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Abstract. We show how a hyperbolic surface code could be used for overhead-

efficient quantum storage. We give numerical evidence for a noise threshold of 1.3% for

the {4, 5}-hyperbolic surface code in a phenomenological noise model (as compared to

2.9% for the toric code). In this code family parity checks are of weight 4 and 5 while

each qubit participates in 4 different parity checks. We introduce a family of semi-

hyperbolic codes which interpolate between the toric code and the {4, 5}-hyperbolic

surface code in terms of encoding rate and threshold. We show how these hyperbolic

codes outperform the toric code in terms of qubit overhead for a target logical error

probability. We show how Dehn twists and lattice code surgery can be used to read

and write individual qubits to this quantum storage medium.

1. Introduction

The surface code has become a preferred coding architecture due to its high noise

threshold and its relatively simple use of 2D connectivity between qubits. For the

surface code, both parity check weight and qubit degree (meaning the number of parity

checks that a qubit participates in) are low, namely 4. Together with code deformation

to perform Clifford gates and techniques such as magic state distillation, the surface

code could be used as a coding platform for universal computation, see e.g. [1, 2] and

references therein.

One disadvantage of the surface code is its spatial overhead: the number of physical

qubits per logical qubit that allow one to achieve a certain logical error probability. For

classical or quantum storage the use of block codes which encode k logical qubits into n

physical qubits can lead to qubit overhead savings. The use of block codes in quantum

computation was previously considered in [3] and [4]. Since two-dimensional topological

quantum codes based on Euclidean tilings have to obey the Bravyi-Terhal-Poulin bound

kd2 ≤ cn for some constant c, the savings of such block codes are limited (see e.g. [5]).
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Hyperbolic surface codes based on tilings of a closed hyperbolic surface are not limited

by this bound. They are families of codes with an asymptotically constant rate k/n ≥ c1
while the distance d of these codes can be lower bounded by c2 log n for some constants

c1 and c2 [6]. Delfosse [7] has proved that this logarithmic scaling of the distance is

the best one can get for codes based on closed two-dimensional surfaces: the general

trade-off bound is kd2 ≤ c(log k)2n with a constant c.

In previous work [6] we have shown how to construct families of hyperbolic surface

codes and we have presented numerical evidence for their noise threshold with respect

to Pauli noise and the encoding overhead for a given logical error probability in case

of noise-free parity check measurements. In [8] the authors numerically determine

thresholds against erasure errors for large hyperbolic codes. In this work we focus

on a particular promising family of hyperbolic surface codes, namely codes based on a

{4, 5}-tiling and extend the results to noisy parity checks. We exhibit some of the large

overhead savings that one may get from using these codes.

The price to pay for these codes is that they require a connectivity between physical

qubits that is not geometrically local in 2D Euclidean space. However, 2D connectivity

is not a necessity for some qubit implementations such as trapped ions or NV-centers

linked via photonic couplings [9, 10, 11, 12] or silicon photonic architectures [13]. For

these architectures a reasonable scalability criterion would be to demand a low, constant

connectivity between qubits.

In the remainder of this section we will review hyperbolic surface codes and the

modification to what we call semi-hyperbolic surface codes. The class of semi-hyperbolic

surface codes allows one to interpolate between the logarithmic distance scaling log n

of the hyperbolic codes and the
√
n scaling of the surface code as well as interpolate

between the thresholds of these code families.

In Section 2 we then consider the performance of these codes in the presence of

both qubit and measurement errors. In previous work [6] we considered noiseless parity

checks and found a considerably worse threshold for hyperbolic codes as compared to

the surface code. One of the interesting findings of this paper is that for noisy parity

checks the performance of hyperbolic surface codes is much more comparable to the

surface code itself. In Section 2.2 we analyze the logical error probability borrowing

some ideas from [14].

In Section 3 we quantify how much overhead savings are possible. We do this

numerically and semi-analytically: we provide an approximate formula for the logical

error probability which works well in the low error rate regime.

One important question to address is how one can compute on individual qubits

stored in a block code. In Section 4 we present our ideas on how can read or write

qubits from storage, using Dehn twists to move qubits around in storage. Our proposed

methods keep constant connectivity between qubits at all steps, as well retaining the

qubit overhead savings. We close the paper with a discussion and open questions on

embedding hyperbolic surface codes in a Euclidean bilayer or 3D space and further

exploration of these codes.
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1.1. Hyperbolic Surface Codes

Hyperbolic surface codes are, like the toric code, examples of homological CSS codes

[15, 16]. In principle one can obtain a CSS surface code by gluing polygons together

at their edges to form a surface. One puts qubits on the edges of these polygons and

associates Z-checks with each polygon face, acting on the edges of the polygon. One

associates an X-check with each vertex where some polygons meet such that the X-check

acts on all edges emanating from the vertex. In order to encode logical information, one

needs to either (1) punch holes in the created surface, or (2) create boundaries on which

logical operators can terminate or (3) identify polygons to make the whole object a closed

surface with handles. But such a construction is not a systematic way to obtain code

families with certain guaranteed properties in terms of distance or rate, while hyperbolic

surface codes do offer a systematic construction. A family of hyperbolic surface codes

can be obtained as follows (see Appendix A for more details). First, one chooses a

regular tiling of the hyperbolic plane, given by its Schläfli symbol {r, s}. The Schläfli

symbol indicates that r regular s-gons meet at each vertex of the tiling. The only regular

tilings that give a flat surface are {4, 4} (square lattice) and {6, 3} (hexagonal lattice) or

its dual {3, 6} (triangular lattice). If one chooses any r and s for which 1/r+ 1/s < 1/2

one obtains a tiling of hyperbolic space with negative curvature. In this paper we will

focus on the {4, 5}-tiling, meaning that five squares meet at each vertex, as it has more

favorable properties [6] and is the most similar to the toric code. In order to encode

qubits the tiled surface has to be topologically non-trivial. We will only consider the

case where we have a tiled, closed surface with many handles. For such a surface with

edges E, faces F and vertices V , the number of edges n = |E| equals the total number of

qubits. The number of parity Z-checks equals |F | and each parity Z-check is of weight

r. The number of parity X-checks equals |V | and each parity X-check, corresponding

to a vertex, acts on s qubits. Such a code encodes k = 2g logical qubits, where g is

the number of handles (genus) of the surface. The parameters [[n, k, d]] of the code are

determined by how the hyperbolic surface is closed. In Appendix A we review how this

closing procedure works. More details can be found in [6].

As a concrete example one can consider a {3, 7}-tiling of a genus 3 surface called

the Klein quartic. The Klein quartic quantum code has parameters [[84, 6, 4]] and an

embedding of the surface in 3D is shown at http://math.ucr.edu/home/baez/klein.

html. In Figure 20 in the Discussion we show an explicit embedding of this tiling in a

two-dimensional bilayer. In [17] (see also [18]) the distances of hyperbolic codes based

on {3, 7}-tilings were studied.

For the {4, 5}-tiling the smallest four examples are [[60, 8, 4]], [[160, 18, 6]],

[[360, 38, 8]] and [[1800, 182, 10]] with an asymptotic rate k/n → 1/10 (see Table

1). In Figure 1 we show the smallest code [[60, 8, 4]] with respect to the dual tiling

{5, 4}. This code has a nice representation in 3D as a self-intersecting star polyhedron.

Other small quantum codes could be constructed from such polyhedra with non-trivial

genus (see listings on Wikipedia). The distance of these various small codes based on

http://math.ucr.edu/home/baez/klein.html
http://math.ucr.edu/home/baez/klein.html
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their corresponding surfaces can be computed with the method in Appendix B. The

polyhedral representation immediately suggests a 3D qubit layout.

(a) Tiling of a genus 4 surface with the {5, 4}-lattice (which is dual to the {4, 5}-
lattice). Edges with the same label are identified. For the code that we analyze the

X-checks are given by faces and the Z-checks by vertices. A X of weight 6 and a Z

of length 4 are highlighted.

(b) Weight-6 X. (c) Weight-6 X. (d) Weight-4 Z.

Figure 1: The smallest code based on a {4, 5}-tiling has parameters [[60, 8, 4]] and

is related to the so called dodecadodecahedron. This can be seen as follows: We use

the dual {5, 4}-tiling where four pentagons meet at every vertex. Half of the faces

(red) are deformed into pentagrams with self-intersecting edges, see (a). Arranging the

vertices on the surface of a sphere and allowing for self-intersecting faces, gives the

dodecadodecahedron, see (b-d). A vertex is highlighted by a dot in order to show that

one can label some of the logical operators by the 30 vertices (see Appendix B).



Hyperbolic and Semi-Hyperbolic Surface Codes for Quantum Storage 5

Figure 2: The {4, 5}-lattice with some faces replaced by a 3× 3 square grid.

1.2. Semi-Hyperbolic Surface Codes

Consider a regular tiling of a closed, hyperbolic surface with Schläfli-symbol {4, q}
(q ≥ 5), given by a set of vertices V , edges E and faces F . In a {4, q}-tiling it holds that

|E| = q|V |/2 = 2|F |. Associated with this tiling is a {4, q}-hyperbolic surface code with

parameters [[nh, kh, dh]]. We define a new tiling with the same topology by taking every

face and tiling it with an l × l square-grid lattice (see Figure 2). Essentially we replace

each square by a {4, 4}-tiling of a 2D flat space, weakening the negative curvature.

We call this new lattice semi-hyperbolic having vertices Vsh, edges Esh and faces

Fsh with

|Vsh| = |F |l2 = q|V |l2/4,
|Esh| = |F | × 2l2 = |E|l2, (1)

|Fsh| = |F |l2.

From (1) it immediately follows that nsh = nhl
2. The number of encoded qubits in the

hyperbolic surface code is determined by the topology of the surface which is unchanged,

hence ksh = kh. For semi-hyperbolic codes, all Z-checks have weight 4 while there are

two types of X-checks, namely the ones of weight q of the original code and the new

checks of weight 4 of which there are |V |(ql2/4− 1) (see Figure 3). One can efficiently

compute (in poly(n) steps) the distance of Z and X for CSS surface codes [19]. We

review this algorithm to compute distances and its uses in Appendix B. Our results

are listed in Table 1. They support the conjecture that the Z-distance of the semi-

hyperbolic code is dsh(Z) = dhl. This would be true if the shortest non-trivial loops go

over the subdivided squares through the vertices of the original hyperbolic code lattice.

We have not been able to prove this however. Table 1 shows that the scaling of the

X-distance is clearly also growing with l although the l-dependence is not as simple as

the conjectured l-dependence of the Z-distance.

With increasing l the ratio of total curvature over the surface area vanishes so one



Hyperbolic and Semi-Hyperbolic Surface Codes for Quantum Storage 6

Z X

Z

Z

Z

X

X

X
Z

Z

Z

Z

X

X

X

X

X

X

X

X

X

X

Z

Z

Z

Z

X

X
X

Toric/Euclidean Hyperbolic Semi-hyperbolic

Figure 3: Local regions in a {4, 4}-lattice (left), {4, 5}-hyperbolic lattice (middle) and

a semi-hyperbolic lattice based on the {4, 5}-lattice (right).

expects that for fixed nh and increasing l a semi-hyperbolic code family has similar

behavior to the toric code in terms of noise threshold. We confirm this in Figure 5 in

Section 3.

nh l n k d(Z) d(X)

60 1 60 8 4 6

60 2 240 8 8 10

60 3 540 8 12 14

60 4 960 8 16 18

60 5 1500 8 20 22

60 10 6000 8 40 42

160 1 160 18 6 8

160 2 640 18 12 14

160 3 1440 18 18 20

160 4 2560 18 24 26

160 5 4000 18 30 32

nh l n k d(Z) d(X)

360 1 360 38 8 8

360 2 1440 38 16 16

360 3 3240 38 24 24

360 4 5760 38 32 32

360 5 9000 38 40 40

1800 1 1800 182 10 10

Table 1: Hyperbolic and semi-hyperbolic surface codes based on the {4, 5}-tiling. We

give the minimum weights d(Z) and d(X) of any logical operator of X-type and Z-type,

the number of qubits nh of the purely hyperbolic code, the total number of qubits n of

the (semi)-hyperbolic code, and the parameter l used for the l× l-tiling of every square

face.
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2. Threshold of Hyperbolic Surface Codes with Qubit and Measurement

Errors

We assume that the physical qubits in a code block are subject to a phenomenological

X − Z error model. This means that prior to each QEC step a qubit undergoes an X

error with probability p and a Z error with probability p. The QEC step itself consists

of an instantaneous measurement of all parity checks of the code. We will refer to the

set of 0 and 1 outcomes of these parity checks as the syndrome. We model the noise

in this error correction step by assuming that each parity check is obtained perfectly

and then independently flipped with some probability q. In our numerical studies we

restrict ourselves to q = p.

As with the toric code, one repeats the QEC step some T times and one can infer

errors based on this record using a minimum-weight matching algorithm (MWM). The

hyperbolic code lattices are in general not self-dual and the minimal distance of X is

different from the minimal distance of Z, see Table 1. Hence one runs the decoder

independently on two sets of syndromes, those of X-type and those of Z-type, to

detect and correct for Z and X errors respectively. To correct for X errors we use

the description below where G is the graph associated with the dual lattice of the code.

When parity check measurements are faulty, one modifies the decoding procedure

for noiseless parity checks in a standard manner, first described for the toric code in

[14]. Let G = (V,E) be the graph associated with the code. One makes T + 1 copies of

the graph G: each vertex v in copy Gi is connected to the same vertex v in copy Gi+1

via an edge, obtaining a new graph Gtime, see Figure 4. Each copy represents one QEC

cycle in which a qubit error can take place and the entire faulty syndrome is measured.

The decoding algorithm for Z errors then proceeds as follows:

(i) Mark vertices:

Assume at time t = 0 a fictitious round of perfect QEC (no measurement or qubit

error and thus all syndromes are 0).

• For each QEC cycle at time 1 ≤ t ≤ T , mark a vertex when the syndrome is

different from the previous time t− 1.

• Add a round t = T + 1 with no syndrome error and mark a vertex when the

syndrome is different from the syndrome at T .

The last round ensures that the total number of marked vertices is even: this step

plays the role of ideal decoder and allows one to capture the logical error probability

after T rounds of QEC. One can thus perform minimum weight matching on the

set of marked vertices:

(ii) Perform MWM on marked vertices: For each pair of marked vertices, compute

the minimum distance between them using the graph distance in the graph Gtime.

Feed the set of marked vertices along with the minimal distance paths between

them to the MWM algorithm. The algorithm will output pairs of marked vertices

such that the sum total of the weight of paths between pairs is minimized. The
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inferred error is the shortest path between each pair. This path consists of vertical

edges (parity check measurement errors) and horizontal edges (qubit errors), see

Figure 4.

(iii) Deduce residual errors and determine whether a logical error has

occurred: We infer the errors that remain at time T +1 by projecting the inferred

error to the last time step, obtaining a set of only horizontal edges. A horizontal

edge e is an element of this projected set if it was included an odd number of times

in the matching. We take the real error that has occurred and project it similarly

onto the T + 1 time-slice. The product of the real and inferred Z error is a closed

Z-loop and we check whether it is a logical operator by checking whether it anti-

commutes with any of the X i operators. If it anti-commutes, we declare it a logical

failure.

For a fixed given T this decoding procedure is applied to stochastically-generated Z

errors and repeated N times so that P is estimated as Nfail/N . Next to P one can define

an effective error probability per QEC round Pround, where Pround is simply defined by

the equation (1−Pround)T = 1−P . The quantity Pround can be thought of as the average

probability of a logical error occurring at any time step.

Figure 4: Minimum weight matching for noisy syndromes in a hyperbolic space. For

ease of illustration we are showing the infinite lattice instead of a finite, compactified

one. There are three QEC cycles. Marked vertices are indicated by red dots. The result

of the MWM is indicated by the blue, dashed lines.

When parity checks are noiseless, the decoding routine only has a single round

and one marks the syndrome vertices which are 1. Again we output the logical error

probability P as Nfail/N . This has already been done for hyperbolic codes in [6]. We

will present the results for the semi-hyperbolic codes in the following section.
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2.1. Results on Noiseless Parity Checks

In Figure 5 we present some results for semi-hyperbolic tilings when the underlying

hyperbolic tiling is fixed. The threshold for growing l but fixed nh tends to be that of

the toric code. Intuitively, this result can be understood by observing that this family of

codes deviates from a toric code only around a constant number of vertices (see Figure

3).

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.0
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0.4
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0.8

1.0
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P

nh = 60, l = 1
nh = 60, l = 2
nh = 60, l = 3
nh = 60, l = 5
nh = 60, l = 10

Figure 5: Threshold of a {4, 5}-semi-hyperbolic code family, see Table 1 with k = 8

logical qubits and l = 1, 2, 3, 5, 10, with noise-free parity checks. The case l = 1 is

identical to the original hyperbolic code. The vertical, dashed line marks the threshold

of the toric code at 10.3% and the diagonal dashed line marks p = P .

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.0

0.2

0.4

0.6

0.8

1.0

p

P

nh = 60, l = 1
nh = 160, l = 2
nh = 360, l = 3

Figure 6: Three {4, 5}-semi-hyperbolic codes [[60, 8, 4]], [[640, 18, 12]] and [[3240, 38, 24]]

whose logical error probabilities cross around 7.9%.

Alternatively, we may define a family of semi-hyperbolic codes where we increase
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not only l but also the size of the underlying hyperbolic lattice nh. For example, we can

choose l to be proportional to dh. This gives a family of codes where the encoding rate

k/n is polylogarithmically approaching 0. In Figure 6 we see that for a code based on a

hyperbolic {4, 5}-tiling the lines cross at about 7.9%. This code has a better threshold

than the purely hyperbolic code family [6]. We thus see that semi-hyperbolic codes

allow for some trade-off between optimizing encoding rate and logical error probability.

2.1.1. Optimal Value of T for Noisy Parity Check Measurements When parity check

measurements are noisy, the decoding uses a record of T QEC cycles. In principle

correlating the syndrome record over more rounds of measurements can only improve

the efficiency of the decoder per round thus lowering Pround. In [14, 20] it was shown

that for an L×L toric code subject to the previously described noise model, the benefit

of taking more than T = L rounds of syndrome measurement is negligible. We study

the variation of Pround with T in Figure 7. It can be seen that the improvement between

successive rounds steadily decreases: after T = d rounds it becomes rather small. Hence

we have used T = d in all further simulations.
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(a) Data for [[60,8,4]]
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(b) Data for [[160,18,6]]

Figure 7: Variation of the logical error probability per round Pround with physical error

probability for the {4, 5} lattice.

2.2. Cross-Over Behavior and Upper Bounds on P

We study P for various hyperbolic codes using the decoding method and the noise model

described above. The cross-over point appears to be at around 1.3% which can be seen

in Figure 8. This cross-over point is somewhat lower than the cross-over point (around

2.5%, see [6]) for the same codes when parity check measurements are noiseless. This

result may be surprising if our intuition is informed by the toric code. If syndromes can

be extracted ideally, the threshold of the toric code is at 10.3% [20]. Changing to the
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phenomenological error model the threshold drops considerably, to around 3%, about a

factor of 3 [20].

We can try to understand the threshold behavior by calculating an upper bound

on the failure probability P similar as was done in [14]. We assume that the error

probability for qubit (horizontal) errors as well as measurement (vertical) errors is p.

We are interested in considering when P → 0 for a growing number of qubits n. Let d

be the distance of the hyperbolic code. We will use the bound d ≥ c2 log n for some c2
[6].

Consider error correction for time T for the primal hyperbolic code lattice (hence

pertaining to the probability for Z errors), generating the space-time graph Gtime which

has T |V | vertices. We consider closed self-avoiding walks in Gtime: closed connected

paths which visit each vertex only once. Let such a walk consist of h horizontal edges

and v vertical edges. In order for the walk to represent a homologically non-trivial loop

it is necessary that the number of horizontal edges is larger than the distance h ≥ d.

Let ηtSAP(h, v) denote the number of closed walks (or Self-Avoiding Polygons) with h

and v edges with a specific starting vertex at time-slice t in Gtime. Let E be an actual

error, a collection of horizontal and vertical edges, and let Emin be the chosen correction.

Following the arguments in [14] one can bound

P ≤ |V |
T∑
t=1

∑
v

∑
h≥d

ηtSAP(h, v) × Prob(walk(h, v) is contained in E + Emin),

since logical failure (for any of the encoded qubits) can only happen when

E + Emin contains a homologically non-trivial loop. We use an upperbound on

Prob(walk(h,v) is contained in E + Emin) ≤ 2h+v(p(1 − p))(h+v)/2 = (4p(1 − p))(h+v)/2

derived in [14] which is independent of the form of the lattice. For noiseless parity

checks this upper bound can be used to argue for the existence of a threshold. In this

case one has P q=0 ≤ |V |
∑

h≥d ηSAP(h)αh with α =
√

4p(1− p) < 1. One can assume

that [21] ηSAP(h) ≈ Ahγ−1µhSAP where the connectivity µ, exponent γ and the constant

A depend on the lattice. For a hyperbolic lattice γ is believed to be 1 and bounds exists

on µSAP [22], e.g. for the {5, 4}-tiling it has been proved that for self-avoiding walks

we have 2 ≤ µSAW ≤ (36)1/3 ≈ 3.3 and µSAW ≥ µSAP (see also [21]). The fact that the

overall prefactor in the upper bound on P is expected to be linear in n (i.e. |V | ∼ n)

plays a role in the threshold since the code distance is only logarithmic in n. Using the

conjectured form of ηSAP(h) with γ = 1 and d ≥ bc2 log nc gives

P q=0 ≤ Θ(n)
∑

h≥bc2 lognc

(αµSAP)h . (2)

The upper bound on the r.h.s. is vanishing as Θ(nβ) for n→∞ when

β = 1 + c2 log (αµSAP) < 0. (3)

We cannot estimate the threshold by taking equality in this equation since we do not

know of very good bounds on c2 (see [6] for a brief discussion). The hyperbolic code

threshold for q = 0 has been found to be lower than the toric code. This might be due
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Figure 8: Pround vs qubit and measurement error rate p. The plot above shows Pround

for p in the range 0.5% to 2%. The diagonal dashed line marks Pround = p. The three

largest codes seem to cross between 1.3% and 1.55%.

to two factors. First of all, µSAP is different for a Euclidean versus a hyperbolic lattice,

impacting for what p one meets the condition αµSAP < 1. But possibly more relevant

is the fact that for the hyperbolic codes, (3) tells us that one has to obey the possibly

more stringent condition (αµSAP)c2 < 1/2 in order to be below threshold (given that

the distance is ∼ log n one needs to overcome to ∼ n entropic prefactor). From this

perspective one also expects that the phase transition for hyperbolic codes is different

from than that of the toric code, rather resembling a Kosterlitz-Thouless transition.

We can extend these arguments only roughly to the case q = p assuming that in

general ηSAP(h, v) ≤ poly(l)µl with l = h + v for some µ. Then assuming that αµ < 1

one can upperbound

P q=p ≤ poly(n log n)(µα)c2 logn. (4)

The threshold condition now will depend on the prefactor poly(n log n) which in turn

depends on having more precise knowledge about ηSAP(h, v).

3. Overhead for a Target Logical Error Probability

A concrete application-oriented goal of using finite-size codes is to determine the qubit

overhead given a physical error probability to reach a certain logical error probability

for all encoded qubits, see e.g. [23]. A simple comparison between (semi)-hyperbolic

codes and copies of the toric code can be done by fixing the number of logical qubits k,

the distance d and compare the number of physical qubits n. The toric code parameters

are [[2d2, 2, d]]. To have the same number of encoded qubits we take k/2 copies of the

toric code, each with distance d, so Ntoric = kd2. For the (semi-) hyperbolic codes that
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we have studied one has Nhyper = kd2

c2 log(10k)
assuming the asymptotic rate k/n → 1/10

and a distance d = c2 log n for the {4, 5}-hyperbolic code.

In order to get more insight into the possible savings one can numerically compute

the maximum error probability pmax(P target) such that P ≤ P target for a surface code.

Here P is the logical error probablity after T = d QEC rounds when the code distance

is d.

We have executed this numerical analysis for P target = 10−5, resulting in the values

[[60, 8, 4]]: pmax(10−5) ≈ 1.5× 10−4

[[160,18,6]]: pmax(10−5) ≈ 9.5× 10−4 (5)

[[360,38,8]]: pmax(10−5) ≈ 1.5× 10−3

In order to compare the performance of the hyperbolic codes with the toric code we will

focus on the largest of the three codes which has 38 logical qubits. In order to encode

38 logical qubits using the toric code, one needs 19 torii each with 2L2 physical qubits.

If we choose all torii with L = 3 one has a total of 342 qubits and at p = 1.5 × 10−3

numerical data show that P = (6.8± 0.7)× 10−3 after 3 QEC rounds. Remember, that

P is the probability for any logical qubit to be corrupted. For L = 4 one has 608 qubits

in total and at p = 1.5× 10−3 numerical runs give the estimate P = (9.3± 0.6)× 10−3

after 4 QEC rounds. Given that all 38 logical qubits encoded in the hyperbolic code

with 360 physical qubits have a logical error probability of 10−5 after 8 QEC rounds, it

clearly outperforms these toric codes.

There is a version of the toric code that we will call the rotated toric code which has

a better scaling between distance and number of physical qubits (it can be obtained by

gluing together the boundaries of the rotated surface code). Taking the set [0, L]2 ⊂ R2

and identifying all points (x, 0) ∼ (x, L) and (0, y) ∼ (L, y) for any x, y ∈ [0, L] gives

a torus. Instead of tiling it with a square grid in the canonical way we choose the

vertices of the tiling to be located at integer points (x, y) ∈ {0, ..., L − 1}2 for even x

and (x, y − 1/2) ∈ {0, ..., L − 1} × {1/2, ..., L − 1/2} for odd x. Edges run diagonally

from (x, y) to (x, y+ 1/2) and to (x, y− 1/2). This procedure gives a square grid on the

torus, rotated by 45 degrees. Note that the shortest non-trivial loop following the edges

around the torus has length L while the total number of edges, and hence the number

of qubits in the derived code, is L2 as compared to 2L2 for the regular toric code. The

number of encoded qubits is still 2 as there are two independent, non-trivial loops.

Using 19 rotated toric codes we can either use L = 4 or L = 6 amounting to 304

and 684 physical qubits resp. For L = 4 the logical error probability at p = 1.5× 10−3

is numerically estimated to be P = (2.3 ± 0.1) × 10−2 after 4 QEC rounds. For

L = 6 the logical error probability at p = 1.5 × 10−3 is numerically estimated to be

P = (7.0± 0.2)× 10−4 after 6 QEC rounds.

In order to further estimate the scaling of the logical error probability we write

down an approximate model for the logical error probability in Section 3.1 which we use

in Section 3.2 as the basis for further comparison.
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3.1. Approximation for P in the low error probability limit

We focus on getting an expression for the logical error probability P when the physical

error probability p is low compared to the noise threshold, assuming a minimum-weight

decoding method. This approach has been used for the surface code in [24]. We first

consider the case of noiseless parity checks.

The logical error probability for, say, a Z error is given by summing the probabilities

of any Z-error to occur, times the probability of the decoder to fail on this error. In

order for a minimum-weight decoder to fail, the weight of the error E must be at least

|E| ≥ dd/2e. In other words:

P =
∑

E: |E|≥dd/2e

P (MWM fails on E) p|E|(1− p)n−|E|.

We are interested in the small p regime of P which is a polynomial in p. We

will thus retain only the lowest order pdd/2e term, i.e. P ≈ P q=0
0 where P q=0

0 ≡∑
E: |E|≥dd/2e P (MWM fails on E) p|E|. The errors of weight dd/2e on which the

minimum-weight decoder fails are exactly those where all the support of the error is

in the support of a weight-d logical operator. There are
(
d
d/2

)
of such errors. If d is odd

then the MWM-decoder will fail with probability 1. If d is even, then there are two

decodings that either lead to a successful decoding or a failure.

Assuming that the decoder will choose randomly among these, the probability of

failure is 1/2 in this situation. Since the logical operators in the hyperbolic surface code

will overlap on qubits, we can only upperbound P q=0
0 as

P q=0
0 ≤ Nd

(
3

4
− 1

4
(−1)d

)(
d

dd/2e

)
pdd/2e (6)

where Nd is the number of logical operators of weight d. The right hand side of (6) can

be used to approximate the error probability when syndrome measurements are ideal.

For noisy parity check measurements, taking again the low p limit, we can apply

the same reasoning and only consider the lowest weight error configurations that can

possibly lead to a logical failure. These lowest weight errors must then lie within a single

time slice, so that one has

P q=p
0 ≤ TNd

(
3

4
− 1

4
(−1)d

)(
d

dd/2e

)
pdd/2e. (7)

For the hyperbolic codes there is no formula for Nd. However, one can compute Nd

efficiently, see Appendix B and the results for various codes. The approximation in (7)

agrees well with data obtained from numerical simulations. This can be seen in Figure

9 where we compute the per-round approximation in (7) versus the numerical per-round

logical error probability Pround.

3.2. Overhead of Semi-Hyperbolic Surface Codes

Equation 6 can be used to analyze the semi-hyperbolic code family in the regime

where the physical error rate p is low. To compare the overhead in physical qubits
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(b) {4, 5}-hyperbolic code with n = 160.

Figure 9: Comparing numerical estimates for Pround (red) with the heuristic

approximation in (7) (black). The relative error is the absolute difference between

the numerical value and the approximation divided by the numerical value.
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Figure 10: Overhead for different code families. The value of pmax(10−8) for various

codes. The semi-hyperbolic codes in this figure are derived from a {4, 5}-lattice with

n = 60 and n = 160 and l = 2, 3, 4 etc. The hyperbolic codes are derived from a

{4, 5} lattice with n = 60, 160, 360, 1800. The toric codes considered here have distance

L = 4, 6, 8, 10, 12.

we fix Pround and determine the maximum physical error probability pmax(Pround). This

value for Pround was chosen such that the corresponding pmax is in a regime where the

approximation formula is valid for all lattices considered here. In Figure 10 we plot the

encoding rate k/n against pmax for different code families with Pround = 10−8. We ran

Monte Carlo simulations for higher values of p to ensure that the approximation did

not deviate by more than 10% from the numerical value. Once this is established, we
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assume that the approximation will only become better with lower p.

For a fixed encoding rate, we see that the semi-hyperbolic codes can offer better

protection against errors than the toric code. For example, in Figure 10 we see that

for pmax = 1.7 × 10−3 we can choose between copies of the L = 8 toric code with

k/n = 0.0156, the rotated toric code with L = 10 and k/n = 0.02, the semi-hyperbolic

code with l = 2 from a {4, 5} lattice with 60 edges with k/n = 0.03 or a hyperbolic code

with k/n = 0.1.

4. Retrieving and Writing Qubits to Storage and Dehn Twists for

Hyperbolic Surface Codes

In this section we present some schemes to realize logical operations on the encoded

qubits without increasing connectivity between qubits or losing the overhead advantage

of the (semi)-hyperbolic codes. Since we are not aware of a way to fault-tolerantly

implement a universal gate set, or even the full Clifford group via, say, code deformation

within (semi)-hyperbolic codes, we envision an architecture similar to that of a classical

processor. At every instant, only a subset of the qubits is undergoing computation while

the rest are in storage. The storage medium here is a (semi)-hyperbolic code while the

computational space is thought of as a few blocks of 2D surface or color codes with

magic state distillation capabilities.

4.1. Lattice Code Surgery

In order to read or write qubits to storage, one requires the following operations on

individual qubits without affecting the protection of other logical qubits:

• Measure qubit in storage in Z or X basis (and thus also reset individual qubit).

This step can be accomplished by performing a joint ZZ (resp. XX) measurement

on the stored qubit and a qubit in the computational space which is initialized to

|0〉 (resp. |+〉).
• Retrieve qubit from storage into computational space or write a qubit to storage.

In order to extract logical qubits from storage to the computational space, one can

implement one of the standard one-bit teleportation circuits using again XX and

ZZ measurements (see Figure 11).

The requirement to perform logical XX or ZZ measurements between a stored

qubit and a qubit in the computational space can be fullfilled using the technique of

lattice code surgery which is usually applied between sheets of surface code [25]. It can

be straightforwardly generalized to closed surfaces which encode more logical qubits as

we shall now argue.

Instead of matching boundaries to one another, one has to match logical operators

in the middle of the surfaces but this does not affect the overall procedure. Figure 12 (a)

represents a possible configuration for a logical ZZ measurement. Two handles are on

top of each other with two matching logical Z operators facing each other. One would
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(−1)a

|0〉
MXX

Xb Za+d+c |ψ〉

|0〉
MZZ

MX (−1)c

|ψ〉 MX (−1)d

(−1)b

Figure 11: One possible circuit to realize one-bit teleportation via measurements. It

uses one ancillary qubit and two weight-two joint measurements. The boxes containing

MXX and MZZ indicate a joint measurement of the two qubits involved.

(a) (b)

Figure 12: (a) Positioning of the ancillary toric code (grey, on top) with respect to

the storage transfer zone (white, on bottom) with Z logical operators facing each other

to realize a ZZ measurement. (b) Local configuration of the merged lattices after

measuring qubits in the support of the logical Z operator in facing pairs. The paired

qubits lie on the two curved edges and between them is a 2-edge face (striped) glued

perpendicular to both surfaces. Note that the merger leads to X-checks of weight-8 (by

adding a layer of qubits in between the torii one can reduce this to weight 5).

then measure pairs of facing qubits in the support of these two operators in the Z basis.

Their product gives the outcome of the joint ZZ measurement and the two handles are

merged. The new measurements of pairs of qubits does not commute with the local

X-checks of the separate surfaces, so they get replaced by products of these X-checks

which do commute ‡. The result is a merged lattice which is no longer the discretization

of a 2-manifold as it contains edges adjacent to three faces, see Figure 12 (b). One can

observe that the two logical Z operators become equivalent under the application of the

new two-edged faces (which are elements of the new stabilizer group). Furthermore,

the two corresponding logical X operators have to be merged in order to commute with

those two-edged faces. Error correction can be carried out in this merged phase by

using the previous unchanged Z-checks for X errors and the new merged X-checks for

Z errors. Once the outcome is known, one splits back the two handles by measuring the

‡ One can view this as a standard application of the Knill-Gottesman theorem by which one keeps

track of the stabilizer group after performing Pauli measurements.
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previous, separated X-checks.

This results in correlated Z errors that have to be corrected in a correlated fashion,

the same way as in the standard surface code lattice surgery. It is important to note

that the fact that the code contains some other encoded qubits which can have a

representative logical operator supported on the modified region is not a concern.

The correction, restricted to the storage space consists of applying Pauli Z operators

to a subset of the qubits forming the measured Z logical operator, Zmeas. Denote

Scorr ⊂ Supp(Zmeas) this subset. Equivalently, the complement of this subset, S ′corr =

Supp(Zmeas)\Scorr can be used for the correction. Take some logical operator of another

logical qubit of the code, Xother. Since Xother commutes with Zmeas, it has to overlap

with Supp(Zmeas) on an even number of qubits. That implies that the two choices of

correction, Scorr or S ′corr, both have the same effect on it. Both either flip its sign or

both leave it invariant. Moreover, using the X-checks lying on Supp(Zmeas), one can

move around the loop where Xother intersects Zmeas. So there is another representative

for Xother that is unmodified by the correction. The correction just enforces that all

other representative are equivalent to an unmodified one.

4.2. Movement of Qubits in Storage: Dehn Twists

Needing ancillary qubits and connecting these to the storage qubits is a concern for

the overall connectivity and overhead of our proposal. Let us introduce two measures

of connectivity. There is an instantanteous qubit degree which is the number of other

qubits that a qubit has to interact with (for doing parity check measurements) at a

certain point in time. We would like this degree to be a small constant throughout our

schemes. Besides this notion there is a cumulative qubit degree which measures the total

number of different qubits that a qubit has to interact with over time. For hardware

with fixed connections this cumulative qubit degree should ideally be a small constant

as well. For hardware which allows for switching (e.g. switches in a photonic network)

the cumulative qubit degree could be allowed to grow.

If we were to decide to only have one (logical) ancillary qubit linking every storage

qubit to the computational qubits then we will blow up the cumulative qubit degree

of this ancillary qubit (cumulative degree scaling with the number of logical qubits

k). On the other hand if we use one ancillary qubit for each storage qubit we give up

the overhead advantage given by the (semi)-hyperbolic code. This is why we need a

technique to move qubits around in storage, allowing us to read or write qubits from

storage only at certain locations. Such storage medium will not be a random access

memory since the retrieval of encoded qubits depends on where they are stored in the

memory. For the movement technique we propose the use of Dehn twists which is a code

deformation technique using the topological nature of the code to implement operations

[26, 27]. In a nutshell, Dehn twists allow us to perform CNOTs between the two qubits

of one handle as well as exchanging pairs of qubits between handles. This then allows

us to have designated zones for transfer from and to the computation space and move
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storage qubits to these zones when needed.

Our movement proposal in the form of Dehn twists leads to a growing cumulative

qubit degree of some of the physical qubits in the code (cumulative degree scaling with

distance d ∼ log n ∼ log k). In Section 4.2.1 we suggest a way in which one can modify

this method leaving the cumulative degree of qubits constant at the expense of using

additional space (qubits).

−→

Figure 13: The action of a Dehn twist along the arrowed (blue) loop. It adds this loop

to the (red) path crossing it.

D1,2

D1 D2

Dg+2Dg+1

...

D2,3

Figure 14: A generating set of loops for Dehn twists on a surface with g handles. Each

handle hosts two qubits, and at the kth handle we label the qubits q2k−1 and q2k. We

choose the convention that Xq2k−1
is supported on the loop (on the dual lattice) labelled

k and so Xq2k is supported on the loop k + g (on the dual lattice). That implies that

Zq2k−1
is supported on the loop k + g and Zq2k on the loop k.

A Dehn twist is a homeomorphic deformation of a surface, that is considered here

to be compact and having g handles (genus g). Dehn twists on a closed surface S are

known to generate the full mapping class group MSG(S) of the surface [27]. The idea is

to twist the surface along a non-contractible loop as shown in Figure 13. This has the

effect of adding this non-contractible loop to any other loop that crosses it.

For a surface S we are interested in the effect of Dehn twists on the first homology

group H1(S,Z2) as elements in H1(S,Z2) correspond to the logical Z operators in our

code. In other words, we only count how many times a loop wraps around a handle

modulo two, so we identify loops with vectors in Z2g
2 using the bases of 2g loops shown

in Figure 14 (D1 to D2g). This space can be equipped with a standard symplectic form

counting the number of crossings modulo two between loops. Acting on this space Dehn

twists generate the symplectic group Sp(2g,Z2) as they preserve the number of crossing

modulo two between loops. A possible generating set of size 3g− 1 for the full group is

given in Figure 14.
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−→ −→ −→ · · ·

Figure 15: The first two steps of a Dehn twist on a square lattice toric code. The qubits

are placed on the vertical and horizontal edges, each face is a Z-check and each vertex

is a X-check. The subsequent steps are similar but take into account that the middle

row of qubits is gradually displaced “downwards”.

−→ −→ −→ · · ·

Figure 16: For the {4, 5}-tiling the Dehn twist procedure has to be slightly generalized.

One chooses a non-trivial Z-loop. The edges sticking out to one side of this loop form

the support for X of the other qubit of the handle. Instead of having always exactly

one edge sticking out to the right (see Figure 15), there can now be between zero and

three edges. The modification is then to just adapt the number of target qubits for the

CNOTs to this number. At intermediate steps of the Dehn twist one can observe that

the X-checks have weight varying between 2 and 8.

It turns out that this kind of continuous deformation has a direct analog for the

tiled surfaces of homological codes, so in particular (semi)-hyperbolic codes. A simple

example to explain the procedure is that of the toric code. Using d parallel CNOTs it

is possible to “dislocate” the lattice by one unit along a loop as shown in Figure 15.

Repeating the step d times with CNOTs which stretch between qubits over a longer

and longer range, will bring back the lattice to its initial configuration. Tracking what

happens to a Z or X logical operator which crosses this loop, one can easily see that the

procedure acts as a CNOT on the logical operators. The control qubit Xcontrol intersects

the loop around which the Dehn twist is done on one vertical qubit. The successive steps

apply CNOTs with this qubit as control and qubits of the Xtarget parallel to the loop as
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target. This gradually propagates Xcontrol to Xtarget. Symmetrically, Ztarget intersects

the loop on one horizontal qubit and the CNOTs propagate it to Zcontrol running around

the loop.

For our {4, 5} lattice a slight generalization of this circuit has to be done and is

shown in Figure 16.

Dk =
q2k−1

q2k •
Dk+n =

q2k−1 •
q2k

Dk,k+1 =

q2k−1

q2k • •
q2k+1

q2k+2 • •
Figure 17: The circuits realized by the three type of generators for the Dehn twist

transformations. The labelling of the Dehn twists and the qubits is the one detailed in

Figure 14.

The question is then what useful operations on the logical qubit space these Dehn

twists give us access to. It is easy to verify the action of the generating set of Dehn

twists, see Figure 17. For our purpose, we can see that nine Dehn twists can be used

to swap the qubits of two handles using the circuits in Figure 17 to construct SWAP

operations from 3 CNOTs. By considering a larger generating set the number of Dehn

twists can be reduced to seven. This can be checked by a computer.

4.2.1. Reducing Connectivity In each step of the Dehn twist the (instantaneous) qubit

degree is O(1). The cumulative degree of the qubits on the loop along which one does

a Dehn twist is O(d), with d being the length of this loop. In the case of hyperbolic

codes, this is logarithmic in the total number of physical qubits which is an improvement

over losing all overhead or having cumulative qubit degree scaling with k by employing

read/write ancilla qubits.

The temporal overhead of a Dehn twist, if one applies one round of error correction

(O(d) steps in time) between each step is O(d2). The cumulative qubit degree can be

reduced using the following variation.

We can use an extended region to spread the effect of the twist and lower the

connectivity requirements as well as the temporal overhead. As shown in Figure 18,

one can choose d parallel loops, and apply in parallel one step of the Dehn twist on each

of the loops. This effectively realizes a Dehn twist in one go in an extended region. The

connectivity required for this extended Dehn twist is constant and doing one round of

error correction after this gives a total temporal overhead of O(d).

The only concern is how to adapt this to the {4, 5}-lattice. There is no a priori

guarantee that it is possible to find d parallel loops. But one can make use of semi-

hyperbolic modifications to help with this, basically creating more space for the twist

region. Starting from a chosen Z-loop, one can add parallel loops by adding qubits

in the faces to one side of the loop as shown in Figure 19. This does not completely

guarantee that one will create enough parallel columns as the lattice is expanding to the
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−→ ⇐⇒

Figure 18: Extended Dehn twist on a distance 4 toric code. One does the 4 Dehn twist

steps in parallel on d parallel rows of the lattice. Green stars indicate the logical X1

operator and how it transforms to X1X2. Blue lozenges indicate the logical Z2 operator

and how it transforms to Z1Z2.

Figure 19: Given some initial loop in the {4, 5}-lattice, it is possible to add parallel loops

to it. The dotted lines are added qubit edges that make a more fine-grained lattice

in the direction mostly “perpendicular” to the original loop. This can be somewhat

problematic when the original loop takes “sharp” turns as in the middle of this example

(where there is no qubit edge sticking out to the right). In this face one potentially adds

a way for a Z to cut a corner and that might decrease the distance by one. One should

verify such properties in specific examples of interest.

right. Because of this, the parallel loops will grow in size demanding more twisting to

complete the full operation. That said, if one step on the extended region is not enough

one can repeat the step on the extended region. So if one step on the extended region

twists the lattice for a fraction of the distance, then only a constant number of steps

will be needed and the cumulative degree of qubits will remain constant. Also, the total

time overhead will be O(d).
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5. Discussion

Given that the topology of hyperbolic surface codes is that of a surface with many

handles, it is clear that the qubits can be placed in a bilayer such that in each layer

one has a planar graph (with qubits on edges), while some of the checks act on qubits

in both layers. Such a partitioning of the qubits can be arrived at by slicing the multi-

handled surface ’through the middle’. For the Klein quartic surface we present the effect

of such a slicing and the placement of qubits in Figure 20. A bilayer embedding with

variable range connections could be a feasible architecture for superconducting qubits.

How to generally obtain 3D embeddings of hyperbolic surface codes which respect the

symmetries of the hyperbolic tiling (such as the dodecadodecahedron) is an interesting

mathematical question. A necessary requirement for this is that the group of symmetries

of the lattice shares a subgroup with the orthogonal group in three dimensions. It will

be interesting to study the performance of these codes in the presence of more realistic

noise models as has been done for the surface code. More work remains to be done as

well on constructing variations and optimizations of realizing access to storage and/or

the fault-tolerant movement of qubits in storage.

Figure 20: (Color online) The Klein quartic, mentioned in Section 1.1, sliced through

so one distributes the qubits in two planar layers shown left and right. We choose the

{3, 7} representation with 84 qubits on the edges and weight-3 X-checks (56 of them)

and weight-7 heptagonal Z-checks (24 of them). The surface has genus 3. Most of the

vertices are on the boundary of the layers, and so are represented in both layers even

if they only join edges from one layer. They help in visualizing heptagons on the right

layer. Few vertices (five) are sitting in the middle of one or the other layer and so are

only represented on their layer. The three edges that are dangling in the left layer, are

linked to the three degree-2 vertices in the right layer. Red edges indicate one Z and

blue edges the corresponding X which overlap on single bi-colored edge. All vertices

(and X-checks) are represented in the figure but the figure leaves some ambiguity about

those heptagons which act on qubits in both layers.
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Appendix A. Finding Quantum Codes Based on a {r, s}-Tiling of the

Hyperbolic Plane

Two-dimensional regular tilings cover surfaces by regular polygons (r-gons) which are

all of the same type and with the same number of polygons (s) meeting at every vertex.

Here we give a short summary of how one can construct hyperbolic code families based

on such {r, s}-tiling. A more detailed description can be found in [6]. One could extend

this construction to the more general class of uniform tilings (semi-regular and quasi-

regular) in which different polygons are used.

Consider a {r, s}-tiling of the infinite hyperbolic plane with 1/r + 1/s < 1/2. A

regular r-gon can be triangulated by identical right-angled triangles so that each side of

a triangle represents an axis about which one can reflect the triangle to obtain another

triangle. Each triangle having three sides, there are three reflections which we call a, b

and c. If we have a regular tiling in which s r-gons meet at every vertex, then let the

angle between a and b be π/2, the angle between b and c be π/r and the angle between

a and c is π/s. The triangle is thus a hyperbolic triangle where the sum of its three

angles is less than π.

Let the group of reflections generated by a, b and c be called Gr,s. Gr,s is a group

with a countably infinite number of elements but it is finitely generated by a, b and c:

Gr,s = 〈a, b, c | a2 = b2 = c2 = (ab)2 = (bc)r = (ca)s = e〉 (A.1)

where e is the identity element of the group. Here ρ = bc, σ = ca and τ = ab are

rotations, i.e. ρ acts as a clockwise 2π/r rotation around the center of a face and σ

acts as a clockwise 2π/s rotation around a vertex. The relations between a, b, c in (A.1)

express the fact that a, b, c are reflections and that τ, ρ and σ are rotations. Starting

from some triangle, any other triangle can be obtained by applying an element in Gr,s

to the initial triangle so that the group elements of Gr,s label the triangles. From the

reflections a, b, c one can obtain all the symmetry transformations of the lattice, i.e. all

rotations and translations. Note that our convention here is to multiply elements from

the right, so ab reads ’first apply a, then b’.

There is an important subgroup of Gr,s denoted as G+
r,s which only consists of

rotations and translations. This group G+
r,s is generated by ρ and σ:

G+
r,s = 〈ρ, σ | ρr = σs = (ρσ)2 = e〉. (A.2)

Note that the rotation τ ∈ G+
r,s.
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To define a quantum code based on this tiling one has to find a torsion-free normal

subgroup H ⊆ G+
r,s (a normal subgroup has the property that gH = Hg for all g ∈ G+

r,s)

which gives rise to the quotient group GH = G+
r,s/H = {gH : g ∈ G+

r,s}. Torsion-freeness

of this subgroup H means that there is no element h ∈ H such that hm = e for some

finite m: it implies that H only contains translations. The Todd-Coxeter algorithm

allows one to find all normal subgroups H such that the quotient group GH has a low

number of elements (called the index of H in G+
r,s) given the description of a finitely-

generated group such as G+
r,s, see [28]. The condition that the subgroup is torsion-free

can then be checked by checking whether the subgroup contains elements of finite order.

Given GH , one can identify the faces, vertices and edges of the resulting code lattice

with the following objects. Note that GH contains the cyclic subgroups 〈ρ〉 and 〈σ〉. A

face of the code lattice can then be identified with a left coset of 〈ρ〉 in GH , i.e. g〈ρ〉
with g ∈ GH . Intuitively, it can be understood as follows. If we have a given triangle

(and its partner triangle obtained by reflection in b) and we apply all elements in 〈ρ〉
one obtains the face in which the triangle (and its partner) is contained. Given that

we identify faces f ∈ F which are related by a translation in H, the distinct faces thus

correspond to different cosets of 〈ρ〉 in GH . Similarly, one can identify the vertices

v ∈ V of the code lattice as left cosets of 〈σ〉 in GH . The edges e ∈ E (and so the

qubits) of the code lattice can be identified with the left cosets of 〈τ〉 in GH . Note

that 〈ρ〉,〈σ〉 and 〈τ〉 are not normal in GH so that they do not form a Cayley graph.

The enumeration of these different cosets thus allows one to get a complete numerical

description of the stabilizer group of the code. Using Euler’s formula for closed surfaces,

i.e. χ = 2− 2g = |V | − |E|+ |F |, this allows one to determine the genus g (number of

handles) of the surface. The code encodes 2g logical qubits, two qubits per handle.

The logical operators can be constructed by defining boundary ∂i:Ci → Ci−1 and

co-boundary operators δi:Ci → Ci+1. Here Ci (i = F,E, V ) is a di-dimensional (resp.

di = |F |, |E|, |F |) Z2-vectorspace whose basis elements correspond to faces, edges and

vertices respectively. The boundary operator ∂2 maps a face (or collections of faces)

onto the set of edges which form the boundary of the face (collection of faces). The

co-boundary operator δ0 maps a vertex (or collection of vertices) onto a set of edges

which are incident to this vertex (collection of vertices). Similarly, one can use the

boundary operator ∂1:CE → CV which maps edges to vertices and the co-boundary

operator δ1:CE → CF , mapping edges to faces.

The generators of Im(∂2) correspond to the Z-checks of the code. The Z operators

of the code are elements of Ker(∂1) (since these operators are closed loops, they have no

vertex boundary) which are not contained in Im(∂2). Similarly, the generators of Im(δ0)

correspond to the X-checks of the code. The X operators are elements of Ker(δ1) which

are not contained in Im(δ0). Using linear algebra one can thus obtain a basis of Z and

X operators, i.e. a set of mutually commuting pairs X i, Zi, i = 1, . . . , k. In Appendix

B we discuss how one can efficiently determine the distance of the code and compute

the number of logical operators of this minimal weight.



Hyperbolic and Semi-Hyperbolic Surface Codes for Quantum Storage 26

Appendix B. Efficient Computation of Distance for Any CSS Surface Code

We describe an algorithm formulated by Bravyi [19] which allows one to efficiently

compute the distance of any CSS surface code encoding k logical qubits into n qubits.

It also allows one to count the number of Z (or X) operators of this minimum weight

which we need in Section 3.1 in the approximate formula for the logical error probability.

Since the code is a CSS code, the minimum weight logical operator is an operator

which is either only X-like or Z-like. We focus on calculating d(Z), i.e. the minimum

weight of Z, but the procedure for d(X) is identical.

Let G = (V,E) be the graph associated with the code. Take a X operator, say X1

and let E(X1) ⊆ E be its qubit support. Take two copies of the graph, G and G′. Using

these copies, we define a new graph G̃ = (Ṽ , Ẽ) with Ṽ = V ∪V ′ and the following edge

set Ẽ. Omit in Ẽ each edge e = (u, v) ∈ E(X1) and e′ = (u′, v′) ∈ E(X1). For these

omitted edges we instead include two new cross-over edges (u, v′) ∈ Ẽ and (u′, v) ∈ Ẽ.

For all other edges e ∈ E − E(X1), e
′ ∈ E − E(X1), include e and e′ in Ẽ.

Consider the shortest graph distance d(v, v′) in G̃. Since v ∈ G and v′ ∈ G′, any

path P from v to v′ has to cross over an odd number of times from G to G′ or vice versa.

The path P can thus be mapped to a loop in the graph G which has an odd overlap

with the support of X1: we start at vertex v and we replace each cross-over edge (u′, v)

or (u, v′) that we encounter on the path P by the orginal edge (u, v). We obtain a path

P that will stay in the graph G and which comes back to v itself. Since the number of

cross-over edges used is odd, this closed Z loop in G will anti-commute with X1.

Thus in order to determine the minimum weight of a Z operator which anti-

commutes with X1, we iterate over the points v such that (u, v) ∈ E(X1), and for

each choice of v one determines the shortest graph distance d(v, v′). The shortest graph

distance is calculated using Dijkstra’s algorithm which is efficient in the number of

vertices of the graph. One then takes the minimum over all these graph distances. Of

course the found Z may also anti-commute with other X i.

In order to determine d(Z) we iterate over the elements of the logical operator basis

X1, . . . , Xk. Assuming a list of X1, . . . , Xk, the procedure is O(kn2 log n) where n = |E|.

To determine the number of Z operators of minimum weight d(Z) (called NZ
d ), one

has to be slightly more careful to avoid double counting. Given a fixed X i and a fixed

vertex v, one can run Dijkstra’s algorithm to determine all paths P between vertices

v and v′ of given minimal distance. One then just collects these paths into a list and

keeps adding to the list, avoiding doublecounts, by iterating over v and then over all

X i. The results on NZ
d and NX

d are shown in Table B1.

We have seen in Section 1.1 that the hyperbolic code with 60 qubits can be identified

with a self-intersecting polytope called the dodecadodecahedron. Looking at this Figure

and its symmetries one can understand the finding that there are 30 lowest-weight Z

operators and 90 lowest-weight X operators. In Figure 1 (b) we see that some weight-6

X are in one-to-one correspondence to the set of vertices (a vertex is highlighted in
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Figure B1: The small stellated dodecahedron with 12 vertices, 30 edges and 12 faces.

Highlighted in blue is a Z of weight 3. Every vertex has 5 different such loops running

through it. Since we are overcounting by a factor of three there are 5× 12/3 = 20 such

loops. This is exactly the result of the algorithm.

black). Hence there are at least 30 X of length 6. In Figure 1 (c) we see another

type of weight-6 X which is incident to two edges of two yellow faces. Rotating one

of those faces gives a new logical operator. Since there are two yellow faces per logical

operator we will over count by a factor of 2. Hence the number of these type of X is

|F |×5/2 = 60, thus 90 all together. Similarly, from Figure 1 (d) we see that there must

be at least 30 Z of weight 4, which is the number computed using the algorithm on this

code.

Another such example is a {5, 5}-tiling of a surface with the same genus 4, instead of

a {5, 4}-tiling. It corresponds to a [[30, 8, 3]] quantum code with 12 X- and 12 Z-checks,

both of weight 5. It can be found in Table III in [6]. Similarly as in the previous case

we can turn the pentagons into self-intersecting pentagrams and arrange the vertices on

the surface of a sphere to obtain the small stellated dodecahedron (see Figure B1).

References

[1] B. M. Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys., 87:307–346,

2015.

[2] E. T. Campbell, B. M. Terhal, and C. Vuillot. The Steep Road Towards Robust and Universal

Quantum Computation. ArXiv e-prints, December 2016, 1612.07330.

[3] A. M. Steane and B. Ibinson. Fault-tolerant logical gate networks for Calderbank-Shor-Steane

codes. Phys. Rev. A, 72(5):052335, November 2005, quant-ph/0311014.

[4] T. A. Brun, Y.-C. Zheng, K.-C. Hsu, J. Job, and C.-Y. Lai. Teleportation-based Fault-

tolerant Quantum Computation in Multi-qubit Large Block Codes. ArXiv e-prints, April 2015,

1504.03913.



Hyperbolic and Semi-Hyperbolic Surface Codes for Quantum Storage 28

nh l NZ
d NX

d

60 1 30 90

60 2 30 60

60 3 30 60

60 4 30 60

60 5 30 60

60 10 30 60

160 1 320 500

160 2 2880 6560

160 3 32000 93760

360 1 5670 90

1800 1 31320 180

Table B1: The number of minimum-weight Z and X operators for hyperbolic and semi-

hyperbolic surface codes based on the {4, 5}-tiling. Note that for the semi-hyperbolic

lattices with nh = 60 the number of minimum-weight logical operators, curiously, does

not increase. This means that Z never enters and leaves any vertex by two adjacent

edges in the hyperbolic code [[60, 8, 4]]. If the string were to enter and leave a vertex

by adjacent edges, thus touching a face in at least two edges, then upon subdivision of

the face by l, there will be
(
2l
l

)
ways of rerouting the string while keeping its length the

same. This fact can be verified by considering the logical Z operators in Figure 1(c).

The blow-up in the number of logical operators that we see for n = 160 might relate to

such rerouting of strings, but we have not investigated this in detail.

[5] N. Delfosse, P. Iyer, and D. Poulin. Generalized surface codes and packing of logical qubits. ArXiv

e-prints, June 2016, 1606.07116.

[6] N. P. Breuckmann and B. M. Terhal. Constructions and noise threshold of hyperbolic surface

codes. IEEE Transactions on Information Theory, 62(6):3731–3744, 2016.

[7] N. Delfosse. Tradeoffs for reliable quantum information storage in surface codes and color codes.

In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages 917–

921. IEEE, 2013.

[8] N. Delfosse, P. Iyer, and D. Poulin. A linear-time benchmarking tool for generalized surface codes.

ArXiv e-prints, November 2016, 1611.04256.

[9] S. B. van Dam, P. C. Humphreys, F. Rozpȩdek, S. Wehner, and R. Hanson. Multiplexed
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[28] M. Conder and P. Dobcsányi. Applications and adaptations of the low index subgroups procedure.

Mathematics of computation, 74(249):485–497, 2005.


	1 Introduction
	1.1 Hyperbolic Surface Codes
	1.2 Semi-Hyperbolic Surface Codes

	2 Threshold of Hyperbolic Surface Codes with Qubit and Measurement Errors
	2.1 Results on Noiseless Parity Checks
	2.1.1 Optimal Value of T for Noisy Parity Check Measurements

	2.2 Cross-Over Behavior and Upper Bounds on P

	3 Overhead for a Target Logical Error Probability
	3.1 Approximation for P in the low error probability limit
	3.2 Overhead of Semi-Hyperbolic Surface Codes

	4 Retrieving and Writing Qubits to Storage and Dehn Twists for Hyperbolic Surface Codes
	4.1 Lattice Code Surgery
	4.2 Movement of Qubits in Storage: Dehn Twists
	4.2.1 Reducing Connectivity


	5 Discussion
	Acknowledgements
	Appendix A Finding Quantum Codes Based on a {r,s}-Tiling of the Hyperbolic Plane
	Appendix B Efficient Computation of Distance for Any CSS Surface Code
	References

