c
Lσ̃,z,∣∣∣ξ̂′(x)

∣∣∣ =

∣∣∣∣c+ dξ′((aId + bξ)−1(x))

a+ bξ′((aId + bξ)−1(x))

∣∣∣∣ =
c

a

∣∣∣ξ̃′ ((Id + b
a
ξ
)

(x)
)∣∣∣ ≤ c

a
Lξ̃,x.

Consequently, Lξ̂,x ≤
c
a
Lξ̃,x <

c
a
L−1σ̃,z ≤ L−1σ̂,z. The converse implication follows analo-

gously.

For the remainder of this section let a, c = 1. To gain standard Lipschitz con-
ditions for the transformed FBSDE (5) we have to choose b and d depending on ξ
and σ. We derive for which choice the derivatives of ξ̂ and σ̂ are bounded such that
Lξ̂,x < L−1σ̂,z. Note that one can rewrite σ̂ as

σ̂(s, x, y, z) = z + (b− d)ϕ̂(s, x, y, z).

We observe that

∂σ̂

∂z
(s, x, y, z) = 1 +

b− d
∂σ
∂z

(s, ϕ̂(s, x, y, z)) + d
= 1− b− d

−∂σ
∂z

(s, ϕ̂(s, x, y, z))− d
(6)
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and

ξ̂′(x) =
1 + dξ′((Id + bξ)−1(x))

1 + bξ′((Id + bξ)−1(x))

for all x, y, z ∈ R, s ∈ [0, T ]. Note that the denominator −∂σ
∂z

(s, x, y, z)− d in (6) is
always not equal to zero because of (ii), and we obtain the desired estimate if we
choose d ≤ 0 close enough to zero and the constant b as a positive real number. To
this end, let d ∈

[
−L−1ξ,x, 0

]
such that −d + Kσ,z > 0, and b ∈ [0,−d ∨Kσ,z). With

this choice of b and d we have for all x, y, z ∈ R, s ∈ [0, T ] either∣∣∣∣∂σ̂∂z (s, x, y, z)

∣∣∣∣ = 1− b− d
−∂σ
∂z

(
s, dx−by

d−b ,
−x+y
d−b , z

)
− d
≤ 1− b− d

Lσ,z − d
< 1,

or ∣∣∣∣∂σ̂∂z (s, x, y, z)

∣∣∣∣ =
b− d

−∂σ
∂z

(s, x, y, z)− d
− 1 ≤ b+ (−d ∨Kσ,z)

−d ∨Kσ,z

− 1

≤ b

−d ∨Kσ,z

< 1,

and consequently Lσ̂,z < 1. Similarly, we deduce that for all x ∈ R∣∣∣ξ̂′(x)
∣∣∣ =

1 + dξ′((Id + bξ)−1(x))

1 + bξ′((Id + bξ)−1(x))
≤ 1, (7)

and thus Lξ̂,x ≤ 1.

3 Decoupling fields

A so-called decoupling field to an FBSDE comes with a richer structure than just a
classical solution (X, Y, Z) to (1).

Definition 3.1. Let t ∈ [0, T ]. A function u : Ω × [t, T ] × R → R with u(T, ·) = ξ
a.e. is called decoupling field for (ξ, µ, σ, f) on [t, T ] if for all t1, t2 ∈ [t, T ] with t1 ≤ t2
and any Ft1-measurable Xt1 : Ω→ R there exist progressively measurable processes
(X, Y, Z) on [t1, t2] such that

Xs = Xt1 +

∫ s

t1

µ(r,Xr, Yr, Zr) dr +

∫ s

t1

σ(r,Xr, Yr, Zr) dWr,

Ys = Yt2 −
∫ t2

s

f(r,Xr, Yr, Zr) dr −
∫ t2

s

Zr dWr,

Ys = u(s,Xs), (decoupling condition)

(8)

a.s. for all s ∈ [t1, t2]. In particular, we want all integrals to be well-defined.

For the following we need to introduce further notation: Let I ⊆ [0, T ] be an interval
and u : Ω× I ×R→ R be a map such that u(s, ·) is measurable for every s ∈ I. We
define

Lu,x := sup
s∈I

inf{L ≥ 0 | for a.a. ω ∈ Ω :

|u(ω, s, x)− u(ω, s, x′)| ≤ L|x− x′| for all x, x′ ∈ R},
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where inf ∅ := ∞. We also set Lu,x := ∞ if u(s, ·) is not measurable for every
s ∈ I. One can show that Lu,x <∞ is equivalent to u having a modification which
is truly Lipschitz continuous in x ∈ R. Indeed, it is enough to redefine u(s, ω, ·) = 0
whenever Lipschitz continuity is not satisfied (see Lemma 2.1.3. in [7]).

Definition 3.2. Let u : Ω× [t, T ]×R→ R be a decoupling field for (ξ, µ, σ, f). We
say u to be weakly regular if Lu,x < L−1σ,z and sups∈[t,T ] ‖u(·, s, 0)‖∞ <∞.

Definition 3.3. We define the maximal interval Imax ⊆ [0, T ] of the problem given
by (ξ, µ, σ, f) as the union of all intervals [t, T ] ⊆ [0, T ], such that there exists a
weakly regular decoupling field u on [t, T ].

Note that the maximal interval might be open to the left. Also, let us remark that we
define a decoupling field on such an interval as a mapping which is a decoupling field
on every compact subinterval containing T . Similarly we can define weakly regular
decoupling fields as mappings which restricted to an arbitrary compact subinterval
containing T are weakly regular decoupling fields in the sense of the definition given
above.

Finally, we have global existence and uniqueness on the maximal interval:

Theorem 3.4 ([7], Theorem 5.1.11, Lemma 5.1.12 and Corollary 2.5.5). Assume
that (ξ, µ, σ, f) satisfy SLC. Then there exists a unique weakly regular decoupling field
u on Imax. Furthermore, either Imax = [0, T ] or Imax = (tmin, T ], where 0 ≤ tmin < T .
In the latter case we have

lim
t↓tmin

Lu(t,·),x = L−1σ,z. (9)

Moreover, for any t ∈ Imax and any initial condition Xt = x ∈ R there is a unique
solution (X, Y, Z) of the FBSDE (1) on [t, T ] satisfying

sup
s∈[t,T ]

E[|Xs|2] + sup
s∈[t,T ]

E[|Ys|2] + E
[∫ T

t

|Zs|2ds
]
<∞. (10)

This (X, Y, Z) satisfies the decoupling condition Ys = u(s,Xs), s ∈ [t, T ].

4 Main results

In this section we prove that the transformation derived in section 2 turns FBSDE
(1) into an FBSDE satisfying SLC. Recall the definition of the constants Kσ,z, Kξ,x

in (4) and let κ ∈
[
0, L−1ξ,x

]
∩ R and γ ∈ [0, κ ∨Kσ,z], such that

• κ+ γ > 0,

• κ+Kσ,z > 0, and

• γ < κ ∨Kσ,z if Kξ,x = 0.
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We consider the transformation with c := γ and d := −κ, that means(
X̂t

Ŷt

)
:=

(
1 γ
1 −κ

)(
Xt

Yt

)
and Ẑt := σ(t,Xt, Yt, Zt)− κZt for t ∈ [0, T ].

Remark 4.1. In the case Lξ,x > 0 all the reasoning in this section is also true if we
choose κ := L−1ξ,x and γ := κ

2
. However, in this section we prove the results in a more

general setting and leave some freedom in the choice of κ and γ by just specifying
an interval to which the constants should belong. This enables us to choose κ = 0 in
the case where σ is strictly decreasing in z with a slope of at least Kσ,z > 0, which
simplifies the transformation. Note that if Kσ,z = 0 we have to choose a positive κ
in order to obtain a Lipschitz continuous diffusion coefficient σ̂.

The auxiliary FBSDE takes the form

X̂t = x̂+

∫ t

0

µ̂(s, X̂s, Ŷs, Ẑs) ds+

∫ t

0

σ̂(s, X̂s, Ŷs, Ẑs) dWs,

Ŷt = ξ̂(X̂T )−
∫ T

t

f̂(s, X̂t, Ŷs, Ẑs) ds−
∫ T

t

Ẑs dWs, t ∈ [0, T ],

(11)

where the parameter functions are given by

µ̂(s, x, y, z) := µ (s,Φ(s, x, y, z)) + γf (s,Φ(s, x, y, z)) ,

σ̂(s, x, y, z) := z + (κ+ γ) ϕ̂ (s, x, y, z) ,

f̂(s, x, y, z) := µ (s,Φ(s, x, y, z))− κf (s,Φ(s, x, y, z)) ,

ξ̂(x) :=
(
(Id− κξ) ◦ (Id + γξ)−1

)
(x),

with

ϕ(s, x, y, z) := (σ(s, x, y, ·)− κId)−1 (z),

ϕ̂(s, x, y, z) := ϕ

(
s,
κx+ γy

κ+ γ
,
x− y
κ+ γ

, z

)
,

Φ(s, x, y, z) :=

(
κx+ γy

κ+ γ
,
x− y
κ+ γ

, ϕ̂(s, x, y, z)

)
,

for all s ∈ [0, T ], x, y, z ∈ R.
We now state the two main results of this paper.

Proposition 4.2. The parameters (ξ̂, µ̂, σ̂, f̂) satisfy SLC. Moreover, for the pa-
rameters (ξ̂, µ̂, σ̂, f̂) there exists a maximal interval Imax ⊆ [0, T ] of the form [0, T ]
or (tmin, T ] and a decoupling field û : Ω× Imax × R→ R that is weakly regular.

Theorem 4.3. Let Imax be the maximal interval and û be a weakly regular decoupling
field for the parameters (ξ̂, µ̂, σ̂, f̂). Fix t ∈ Imax and assume that the mapping
R → R, x 7→ (κId + γû(t, ·)) (x) is bijective. Then for any initial value x ∈ R there
exists a solution (X, Y, Z) to FBSDE (1) on the interval [t, T ].
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Moreover, if R → R, x 7→ (κId + γû(s, ·)) (x) is bijective for all s ∈ Imax the
function u : Ω× Imax × R→ R, defined by

u(s, x) :=
1

κ+ γ

(
(Id− û(s, ·)) ◦ (κId + γû(s, ·))−1

)
((κ+ γ)x), (12)

is a decoupling field for (ξ, µ, σ, f).

Corollary 4.4. If Imax = [0, T ] and the mapping R → R, x 7→ (κId + γû(0, ·)) (x)
is bijective, then for any initial value x ∈ R there exists a unique solution (X, Y, Z)
to FBSDE (1) on the interval [0, T ] such that (10) is satisfied for t = 0.

Remark 4.5. To prove that Imax = [0, T ] one can apply the method of decoupling
fields. To this end, one studies the dynamics of the gradient process Vt = ∂xû(t, X̂t)
and shows that Vt can be bounded away from L−1σ,z uniformly on Imax. Then Theorem
3.4 implies that only Imax = [0, T ] is possible.

In order to prove Proposition 4.2, Theorem 4.3 and Corollary 4.4, we show at first
that a solution to our original FBSDE (1) can be recovered from the transformed
FBSDE (11). The proofs can be found at pages 13–15.

Lemma 4.6. If there exists a solution (X̂, Ŷ , Ẑ) to the FBSDE (11) on a time
interval [t, T ] for some t ∈ [0, T ) with an Ft-measurable initial condition x̂, then
(X, Y, Z), defined as(

Xs

Ys

)
:=

1

κ+ γ

(
κ γ
1 −1

)(
X̂s

Ŷs

)
,

Zs := ϕ̂(s, X̂s, Ŷs, Ẑs) = (σ (s,Xs, Ys, ·)− κId)−1 (Ẑs), s ∈ [t, T ],

solves the FBSDE (1) on [t, T ] with the Ft-measurable initial condition κx̂+γŶt
κ+γ

.

Proof. We verify that (X, Y, Z), defined as above, fulfills the FBSDE (1). To this
end, note that ϕ̂(s, X̂s, Ŷs, Ẑs) = Zs and Φ(s, X̂s, Ŷs, Ẑs) = (Xs, Ys, Zs). Conse-
quently,

dXs =
1

κ+ γ

(
κdX̂s + γdŶs

)
=

κ

κ+ γ

(
µ̂(s, X̂s, Ŷs, Ẑs)ds+ σ̂(s, X̂s, Ŷs, Ẑs)dWs

)
+

γ

κ+ γ

(
f̂(s, X̂s, Ŷs, Ẑs)ds+ ẐsdWs

)
= µ (s,Xs, Ys, Zs) ds+ σ (s,Xs, Ys, Zs) dWs,

and

dYs =
1

κ+ γ

(
dX̂s − dŶs

)
=

1

κ+ γ

[ (
µ̂(s, X̂s, Ŷs, Ẑs)− f̂(s, X̂s, Ŷs, Ẑs)

)
ds

+
(
σ̂(s, X̂s, Ŷs, Ẑs)− Ẑs

)
dWs

]
= f(s,Xs, Ys, Zs)ds+ ZsdWs.
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We observe that Xt = κx̂+γŶt
κ+γ

by the same calculations as above. If γ = 0 we have

X = X̂, ξ̂(x) = x− κξ(x) and therefore

YT =
1

κ

(
X̂T − ŶT

)
=

1

κ

(
X̂T − ξ̂(X̂T )

)
= ξ(XT ), a.s.

If γ > 0 we can rewrite ξ̂ in a different form, because

ξ̂(x) =
(
(Id− κξ) ◦ (Id + γξ)−1

)
(x)

= (Id + γξ)−1 (x)− κξ
(
(Id + γξ)−1 (x)

)
= (Id + γξ)−1 (x)− κ

γ
(Id + γξ)

(
(Id + γξ)−1 (x)

)
+
κ

γ
(Id + γξ)−1 (x)

=
κ+ γ

γ
(Id + γξ)−1 (x)− κ

γ
x, x ∈ R.

(13)

We obtain

YT =
1

κ+ γ

(
X̂T − ŶT

)
=

1

κ+ γ

(
X̂T − ξ̂(X̂T )

)
=

1

κ+ γ

(
X̂T −

κ+ γ

γ
(Id + γξ)−1 (X̂T ) +

κ

γ
X̂T

)
=

1

γ

(
X̂T − (Id + γξ)−1 (X̂T )

)
=

1

γ

(
(Id + γξ)

(
(Id + γξ)−1 (X̂T )

)
− (Id + γξ)−1 (X̂T )

)
= ξ

(
(Id + γξ)−1 (X̂T )

)
= ξ(XT ), a.s.,

by an alternative representation of ξ̂ and because

(Id + γξ)−1 (X̂T ) =
1

κ+ γ

[
κX̂T + (κ+ γ) (Id + γξ)−1 (X̂T )− κX̂T

]
=

1

κ+ γ

[
κX̂T + γξ̂(X̂T )

]
=

1

κ+ γ

[
κX̂T + γŶT

]
= XT , a.s.

This concludes the proof.

Now we show that the function ϕ is Lipschitz continuous with the help of an inverse
function theorem for Lipschitz functions. Later on we use this result for proving
that the parameters (ξ̂, µ̂, σ̂, f̂) fulfill SLC.

Lemma 4.7. The function ϕ is Lipschitz continuous in (x, y, z) and we have for
the Lipschitz constant of ϕ in z that Lϕ,z = 1

κ+Kσ,z
. Moreover, we have

|ϕ(t, x, y, z1)− ϕ(t, x, y, z2)| ≥
1

Lσ,z + κ
|z1 − z2| (14)

for all x, y, z1, z2 ∈ R and t ∈ [0, T ]. In particular, ϕ̂ is Lipschitz continuous in
(x, y, z) and (14) holds also true for ϕ̂.
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Proof. Let (ω, t) ∈ Ω × [0, T ]. At first, we prove the Lipschitz continuity of ϕ in z
and that (14) holds true. To this end, let x, y ∈ R be fixed for the moment. Note
that σ(t, x, y, ·)− κId is strictly decreasing and satisfies

(κ+Kσ,z) |z1−z2| ≤ |σ(t, x, y, z1)− κz1 − (σ(t, x, y, z2)− κz2)| ≤ (κ+ Lσ,z) |z1−z2|

for all z1, z2 ∈ R. Hence, σ(t, x, y, ·) − κId is a bijection from R onto R and the
inverse ϕ(t, x, y, ·) is also Lipschitz continuous, because it satisfies

1

κ+ Lσ,z
|z1 − z2| ≤ |ϕ(t, x, y, z1)− ϕ(t, x, y, z2)| ≤

1

κ+Kσ,z

|z1 − z2|

for all z1, z2 ∈ R. That means (14) holds true and Lϕ,z = 1
κ+Kσ,z

due to the definition

of Kσ,z.
It remains to show the Lipschitz continuity of ϕ(t, ·, ·, z). The map (x, y, z) 7→

σ(t, x, y, z) − κz is Lipschitz continuous and therefore differentiable almost every-
where. In particular, for all x, y ∈ R we have

∂σ

∂z
(t, x, y, z)− κ ≤ −Kσ,z − κ < 0 (15)

for a.e. z ∈ R, since σ is monotonically decreasing due to (A5). Our goal is to apply
Theorem 1 in [4] to show that ϕ is Lipschitz continuous. To this end, we define the
mapping

F : R3 → R3, (x, y, z) 7→ (x, y, σ(t, x, y, z)− κz),

which has the inverse F−1(x, y, z) = (x, y, ϕ(t, x, y, z)). Let (x0, y0, z0) ∈ R3 and
a0 := ϕ(t, x0, y0, z0). We prove that there exists a neighbourhood of (x0, y0, z0)
on which ϕ is Lipschitz continuous and that the derivatives are bounded almost
everywhere.

Note that for Clarke’s generalized Jacobian ∂F (x0, y0, a0) of F in (x0, y0, a0) we
have

∂F (x0, y0, a0) ⊆


 1 0 0

0 1 0
λ1 λ2 λ3

 : |λ1|, |λ2| ≤ L, λ3 ≤ −Kσ,z − κ < 0

 ,

see Definition 1 in [4] for details. Hence, every element of ∂F (x0, y0, a0) has full rank
and the requirements of Theorem 1 in [4] are met. Thus, there exist neighbourhoods
U and V of (x0, y0, a0) and F (x0, y0, a0) = (x0, y0, z0), respectively, and a Lipschitz
continuous function G : V → U such that F ◦ G = IdV and G ◦ (F |U) = IdU . We
observe that

G(x, y, z) = F−1(x, y, z) = (x, y, ϕ(t, x, y, z))

for all (x, y, z) ∈ V , because we have already identified the inverse of F above. The
Lipschitz continuity of F and G implies that:

• ϕ is Lipschitz continuous in (x, y, z) on V , and therefore, there exists a null
set N1 ⊆ V such that ϕ is differentiable on V \N1,

• there exists a null set N2 ⊆ U such that F is differentiable on U \N2,
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• F and G satisfy Lusin’s property (N), i.e. they map null sets onto null sets,
which implies that F (N2) ⊆ V and G(N1) = F−1(N1) ⊆ U are null sets (see
e.g. [3, p. 194] for a definition).

These properties entail that ϕ ◦ F is also differentiable on U \ (N2 ∪ F−1(N1)) ac-
cording to the chain rule, that means ϕ ◦ F is differentiable almost everywhere.
To show that the partial derivatives of ϕ are essentially bounded, let (x, y, z) ∈
V \ (N1 ∪ F (N2)). The chain rule applied to the identity ϕ ◦ F (x, y, a) = a with
a := ϕ(x, y, z) yields that

∂ϕ

∂x
(t, x, y, z) = −

∂σ
∂x

(t, x, y, a)
∂σ
∂z

(t, x, y, a)− κ
,

∂ϕ

∂y
(t, x, y, z) = −

∂σ
∂y

(t, x, y, a)
∂σ
∂z

(t, x, y, a)− κ
,

∂ϕ

∂z
(t, x, y, z) =

1
∂σ
∂z

(t, x, y, a)− κ
,

(16)

because (x, y, a) ∈ U \(N2 ∪ F−1(N1)). The essential boundedness of the derivatives
follows since |∂σ

∂x
(t, x, y, a)|, |∂σ

∂y
(t, x, y, a)| ≤ L by (A2), |∂σ

∂z
(t, x, y, a)− κ| ≥ Kσ,z + κ

by (15), and because the set V \ (N1 ∪ F (N2)) has full measure. Consequently,
the function ϕ(t, ·, ·, ·) is Lipschitz continuous on V with a Lipschitz constant M

smaller than or equal to
√
3L

Kσ,z+κ
. Since in the beginning the choice of (x0, y0, z0)

was arbitrary, the mapping ϕ(t, ·, ·, ·) : R3 → R is locally Lipschitz continuous with
Lipschitz constant M . Finally, we obtain the global Lipschitz continuity of ϕ in
(x, y, z) with Lipschitz constant M .

With the help of the two lemmas above we are able to prove Proposition 4.2, The-
orem 4.3 and Corollary 4.4.

Proof of Proposition 4.2. The Lipschitz continuity of µ̂ and f̂ is obvious because
those functions are compositions of Lipschitz continuous functions (note in particular
Lemma 4.7).

Now we examine the terminal condition ξ̂ and the diffusion coefficient σ̂. Let
(ω, t) ∈ Ω× [0, T ]. Then

1. Lipschitz continuity of ξ̂: (Id + γξ) is strictly increasing such that

(1 + γKξ,x) |x1 − x2| ≤ |(Id + γξ)(x1)− (Id + γξ)(x2)|

for all x1, x2 ∈ R. Therefore, (Id + γξ)−1 is also Lipschitz continuous with
L(Id+γξ)−1,x ≤ 1

1+γKξ,x
. The function (Id− κξ) is strictly increasing due to the

definition of κ, because for all x1, x2 ∈ R, x1 ≤ x2,

(Id− κξ)(x2)− (Id− κξ)(x1) ≥ (1− κLξ,x) (x2 − x1) ≥ 0.

Moreover, it is Lipschitz continuous with L(Id−κξ),x ≤ 1. We conclude that ξ̂
is Lipschitz continuous with Lξ̂,x ≤

1
1+γKξ,x

. In more detail, we have Lξ̂,x ≤ 1

if Kξ,x = 0, and Lξ̂,x < 1 if Kξ,x > 0.
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2. Lipschitz continuity of σ̂: The Lipschitz continuity of σ̂ in (x, y) is clear since
ϕ̂ is Lipschitz continuous according to Lemma 4.7. Let x, y ∈ R and z1, z2 ∈ R,
z1 < z2. Then either

|σ̂(t, x, y, z1)− σ̂(t, x, y, z2)| = σ̂(t, x, y, z1)− σ̂(t, x, y, z2)

= z1 − z2 + (γ + κ) (ϕ̂(t, x, y, z1)− ϕ̂(t, x, y, z2))

≤
(

γ + κ

κ+Kσ,z

− 1

)
(z2 − z1) =

γ −Kσ,z

κ+Kσ,z

|z1 − z2|,

or

|σ̂(t, x, y, z1)− σ̂(t, x, y, z2)| = σ̂(t, x, y, z2)− σ̂(t, x, y, z1)

= z2 − z1 − (γ + κ) (ϕ̂(t, x, y, z1)− ϕ̂(t, x, y, z2))

≤
(

1− γ + κ

Lσ,z + κ

)
(z2 − z1)

holds true. We obtain that γ−Kσ,z
κ+Kσ,z

≤ γ
κ∨Kσ,z ≤ 1, and 1− γ+κ

Lσ,z+κ
< 1 because the

second term is positive. In particular, if Kξ,x = 0 we have the strict inequality
γ−Kσ,z
κ+Kσ,z

≤ γ
κ∨Kσ,z < 1 by the choice of κ and γ. We conclude that Lσ̂,z < 1 if

Kξ,x = 0, and Lσ̂,z ≤ 1 if Kξ,x > 0.

We obtain the contraction condition Lξ̂,x < L−1σ̂,z by the calculations above and

therefore (ξ̂, µ̂, σ̂, f̂) fulfill SLC. Finally, the second part of the Proposition follows
by Theorem 3.4.

Proof of Theorem 4.3. Let t ∈ Imax, x ∈ R and the mapping x 7→ (κId + γû(t, ·)) (x)
be bijective. Define x̂ := (κId + γû(t, ·))−1 ((κ+ γ)x). According to Proposition 4.2
and Theorem 3.4 there exists a solution (X̂, Ŷ , Ẑ) to FBSDE (11) on [t, T ] with the
Ft-measurable initial condition x̂. If we now apply Lemma 4.6 we obtain that there
exists a solution (X, Y, Z) to FBSDE (1) on [t, T ] with initial condition

Xt =
κX̂t + γŶt
κ+ γ

=
1

κ+ γ
(κId + γû(t, ·)) (x̂) = x ∈ R. (17)

It remains to show that u is a decoupling field for (ξ, µ, σ, f). To this end, we
verify Definition 3.1. Note that in contrast to the first part of the proof we consider
the FBSDE (1) on a time interval [t1, t2] ⊆ [t, T ] for some fixed t ∈ Imax and with
an Ft1-measurable initial condition Xt1 : Ω → R. Since û is a decoupling field for
(ξ̂, µ̂, σ̂, f̂) there are also processes (X̂, Ŷ , Ẑ) that satisfy (8) with initial condition
X̂t1 := (κId + γû(t1, ·))−1 ((κ + γ)Xt1). If we define (X, Y, Z) as in Lemma 4.6 we
obtain by calculations that are analogous to the proof of Lemma 4.6 that

Xs = Xt1 +

∫ s

t1

µ(r,Xr, Yr, Zr) dr +

∫ s

t1

σ(r,Xr, Yr, Zr) dWr,

Ys = Yt2 −
∫ t2

s

f(r,Xr, Yr, Zr) dr −
∫ t2

s

Zr dWr, a.s., s ∈ [t1, t2].
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To verify the decoupling condition, note that (κId + γû(s, ·))(X̂s) = (κ+ γ)Xs and
thus

u(s,Xs) =
1

κ+ γ

(
(Id− û(s, ·)) ◦ (κId + γû(s, ·))−1

)
((κ+ γ)Xs)

=
1

κ+ γ
(Id− û(s, ·)) (X̂s) =

X̂s − Ŷs
κ+ γ

= Ys, a.s., s ∈ [t1, t2].

Hence, the property (8) is fulfilled. Finally, we prove that u(T, ·) = ξ. If γ = 0 we
have

u(T, x) =
1

κ
(Id− û(T, ·))(x) =

1

κ
(Id− ξ̂)(x) = ξ(x), x ∈ R.

If γ > 0 we observe by (13) that for all x ∈ R
(κId + γξ̂)(x) = (κId + (κ+ γ)(Id + γξ)−1 − κId)(x) = (κ+ γ)(Id + γξ)−1(x),

and thus, (κId + γξ̂)−1(x) = (Id + γξ)
(

x
κ+γ

)
, x ∈ R. Therefore, it follows

u(T, x) =
1

κ+ γ
((Id− ξ̂) ◦ (κId + γξ̂)−1)((κ+ γ)x)

=
1

κ+ γ
((Id− ξ̂) ◦ (Id + γξ))(x)

=
1

κ+ γ

((
κ+ γ

γ
Id− κ+ γ

γ
(Id + γξ)−1

)
◦ (Id + γξ)

)
(x) = ξ(x), x ∈ R.

We conclude that u is a decoupling field for (ξ, µ, σ, f).

Proof of Corollary 4.4. Let x ∈ R. We are in the setting of Theorem 4.3 with
t = 0 and therefore we can argue as in the previous proof. In fact, the initial
value x̂ = (κId + γû(0, ·))−1 ((κ + γ)x) of the transformed FBSDE (11) is constant
a.s. since it is F0-measurable. Therefore, we obtain additionally that the solution
(X̂, Ŷ , Ẑ) to FBSDE (11) has the property (10) by Theorem 3.4. Consequently,
also the solution (X, Y, Z) to FBSDE (1) satisfies (10), because X and Y are linear
combinations of X̂ and Ŷ , and for some constant C ≥ 0 we have

E
[∫ T

0

|Zs|2 ds
]

= E
[∫ T

0

|ϕ̂(s, X̂s, Ŷs, Ẑs)|2 ds
]

= E
[∫ T

0

|ϕ̂(s, X̂s, Ŷs, Ẑs)− ϕ̂(s, 0, 0, (σ(s, 0, 0, ·)− κId) (0))|2 ds
]

≤ E
[∫ T

0

C
(
|X̂s|2 + |Ŷs|2 + |Ẑs|2 + ‖σ(·, ·, 0, 0, 0)‖2∞

)
ds

]
<∞,

due to (X̂, Ŷ , Ẑ) having the property (10), the property (A3) and the Lipschitz
continuity of ϕ̂ (see Lemma 4.7). Moreover, (X, Y, Z) is the unique solution to
FBSDE (1) satisfying (10): Let (X(2), Y (2), Z(2)) be another solution to (1) on [0, T ]
fulfilling (10). Then (X̂(2), Ŷ (2), Ẑ(2)), defined as

X̂(2)
s := X(2)

s + γY (2)
s , Ŷ (2)

s := X(2)
s − κY (2)

s , Ẑ(2)
s := σ(s,X(2)

s , Y (2)
s , Z(2)

s )− κZ(2)
s

for s ∈ [0, T ], solves (11) on [0, T ] and satisfies (10). But solutions to (11) with
(10) are unique according to Theorem 3.4 and thus (X̂, Ŷ , Ẑ) = (X̂(2), Ŷ (2), Ẑ(2)).
Consequently, we also have (X, Y, Z) = (X(2), Y (2), Z(2)).
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5 Examples

In this section we present several applications of the transformation method. In all
these applications we proceed as follows:

Assume we have an FBSDE satisfying (A1)-(A5), but not the contraction condi-
tion (2). Then we choose κ and γ such that the auxiliary FBSDE (11) satisfies SLC.
Next, we verify whether (11) possesses a global solution (X̂, Ŷ , Ẑ) with a suitable
technique (the method of decoupling fields in our case). If it does, then the triplet
(X, Y, Z), defined as in Lemma 4.6, solves the original FBSDE.

5.1 A linear example with an explicit solution

We modify Example 1.1 such that it satisfies our assumptions and show that it is
possible to determine a solution via the transformation. Consider for some initial
value x ∈ R the FSBDE

Xs = x+

∫ s

0

(σ0 − Zr) dWr,

Ys = XT −
∫ T

s

Zr dWr, s ∈ [0, T ],

(18)

where σ0 ∈ R.

Proposition 5.1. For every intial value x ∈ R there exists a solution (X, Y, Z) to
the FBSDE (18) on [0, T ].

Proof. Note that µ, f ≡ 0, σ(z) = σ0 − z and ξ(x) = x. Therefore, Lσ,z = Lξ,x =
1, Kσ,z = 1 and σ is strictly decreasing, while ξ is strictly increasing. If we choose
κ := 1 and γ := 0, i.e. the transformation with(

1 0
1 1

)
,

we observe that ξ̂ ≡ 0 and the auxiliary FBSDE takes the form

X̂s = x+
1

2

∫ s

0

(
σ0 − Ẑr

)
dWr,

Ŷs = −
∫ T

s

Ẑr dWr, s ∈ [0, T ],

(19)

for some initial value x ∈ R. It is obvious that 0 = Lξ̂,x < L−1σ̂,z = 2 and that

(X̂, Ŷ , Ẑ), defined by X̂s := x+ 1
2
σ0Ws, Ŷs, Ẑs := 0, s ∈ [0, T ], solves the FBSDE (19)

on [0, T ]. Then the backward transformation in Lemma 4.6 implies that (X, Y, Z),
given by Xs := X̂s, Ys := X̂s, Zs := 1

2
σ0, s ∈ [0, T ], solves the FBSDE (18) on

[0, T ] with initial condition x. It is also straightforward to verify that this is indeed
true.
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5.2 A transformation bounding the gradient process

We consider the FBSDE

Xs = x+

∫ s

0

(
2Xr +

1

2
Yr

)
dr −

∫ s

0

(Xr + Yr + Zr) dWr,

Ys = XT −
∫ T

s

Zr dWr, s ∈ [0, T ].

(20)

Our goal is to transform FBSDE (20) into an FBSDE satisfying SLC. Then we
apply the method of decoupling fields to show that there is a solution on [0, T ] to
the transformed FBSDE.

Proposition 5.2. If T 6= ln(5)
2

, then for every initial value x ∈ R there exists a
unique solution (X, Y, Z) to FBSDE (20) on [0, T ] satisfying (10) with t = 0.

If T = ln(5)
2

, then such solutions exist for x = 0 only and in this case there are
infinitely many solutions.

Proof. Note that ξ(x) = x, µ(x, y) = 2x + 1
2
y, σ(x, y, z) = −x− y − z, f ≡ 0 and

Lσ,z = Lξ,x = 1, Kσ,z = 1. Consequently, the parameters do not satisfy SLC, but
they fulfill our assumptions (A1)-(A5). Since Kσ,z > 0 we can choose κ := 0 and
γ := 1

2
(see Remark 4.1), i.e. we consider the transformation with(

1 1
2

1 0

)
.

Then the auxiliary FBSDE takes the form

X̂s = x̂+

∫ s

0

(
X̂r + Ŷr

)
dr +

∫ s

0

(
−X̂r +

1

2
Ŷr +

1

2
Ẑr

)
dWr,

Ŷs =
2

3
X̂T −

∫ T

s

(
X̂r + Ŷr

)
dr −

∫ T

s

Ẑr dWr, s ∈ [0, T ].

(21)

Now, the new parameters satisfy SLC because Lξ̂,x = 2
3
< 2 = L−1σ̂,z. According

to Proposition 4.2 there exists a weakly regular decoupling field û and a maximal
interval Imax ⊆ [0, T ] for (ξ̂, µ̂, σ̂, f̂) such that for all t ∈ Imax the FBSDE (21) has a
solution on [t, T ] for every initial value x ∈ R. We prove that there is also a solution
on [0, T ] with the help of the method of decoupling fields. To this end, assume
that Imax = (tmin, T ] for some tmin ∈ [0, T ] and fix some t0 ∈ Imax. There exists a
solution (X̂, Ŷ , Ẑ) of (21) on [t0, T ] according to Theorem 3.4. We aim at showing
that Lû(t,·),x can be bounded away from L−1σ̂,z = 2 independently of t by studying

the dynamics of the so-called gradient process Vt = ∂xû(t, X̂t). Theorem 4.1 in [6]
implies that V satisfies the BSDE

Vs =
2

3
−
∫ T

s

ϕ(r, Vr, Z̃r) dr −
∫ T

s

Z̃r dWr, s ∈ [t0, T ],
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where ϕ(s, v, z) := (1− v)(1 + v)− z
(
−1 + 1

2
v + 1

2

−v+ 1
2
v2+z

1− 1
2
v

)
. We observe that∣∣∣∣∣−1 +

1

2
Vs +

1

2

−Vs + 1
2
V 2
s + Z̃s

1− 1
2
Vs

∣∣∣∣∣ ≤ 1 +
C

2
+

C

2− C
+

1

2

C2

2− C
+
|Z̃s|

2− C

≤ C̃
(

1 + |Z̃s|
)
,

for some constant C̃ > 0, because V is bounded by a constant C < 2 = L−1σ̂,z on
[t0, T ] due to the weak regularity of û. In particular, the generator ϕ has at most
quadratic growth in Z̃. Therefore, Z̃ is a BMO(P) - process (consult e.g. [2]) and,
thus, there is a probability measure Q ∼ P such that

Vs =
2

3
−
∫ T

s

(1− Vr)(1 + Vr) dr −
∫ T

s

Z̃r dW
Q
r , s ∈ [t0, T ], (22)

where WQ is a Brownian motion with drift under P and a Brownian motion under
Q. It is straightforward to verify that (22) is also satisfied by the pair of processes
(V̄ , Z̄), where Z̄ = 0 and V̄ is given by

V̄s =
5e2s − e2T

5e2s + e2T
=

5− e2(T−s)

5 + e2(T−s)
, s ∈ [t0, T ].

By uniqueness of solutions to BSDEs we have (V, Z̃) = (V̄ , Z̄). This implies

Vs ≤
5− e2(T−T )

5 + e2(T−T )
=

2

3
and Vs ≥

5− e2T

5 + e2T
> −1, s ∈ [t0, T ].

Considering L−1σ̂,z = 2, Theorem 3.4 yields that only Imax = [0, T ] is possible. There-
fore, we obtain solutions to (21) for arbitrary T > 0 and x̂ ∈ R.
In order to apply Theorem 4.3 and Corollary 4.4 we need bijectivity of û(0, ·). Note

that ∂xû(0, ·) is known to be constant 5−e2T
5+e2T

. Thus, û(0, ·) is a linear function. It

is indeed bijective if T 6= ln(5)
2

. In this case we have solutions to (20) which are

unique (under (10)) because of the one-to-one correspondence between (X̂, Ŷ , Ẑ)
and (X, Y, Z) solving (21) and (20), respectively.

It remains to consider the case T = ln(5)
2

: Assume that we have a solution (X, Y, Z)

to (20) on [0, T ] s.t. (10) for t = 0 is satisfied. Then the associated (X̂, Ŷ , Ẑ), ob-
tained via a linear transformation, satisfies (21). In accordance with Theorem 3.4
the decoupling condition holds, in particular x = X0 = Ŷ0 = û(0, x̂) = û(0, x+ 1

2
Y0).

We can determine û(0, x̂) explicitly, since û(0, ·) is a constant function for T = ln(5)
2

:

This constant is equal zero, since the zero triplet for (X̂, Ŷ , Ẑ) solves (21). Thus,
we obtain that x = 0 must hold if (20) has a solution satisfying (10) with t = 0. If,
however, x = 0 is satisfied then we have infinitely many solutions: One can construct
solutions by choosing an arbitrary x̂ and obtaining the associate (X̂, Ŷ , Ẑ), which
then yields a suitable (X, Y, Z) via a linear transformation. Since x̂ = 1

2
Y0 and all

x̂ are different we have infinitely many different solutions to (20).
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5.3 The adjoint equation in a diffusion control problem

In this and the next example we present two optimal diffusion control problems which
are studied in [1] and [13]. In both works the transformation method described in
this paper is used to show that there exists a solution to the adjoint FBSDE and an
optimal control.

We start with the problem in [1] and study the controlled diffusion process Xx,α

with dynamics
dXx,α

s = (bs +BsX
x,α
s ) ds+ αsdWs, X0 = x. (23)

The control problem consists of minimizing the cost functional

E
[∫ T

0

f(s,Xx,α
s , αs) ds+ g(Xx,α

T )

]
over all L2 - integrable controls α. It is assumed that

(C1) f(t, ·, ·) is convex and twice continuously differentiable with uniformly bounded
second derivatives and locally bounded first derivatives (locally in (x, a)). In
addition, faa is bounded away from zero. Secondly,

(C2) g(·) is convex and twice continuously differentiable with bounded second de-
rivative and locally bounded first derivative.

Pontryagin’s maximum principle yields the adjoint FBSDE

Xt = x+

∫ t

0

(bs +BsXs) ds+

∫ t

0

f−1a (s,Xs,−Zs) dWs,

Yt = g′(XT ) +

∫ T

t

(
BsYs + fm

(
s,Xs, f

−1
a (s,Xs,−Zs)

))
ds−

∫ T

t

Zs dWs,

(24)

for t ∈ [0, T ]. We have not imposed any conditions on the functions f and g to ensure
that Lξ,x < L−1σ,z holds true. However, we can apply the transformation with κ = 0
and γ = 1

δu
and obtain an auxiliary FBSDE satisfying SLC. Studying the dynamics

of the gradient process of the transformed system implies that the FBSDE (24) has
a solution (X, Y, Z) on [0, T ] (note in particular Theorem 4.6 in [1]). Moreover, one
obtains by the maximum principle that the control α∗s = f−1a (s,Xs,−Zs), s ∈ [0, T ],
is optimal.

5.4 The adjoint equation in a bounded diffusion control
problem

We summarize a diffusion control problem that is based on chapter 3 of the thesis
[13], where all details can be found. It is a slight variation of the diffusion control
problem presented in the section 5.3, but unlike the above control problem we only
consider control processes that take values in a non-empty compact interval [l, r].
This minor change of the setting leads to a completely different transformation
because the adjoint FBSDEs (24) and (25) of both control problems differ. In
particular, we have to choose a transformation with κ, γ 6= 0.
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Define the set of admissible controls A([l, r]) by

A([l, r]) :=

{
α : Ω× [0, T ]→ [l, r] : α is progr. mb. and E

[∫ T

0

α2
s ds

]
<∞

}
Moreover, we study the controlled diffusion process Xx,α with dynamics given by
(23) with α ∈ A([l, r]), and we define the cost functions f : Ω × [0, T ] × [l, r] → R
and g : Ω× R → R that are supposed to satisfy the assumptions (C1) and (C2) in
section 5.3. Here we assume that the function f does not depend on the state of
our underlying process Xx,α unlike in the previous section. In addition, we suppose
that there are constants δl, δu > 0 with δl ≤ δu such that

δl ≤ faa(ω, t, a) ≤ δu and δl ≤ g′′(ω,m) ≤ δu

for all (ω, t, a,m) ∈ Ω× [0, T ]× A× R.
The control problem consists of minimizing a cost functional over all admissible

controls α ∈ A([l, r]), i.e. we aim at finding an optimal control α̂ ∈ A([l, r]) such
that

E
[∫ T

0

f(s, α̂s) ds+ g(Xx,α̂
T )

]
= inf

α∈A([l,r])
E
[∫ T

0

f(s, αs) ds+ g(Xx,α
T )

]
.

We choose a probabilistic approach via the maximum principle to solve this problem
because of the non-Markovian framework. Consequently, we consider the adjoint
FBSDE of the control problem

Xt = x+

∫ t

0

(bs +BsXs) ds+

∫ t

0

a∗(s,−Zs) dWs,

Yt = g′(XT ) +

∫ T

t

BsYs ds−
∫ T

t

Zs dWs, t ∈ [0, T ],

(25)

where

a∗(t, z) :=


l , z < fa(t, l),

f−1a (t, z) , z ∈ [fa(t, l), fa(t, r)] ,

r , z > fa(t, r),

for (t, z) ∈ [0, T ]× R.
The FBSDE (25) has the parameters

µ(s, x) := bs +Bsx,

σ(s, z) := a∗(s,−z),

f(s, y) := Bsy,

ξ(x) := g′(x),

for (s, x, y, z) ∈ [0, T ] × R × R × R. We observe that the conditions (A1)-(A5) are
satisfied, Lσ,z ≤ 1

δl
and Lξ,x ≤ δu. Notice tha the contraction condition (2) might

not hold true. The transformation method, however, enables further examination of
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the solvability of (25). Since Kσ,z = 0, Kξ,x = δl we can choose γ := 1
2δu

and κ := γ,
and consider the transformation with(

1 γ
1 −γ

)
. (26)

The choice of κ and γ might appear arbitrary because there are, of course, other
choices which transform the FBSDE (25) into an FBSDE satisfying the contraction
condition. The advantage of this choice is that one can calculate a uniform bound
for the gradient process (see section 3.4 in [13]), which can fail with other choices.
That makes this selection adequate.

The transformation (26) yields the auxiliary FBSDE

X̂t = x+

∫ t

0

(
bs +BsŶs

)
ds+

∫ t

0

(
Ẑs − 2γã−1∗

(
s, Ẑs

))
dWs,

Ŷt = ξ̂(XT )−
∫ T

t

(
bs +BsX̂s

)
ds−

∫ T

t

Ẑs dWs, t ∈ [0, T ],

(27)

with initial value x ∈ R, where

ξ̂(ω, x) :=
(

(Id− γg′(ω, ·)) ◦ (Id + γg′(ω, ·))−1
)

(x),

ã−1∗ (ω, t, z) := (a∗(ω, t, ·) + γId)−1 (z)

=


1
γ
(z − l) , z < l + γfa(ω, t, l),

(f−1a (ω, t, ·) + γId)
−1

(z) , z ∈ [l + γfa(ω, t, l), r + γfa(ω, t, r)] ,
1
γ
(z − r) , z > r + γfa(ω, t, r),

for all (ω, t, x, z) ∈ Ω × [0, T ] × R × R. From Proposition 4.2 we know that the
parameters of (25) satisfy SLC and, in particular, the contraction condition. One
can even explicitly calculate bounds for the Lipschitz constants Lσ̂,z and Lξ̂,x similar

to the proof of Proposition 4.2, and obtains that Lξ̂,x ≤
1

1+γδl
< 1 = L−1σ̂,z (see

Proposition 3.6 in [13, p. 41]).
Now the application of the method of decoupling fields proves that there exists

a solution (X̂, Ŷ , Ẑ) to the auxiliary FBSDE (27) on [0, T ] by calculating a uniform
bound for the gradient process. Moreover, one obtains that Imax = [0, T ] and that
there is a weakly regular decoupling field û for (27) that is Lipschitz continuous with
Lû,x < 1. These statements can be found in Proposition 3.15 of [13, p. 56].

Finally, to apply Theorem 4.3 we deduce that the mapping Id+û(0, ·) is invertible
since Lû,x < 1. Thus, also FBSDE (24) has a solution (X, Y, Z) on [0, T ] and the
maximum principle implies that α̂, given by α̂s := a∗(s,−Zs), s ∈ [0, T ], is an
optimal control.
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