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Abstract

This paper deals with rules that specify the collective acceptance or rejection

of a proposal with several dimensions. We introduce the notions of separability

and weightedness in this context. We provide a partial characterization of sepa-

rable rules and show the independence between separability and weightedness.

KEYWORDS: Multi-dimensional rules, Weightedness, Separability relation,

Decision making process.
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1 Introduction

Many collective decision processes at a local, national or international level use a

simple voting scheme: the question is unidimensional, meaning that individuals an-

swer ”yes” or ”no” to a single question. We refer to Andjiga et al. [2003] and Laruelle

and Valenciano [2008] for a detailed description of these processes. Some extensions

include the consideration of non-binary choices: Felsenthal and Machover [1997] or

Laruelle and Valenciano [2012] introduce decision systems in which ”abstention”

or ”non-participation” are permitted; Freixas [2005] and Freixas et al. [2014] study

(j,k)− games where multiple dimensions concern both the input and the output.
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Here, we are interested in another type of extension. Consider a situation in

which a group of experts have to decide whether a candidate qualifies for a pro-

motion. Several criteria can be taken into account: performance, ability to work in

a team, and leadership. Each expert gives a positive or negative evaluation of the

candidate for each criterion. The question is to choose the decision-making rule

that will aggregate all evaluations into a promotion or non-promotion decision. A

similar problem occurs when the success of a student is based on tests taken at dif-

ferent periods or on different subjects. This paper models these situations through

multi-dimensional decision-making rules, that is, rules with several voters casting

a binary choice (yes/no) on several dimensions resulting in a dichotomous (yes/no)

decision. More precisely, we model decision processes where: (i) There are several

voters. (ii) There are several dimensions. (iii) Each voter expresses a binary choice

(”yes” or ”no”) on each dimension. (iv) A decision process maps each choice to a

final binary decision (”yes” or ”no”). We also study some properties of these rules,

such as separability and weightedness, and show that these notions are not related.

It is worth noting that multi-dimentional rules can be seen as voting rules (simple

games) whose set of voters has a product structure.

A multi-dimensional decision process is separable if it can be decomposed voter

by voter or dimension by dimension. In other words, we can represent some multi-

dimensional systems by combining single-dimensional systems. We show that not

all rules are separable, by means of examples. We then provide some necessary

and sufficient conditions which guarantee separability (Propositions 1, 2, 3 and 4).

Remarks 1 to 6 give the specific structure of some separable multi-dimensional rules.

The properties of separability are related to well-known paradoxes in the theory of

voting: the referendum paradox (see Feix et al. [2004] ) and the Ostrogorski paradox

(Ostrogorski [1970]).

A multi-dimensional decision process is weighted if it can be represented by a

mean of weights and a threshold for the system. When the system has only one di-

mension, Taylor and Zwicker [1992] produce sufficient and necessary conditions to

ensure weightedness. This result is generalized to systems with multiple dimensions

(Theorem 1 and 2) and the independence between separability and weightedness is

provided.

This paper is structured as follows: Section 2 introduces the general framework

of multi-dimensional rules. Section 3 presents separability conditions, while Section

4 defines and characterizes weighted multi-dimensional rules. Finally, Section 5
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shows that separability and weightedness are different notions.

2 Definition of multi-dimensional rules

Let N = {1, ...,n} be a set of n voters, and M = {1, ...,m} be a set of m dimensions.

Generic voters will be denoted by i, j, k, while dimensions will be denoted by a,

b, c. Each voter faces a binary choice and casts a positive or negative vote on each

dimension. A multi-dimensional rule aggregates the votes cast by the n voters on

the m dimensions in a dichotomous outcome, positive or negative.

A possible result of a vote, or a multi-dimensional configuration (simply config-

uration), specifies, for each voter, the vote cast on each dimension. Let sai ∈ {0,1} be

the vote cast by voter i on dimension a. The interpretation of sai = 0 is that i casts a

negative vote, while sai = 1 means that i casts a positive vote. If Zm
n denotes the set

of n×m matrices of 0 and 1, a configuration can be represented by a matrix S ∈Zm
n ,

where the element of row i and column a is sai :

S =


s11 · · · s

m
1

: :

: :

s1n · · · smn

 .

The ith row, that we denote by Si = (s1i , ..., s
m
i ), represents voter i’s opinion on the m

dimensions, while ath column, denoted by Sa = (sa1, ..., s
a
n)T , represents the n voters’

votes on dimension a.1 Let si denote the number of positive votes cast by voter i,

that is, si =
∑
a∈M

sai while sa denotes the number of positive votes cast on dimension

a: we have sa =
∑
i∈N

sai . The total number of positive votes is denoted by s =
∑
i∈N

∑
a∈M

sai .

Generic configurations will be denoted by S, T. We will write S ≤ T if sai ≤ t
a
i for any

i ∈N , a ∈M. Matrix Imn is the n×m matrix of 1, and Om
n is the n×m matrix of 0.

A multi-dimensional rule specifies the configurations of Zm
n that lead to a posi-

tive final outcome and those that lead to a negative outcome. We refer to the configu-

rations that lead to a positive outcome as winning configurations (the other ones are

referred to as losing configurations). A voting rule can be represented by a function

1Note that, in general, voters have no preference as to the outcome. There is no strategic consider-
ation.
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w that associates a value 0 to losing configurations and 1 to winning configurations.

Some properties are required. Basically, we extend the properties displayed by a

single dimension binary voting rule.

Definition 1. A multi-dimensional rule with n voters and m dimensions is a function

w : Z
m
n → {0,1}

S 7−→w(S)

that satisfies the following properties:

1. Positive unanimity: w(Imn ) = 1.

2. Negative unanimity: w(Om
n ) = 0.

3. Monotonicity: w(S) = 1⇒w(T) = 1 for any S ≤ T.

Positive unanimity requires that if all voters vote ‘yes’ on all dimensions, the

outcome should be positive. Negative unanimity requires that if all voters vote ‘no’

on all dimensions, the outcome should be negative. Monotonicity requires that if a

vote configuration is winning then, any other configuration with more support by

all voters is also winning.

The monotonicity allows us to define a minimal winning configuration: S is mini-

mal winning if w(S) = 1 and for any configuration T , S with T ≤ S we have w(T) = 0.

LetM(w) be the set of minimal winning configurations of rule w. It is another pos-

sible representation of the voting rule.

When there is a single voter (n = 1), we refer to the rule as a decision rule and it

is denoted by d. We have
d : Z

m
1 → {0,1}
Si→d(Si),

.

Similarly, when there is a single dimension, we refer to the rule as a voting rule

and it is v. Again we have

v : Z
1
n→ {0,1}
Sa→v(Sa).

The set of minimal winning configurations of a decision (voting) rule is denoted by

M(d) (M(v)). Both d and v satisfy the properties of unanimity and monotonicity.
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3 Separable Multi-dimensional rules

Some multi-dimensional rules can be represented as a composition of voting and

decision rules. They are separable in the sense that the vote can be decomposed

dimension by dimension or voter by voter. More precisely, if w is dimension sepa-

rable, the rule can be decomposed into two stages: in the first stage, a vote on each

dimension is held and then, a decision is made among the different dimensions. In

the introductory example, the assessments of the experts would first be aggregated

criterion by criterion to obtain a global evaluation in terms of performance, ability to

work in a team, and leadership. Then, the three criteria would be aggregated. If w is

voter-separable then, the rule can be decomposed into two stages: in the first stage,

the decision per voter is determined, and, in the second stage, the final vote is cast

among voters. In the example, each expert would first form their own evaluation of

the candidate. Next, the experts’ opinions would be aggregated.

Definition 2. Let w : Zm
n → {0,1} be a multi-dimensional rule. If there exist m voting

rules v1, ..., vm : Z1
n → {0,1} and one decision rule d : Zm

1 → {0,1}, such that for any
S ∈Zm

n we have w(S) = d(v1(S1), ...,vm(Sm)) then, we say that w is dimension-separable,
and write w = d

[
v1, ...,vm

]
.

vm...v1

d

Definition 3. Let w : Zm
n → {0,1} be a voting rule. If there exist n decision rules d1,

..., dn : Zm
1 → {0,1} and one voting rule v : Z1

n → {0,1}, such that for any S ∈Zm
n we

have w(S) = v((d1(S1), ...,dn(Sn))T ) then, we say that w is voter-separable, and write w =

v [d1, ...,dn].
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dn

...

d1

v

Several questions arise with separability. The first question is whether all rules

are separable. The answer is negative: all possible cases can occur as will be illus-

trated in Section 5; we will provide examples of rules that are dimension-separable

but not voter-separable or voter-separable but not dimension-separable (rules w1

and w4), and examples of rules that are both dimension- and voter-separable (rules

w3 and w6) or neither dimension- nor voter-separable (rules w2 and w5).

Nevertheless, we have some necessary conditions for a multi-dimensional rule to

be dimension- or voter-separable.

Definition 4. Consider a multi-dimensional rule w represented by its minimal winning
configurations M(w). Let Sa(w) be the set of the ath columns of its minimal winning
configurations that are non-null. That is, for a = 1, ...m, let Sa(w) = {Sa ,O1

n |S ∈M(w) }.
A multi-dimensional rule satisfies condition α when w(T) = 1 for any T such that for any
a = 1, ...m we have T a ∈ Sa(w) .

We first give a necessary condition to ensure that a multi-dimensional rule is

dimension-separable.

Proposition 1. If a multi-dimensional rule is dimension-separable then condition α is
satisfied.

Proof. Consider a configuration T such that T a ∈ Sa(w) for any a = 1, ...,m. There

exists S ∈M(w) such that Sa = T a with w(S) = 1 and w(S̃) = 0 where S̃a = O1
n and S̃b =

Sb for b , a. Moreover, w is dimension separable, i.e. w(S) = d(v1(S1), ...,vm(Sm)) = 1,

and w(S̃) = d(v1(S̃1), ...,vm(S̃m)) = 0. The only difference is S̃a , Sa and S̃a = O1
n.

Thus, va(Sa) = 1. Since T a = Sa, it follows that w(T) = d(Im1 ) = 1.

According to this proposition, any configuration built from columns of mini-

mal winning configurations has to be winning when the multi-dimensional rule is
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dimension-separable. For some special rules, condition α is a necessary and suffi-

cient condition.

Proposition 2. Let a multi-dimensional rule w such that for all minimal winning con-
figurations S ∈M(w) Sa ,O1

n, for any a ∈M. We have: w is dimension-separable if and
only if condition α is verified.

Proof. Necessary condition:
Same proof as in Proposition 1.

Sufficient condition:
Let us assume that for any configuration T such that T a ∈ Sa(w), w(T) = 1.

Let us constructm voting rules v1, ..., vm : Z1
n→ {0,1} and one decision rule d : Zm

1 →
{0,1}, such that for any S ∈Zm

n we have w(S) = d(v1(S1), ...,vm(Sm)) .

For any Sa ∈Z1
n choose va(Sa) = 1 if and only if there exists S̃a ∈ Sa(w) with Sa ≥ S̃a,

and for any R ∈ZM
1 let d(R) = 1 if and only if R = Im1 .

First, we have to show that v1, ..., vm and d satisfy the properties of voting rules

and a decision rule respectively. For any a ∈M : va(01
n) = 0 since 01

n < Sa(w); va(I1
n) =

1 since there exist some Sa ⊆ I1
n with Sa ∈ Sa(w); and va is monotonic by construction.

For d it is obvious that all properties are satisfied since d is the unanimity rule.

Second, we have to show that w(S) = d(v1(S1), ...,vm(Sm)) . This is the case given

that d is the unanimity rule: we have w(S) = 1 if and only if va(Sa) = 1 for all a ∈M.

From the proof it can be seen that whenever there is a non-null column among the

minimal winning configurations, whenever w is dimension-separable, the decision

rule is the unanimity rule. Then, we obtain as a corollary the following result:

Corollary 1. Let a multi-dimensional rule w such that for all minimal winning config-
urations S ∈ M(w), Sa , O1

n for any a ∈M. If w is dimension-separable then, w can be
written as w = d

[
v1, ...,vm

]
withM(va) = {Sa ∈Z1

n |Sa ∈ Sa(w) } andM(d) =
{
Im1

}
.

A similar approach can be adopted for voter-separability.

Definition 5. Consider a multi-dimensional rule w represented by its minimal winning
configurationsM(w). Let Si(w) be the set of the ith rows of its minimal winning config-
urations. That is, for i = 1, ...n, let Si(w) = {Si , Om

1 |S ∈M(w) }. A multi-dimensional
rule satisfies condition β when w(T) = 1 for any T such that for any i = 1, ...n we have
Ti ∈ Si(w).
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Proposition 3. If a multi-dimensional rule is voter-separable then condition β is satisfied.

Proof. The proof is similar to the proof of the dimension rule.

Proposition 4. Let a multi-dimensional rule w such that for all minimal winning config-
urations S ∈M(w) , Si , Om

1 for any i ∈ N . w is voter-separable if and only if condition
β is satisfied.

Proof. The proof is similar to the proof of the dimension rule.

Again, the same observation can be made: whenever there are non-null rows

among the minimal winning configurations and the rule is voter-separable then, the

voting rule is the unanimity rule.

Corollary 2. Let a multi-dimensional rule w such that for all minimal winning configu-
rations S ∈M(w) , Si ,Om

1 for any i ∈ N . If w is voter-separable then, w can be written
as w = v [d1, ...,dn] withM(di) = {Si ∈Zm

1 |Si ∈ Si(w) } andM(v) =
{
I1
n

}
.

Let us now make some remarks about the separability of some multi-dimensional

rules.

Remark 1. If |M(w)| = 1 then w is dimension-separable and voter-separable. This proof
follows from the definition of voter and dimension separability.

Remark 2. IfM(w) = {S | s = 1} then w is dimension- and voter-separable. Rule w can
be written as w = d1 [v1, ...,v1] and w = v1 [d1, ...,d1] withM(d1) = {Si ∈ Zm

1 |si = 1 } and
M(v1) = {Sa ∈Z1

n |sa = 1 }.
A rule, in which the minimum requirement for a minimal configuration is to have one

positive vote regardless of the number of dimensions and voters, is dimension- and voter-
separable. Note that this is not true when more that one positive vote is the minimum
requirement (see w2).

Remark 3. IfM(w) = {S | s1 =, ... = sm = k} then w is dimension-separable. Rule w can
be written as w = d [v1, ...,v1] withM(d) =

{
Im1

}
andM(v1) = {Sa ∈Z1

n |sa = k }.

Remark 4. If M(w) = {S | s1 = ... = sn = t} then w is voter-separable. Rule w can be
written as w = v [d1, ...,d1] withM(d1) = {Si ∈Zm

1 |si = t } andM(v) =
{
I1
n

}
.

Remark 3 (respectively 4) concerns rules where for all configurations we want at

least k (respectively t) positive votes by dimension (resp. voter) for each dimension
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(resp. voter). Note that it is easy to show, with Proposition 1 (resp. 3), that these

rules are not voter- (resp. dimension) separable.

The following remark concerns rules where for each winning configuration we

want a positive vote for all voters for at least t dimensions.

Remark 5. IfM(w) = {S | sa = n for t columns} then w is dimension-separable and can
be written as w = d [v1, ...,v1] withM(d) = {Si ∈Zm

1 |si = t } andM(v1) =
{
I1
n

}
.

The converse is also true, i.e rules where a positive vote is necessary for all di-

mensions for at least i voters, are voter-separable.

Remark 6. Let M(w) = {S | si = m for p rows} then w is voter-separable with w =

v [d1, ...,d1]withM(d1) = {(1, ...,1)} andM(v) = {Sa |sa = p }.

Links to the social choice paradox

Note that we may have v [d, ..,d] , d [v, ...,v], even with n = m and S ∈ M(d)⇔ ST ∈
M(v). In the example, the result may be different if, as a first step, experts make

their global opinion on the candidate (by aggregating the three criteria by simple

majority) and, in the second step, the global opinions of the experts are aggregated

by simple majority; or if, in the first step, each criterion is globally evaluated and, in

the second step, the criteria are aggregated.

Consider n =m = 3 and d, and v being simple majorities.

Example 1. Let wsm,w̄sm : Z3
3→ {0,1}with wsm = dsm [vsm,vsm,vsm] and w̄sm = vsm [dsm,dsm,dsm]

withM(d) =
{
(1,1,0), (1,0,1), (0,1,1)

}
andM(v) =

{
(

1

1

0

), (
1

0

1

), (
0

1

1

)
}
. These two rules

do not coincide as we can find a configuration such that wsm(S) , w̄sm(S). Choose

S =


1 1 0

1 0 0

0 1 0

 . We have vsm


1

1

0

 = 1, vsm


1

0

1

 = 1, vsm


0

0

0

 = 0, dsm(1,1,0) = 1,

and thus wsm(S) = 1. Likewise, we have dsm(1,1,0) = 1, dsm(1,0,0) = 0, dsm(0,1,0) = 0,

vsm


1

0

0

 = 0 and thus, w̄sm(S) = 0.

This result is related to the discursive dilemma or the doctrinal paradox (see

List and Puppe [2009]) in judgment aggregation. It is referred to as the Ostrogorski
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paradox (Ostrogorski [1970]) in social choice theory: the paradox holds whenever

v [d, ..,d] , d [v, ...,v] where d and v are simple majorities. A majority of voters who

vote positively on a majority of issues is not equivalent to a majority of issues on

which a majority of voters vote positively.

How can we go further in the analysis of the Ostrogorski paradox? In Social

Choice literature, many authors propose an answer to these questions. Deb and

Kesley [1987] provide a necessary and sufficient condition for the appearance of the

paradox, which is based on the number of voters and dimensions. The Ostrogorski

paradox may prevail if and only if n.m− 6.m.x − 2.n.y − 4xy ≥ 0, where x (resp. y)= 1

if n (resp. m) is even, and x (resp. y)= 0.5 if n (resp. m) is odd. Such a condition

implies that the paradox is almost unavoidable unless restricted to low-dimensional

voting problems. For example, it is easy to show that form = 2, the paradox does not

hold. Mbih and Valeu [2016] evaluate the likelihood of the paradox under classical

probabilistic models. One of their main conclusions is that the occurrence of the

paradox increases when both the number of voters and issues rise, conjecturing a

limit value around 30%. Laffond and Lainé [2006] choose to introduce a restriction

in the domain of admissible preferences of the voters. They prove that, for any

number of candidates and voters, there is no paradox if the vote in the configuration

is ”single-switch”. This means that for each voter there is an ordering of the votes on

all dimensions such that all votes exhibit a unique switch between a positive one and

a negative one. Another way to avoid the paradox is to go beyond the simple majority

rule. Deb and Kesley [1987] also show that the avoidance of the Ostrogorski paradox

normally requires very large qualified majorities in determining the winners on each

dimension 2.

Another related paradox is the referendum paradox (see Laffond and Lainé [2000])

in which two-stage majorities are not equivalent to a global majority. Again,we have

an example with n =m = 3.

Example 2. Let ẇsm ∈Z3
3→ {0,1}with ẇsm(S) =

 1 if s > 4

0 otherwise
and wsm ∈Z3

3→ {0,1}:

wsm = dsm [vsm,vsm,vsm]. We have ẇsm , wsm as we can find a configuration such that

wsm(S) , ẇsm(S). Choosing again S =


1 1 0

1 0 0

0 1 0

 we have ẇsm(S) = 0 and wsm(S) = 1.

2Deb and Kesley [1987] introduce a generalized Ostrogorski paradox, in which the simple majori-
ties are replaced by qualified majorities.
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It is evident that one condition to avoid the paradox is to have a global rule

which is dimension-separable. Now consider the rules given byM(w) = {S, ..., S̄}with

s ≥ n.m
2 , ..., s̄ ≥ n.m

2 . According to Remark 2, such rules are not dimension-separable,

meaning that the paradox cannot be avoided with qualified majorities for the global

rule. However, as suggested by Laffond and Lainé [2000], a global rule where we

have at least 75% of positive votes by dimension is immune to the paradox regard-

less of the decision rule.

Proposition 5. LetM(w) = {S | sa = 3
4 .n for all a} then w can be written as w = d

[
v 3

4
,v 3

4
,v 3

4

]
where v 3

4
the 3

4−majority withM(v 3
4
) = {Sa ∈Z1

n

∣∣∣sa = 3
4 .n }.

Proof. See Laffond and Lainé [2000]

4 Weighted Multi-dimensional rule

In students evaluations, different periods and different subjects may be weighted

differently: some tests may be more important than others. Therefore, we introduce

a multi-dimensional weighted rule.

A multi-dimensional rule with n voters and m dimensions

w : Z
m
n → {0,1}

S 7−→w(S)

is weighted if there exist a quota q and a m ∗ n matrix U = (uai )i∈N,a∈M such that

w(S) = 1 if and only if u(S) ≥ q where u(S) =
∑
i∈N

∑
a∈M

uai s
a
i . We denote a weighted rule

by w ≡ [q;U ].

Particular cases include weighted voting rules (n = 1) and weighted decision rules

(m = 1). In a weighted voting rule, each vote has a specific weight and in a weighted

decision rule, each dimension is weighted.

Taylor and Zwicker [1992, 1999] prove that a voting rule is weighted if and only

if the voting rule is trade robust.3 The meaning of this theorem is very simple:

consider a voting rule with two winning coalitions. Assume that there is an exchange

of simply two voters between the two winning coalitions. According to the trade

3Theorem A in Taylor and Zwicker [1992] concerns all voting rule whereas Theorem 2.4.2 in Taylor
and Zwicker [1999] is given for monotonic voting rules.
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robust property, at least one of the coalitions should still be a winning configuration

after the trade, which is consistent with the fact that the simple game is weighted. It

is indeed the case since one of the coalitions must have lost weight to become a loser

as the result of an exchange, which led the other to gain weight, therefore reinforcing

its winning position.

We first generalize the notion of trade robustness.

Definition 6. A sequence of voting configurations C = (S, ..., S̄) is a trading transform if it
can be converted into a sequence C′ = (T, ..., T̄) by trading votes, with |C| = |C′ |. Formally,∑

S∈C
sai =

∑
T∈C′

tai for all i ∈N and all a ∈M

Example 3. Three subjects (n = 3) are taught over three semesters (m = 3). Let two voting

configurations S =


1 1 0

1 0 1

0 1 0

 and S̄ =


0 1 1

1 0 1

1 0 0

 and two other configurations T =


0 1 0

1 0 1

1 1 0

 and T̄ =


1 1 1

1 0 1

0 0 0

 obtained from S and S̄ by the trade of s11 and s̄11 and

the trade of s13 and s̄13 .

The notion of trade robustness for multi-dimensional rules is given by the fol-

lowing definition.

Definition 7. A multi-dimensional rule is trade robust if, for a sequence C of winning
configurations, and a sequence C′ obtained from C by trades, at least one configuration in
C′ is winning.

Once again, consider a rule with only two winning configurations. Let a trade in

which a voter exchanges a positive vote in the first winning configuration for a neg-

ative vote in the second. This trade can transform the two winning configurations

into two losing configurations, though not if the rule is weighted. Intuitively, the

loss of weight (negative vote instead of a positive vote) in the first configuration im-

plies a gain of weight in the second winning configuration, which cannot be a losing

configuration.

We can now generalize Theorem 2.4.2 of Taylor and Zwicker [1999] results in the

context of multi-dimensional rules.

Theorem 1. A multi-dimensional rule w is weighted if and only if w is trade robust.

12



Proof. The proof is in the appendix.

Note that our result is true only for monotonic multi-dimensional rules. How-

ever, one can easily extend our result to rules without the monotonicity condi-

tion. Note also that the proof makes no reference to the unanimity conditions. So

one can rule out these two conditions in a more generalized definition of a multi-

dimensional rule, and then directly extend Theorem A of Taylor and Zwicker [1992].

Definition 8. Generalized rules

• A generalized multi-dimensional rule denoted by ŵ will be any triple (N,M,W (ŵ))

withW (ŵ) being an arbitrary collection of configurations.

• A generalized voting rule denoted by v̂ will be any pair (N,W (v̂)) withW (v̂) being
an arbitrary collection of configurations with only one dimension.

Theorem 2. A generalized multi-dimensional rule ŵ is weighted if and only if ŵ is trade
robust. 4

We omit the the proof as it is similar to the one of Theorem 1 ( it only uses

Theorem A of Taylor and Zwicker [1992] in the (⇐) part).

5 Weightedness versus separability

The following examples illustrate that the notions of separability and weightedness

are different. Each of them is defined by its set of minimal winning configurations.

Consider that two subjects (n = 2) are taught in m periods. Rules w1 to w4 in-

volve 2 periods. Rule w5 is concerned with three periods, whereas rule w6 deals

with five periods. Every semester, there is a test on each subject, with sai = 1 if the

student passes test i in semester a (and sai = 0 if the student fails). Rule w ultimately

determines the student’s success.

For each rule, we examine the separability, or not, and the weightedness, or not.

1. (w1): the student has to be successful in both subjects in at least one semester

in order to pass;

M(w1) =


 1 0

1 0

 , 0 1

0 1


 .

4The definition of trade robustness is independent of the class of games defined.
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Rule w1 is dimension-separable (see Remark 5); but w1 is not voter-separable

since we have w

 1 0

0 1

 = 0, a contradiction with Proposition 3. w1 is not

weighted either, as can be shown by choosing S̃ =

 1 0

1 0

 , S̄ =

 0 1

0 1

 , T̃ = 1 1

0 0

 and T̄ =

 0 0

1 1

.

By symmetry of separability properties, one can easily find a rule which is not

dimension-separable, not weighted but voter-separable.

2. (w2) at least three tests (no matter the period or the subject)

M(w2) =


 1 1

1 0

 , 1 1

0 1

 1 0

1 1

 , 0 1

1 1


 .

Rule w2 is not dimension-separable since we have w

 1 1

0 0

 = 0 a contra-

diction with Proposition 1. w2 is not voter-separable either since we have

w

 1 0

1 0

 = 0, a contradiction with Proposition 3. Finally, w2 is weighted

as illustrated by a quota q = 6 and U =

 2 2

2 2

.

3. (w3) all tests

M(w3) =


 1 1

1 1


 .

Based on Remark 1, w3 is both dimension- and voter-separable. Taking q = 8

and u =

 2 2

2 2

 show that w3 is weighted.

4. (w4) in the first subject, the test in the first period is compulsory, as is at least

one test in the second period;

M(w4) =


 1 1

0 0

 ,

 1 0

0 1


 .
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w4 can be written w4 = d4

[
va4,v

b
4

]
with M(d4) =

{
Im1

}
, M(va4) =

{
(

1

0
)
}

and

M(vb4) =
{
(

1

0
), (

0

1
)
}
. w4 is not voter-separable since we have w

 1 0

1 0

 = 0, a

contradiction with Proposition 3. Rule w4 is weighted, as illustrated with q = 6

and U =

 4 2

1 2

.

Once again, by symmetry, one can easily find a weighted rule which is voter-

separable but not dimension-separable.

5. (w5) at least three tests for the first two periods and at least one test for the

third period (regardless of the subjects).

M(w5) =


 1 1 1

1 0 0

 , 1 1 0

1 0 1

 , 1 1 1

0 1 0

 , 1 1 0

0 1 1

 , 1 0 1

1 1 0

 , 1 0 0

1 1 1

 , 0 1 1

1 1 0

 , 0 1 0

1 1 1



.

w5 is not dimension-separable since w

 1 0 1

0 1 1

 = 0, a contradiction with 1.

w5 is not voter-separable since w

 0 1 1

1 0 1

 = 0, a contradiction with Propo-

sition 3. Moreover, w5 is not weighted as it can be illustrated by taking S̃ = 1 1 0

1 0 1

, S̄ =

 1 0 1

1 1 0

, T̃ =

 1 1 0

1 1 0

 and T̄ =

 1 0 1

1 0 1

.

6. (w6) for subject one, at least 2 tests during the first three semesters and at least

one test in the last two semesters; it is of no importance for subject two

M(w6) =



 1 1 0 1 0

0 0 0 0 0

 , 1 0 1 1 0

0 0 0 0 0

 , 0 1 1 1 0

0 0 0 0 0


 1 1 0 0 1

0 0 0 0 0

 , 1 0 1 0 1

0 0 0 0 0

 , 0 1 1 0 1

0 0 0 0 0




.

Rule w6 can be written as w6 = d6 [v6,v6,v6,v6,v6] = v6 [d6,d6] with M(d6) =
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{
(1,1,0,1,0), (1,1,0,0,1), (1,0,1,1,0), (1,0,1,0,1), (0,1,1,1,0), (0,1,1,0,1)

}
andM(v6) ={ 1

0

}. Rule w6 is not weighted as illustrated by choosing S̃ =

 1 1 0 1 0

0 0 0 0 0

,

S̄ =

 1 0 1 0 1

0 0 0 0 0

, T̃ =

 1 1 1 0 0

0 0 0 0 0

 and T̄ =

 1 0 0 1 1

0 0 0 0 0

.

The following table summarizes the previous results.

Table 1: Rules Comparison

Weighted Dimension separable V oter separable

w1 no (no) yes (no) no (yes)
w2 yes no no
w3 yes yes yes
w4 yes (yes) yes (no) no (yes)
w5 no no no
w6 no yes yes

Appendix

Proof of Theorem 1

Proof. (⇒) Assume w is a weighted multi-dimensional rule, let C = (S, ..., S̄) be a

sequence of winning configurations, and C′ = (T, ..., T̄) be a second sequence of con-

figurations obtained from C by trades. Note that the sum u(S) + ... + u(S̄) can be

rewritten as
∑

S∈C

∑
i∈N

∑
a∈M

uai s
a
i , that is

∑
a∈M

∑
i∈N

uai (
∑

S∈C s
a
i ). By definition,

∑
S∈C

sai =
∑

T∈C′
tai

for all i ∈N and all a ∈M it follows that u(S) + ...+u(S̄) = u(T) + ...+u(T̄).

Now consider u(T̂) =max{u(T)|T ∈ C′}. We have u(T̂) ≥ u(S)+...+u(S̄)
|C| ≥ q.|C|

|S| = q.

Then, T̂ is winning and w is trade robust.

(⇐) Assume w is trade robust. We define a voting rule v∗(w) with n ∗m voters by

replicating m times the set of voters (one per dimension). Let N ∗ = N 1 ∪ ...∪Nm be

the set of n ∗m voters. Let S∗ = ((S1)T , ..., (Sm)T )). Consider now the voting rule with

n ∗m voters, defined on N ∗ by

M(v∗(w)) = {S∗ ∈M(v∗(w))⇔ S ∈M(w)}
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If w is trade robust then by definition, v∗(w) is trade robust. It follows by The-

orem 2.4.2 of Taylor and Zwicker [1999] that v∗(w) is weighted: v∗(w) ≡ [q;U ∗],

with U ∗ = (u1
1 , ...,u

m
n ) where uai is the weight assigned to the member in N ∗ for each

1 ≤ a ≤m and 1 ≤ i ≤ n. From U ∗ we define U =


u1

1 · · · um1
: :

u1
n · · · umn

. It follows that w is

weighted.

This concludes the proof.
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