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Current experiments are taking the first steps toward noise-resilient logical qubits. Crucially, a
quantum computer must not merely store information, but also process it. A fault-tolerant com-
putational procedure ensures that errors do not multiply and spread. This review compares the
leading proposals for promoting a quantum memory to a quantum processor. We compare magic
state distillation, color code techniques and other alternative ideas, paying attention to relative
resource demands. We discuss the several no-go results which hold for low-dimensional topologi-
cal codes and outline the potential rewards of using high-dimensional quantum (LDPC) codes in
modular architectures.

I. INTRODUCTION

The next decade will likely herald controllable quan-
tum systems with 30 or more physical qubits on various
quantum technology platforms, such as ion-traps1,2 or
superconducting qubits3. It may be difficult to simulate
such partially-coherent, dynamically-driven, many-body
systems on a classical computer, since the elementary
two-qubit entangling gate time can be as much as a 1000
times faster than the single-qubit dephasing and relax-
ation times (T2 and T1). On the other hand, a system in
which one out of a 1000 components fails is unlikely to
perform well in executing large quantum algorithms de-
signed for fault-free components. We must either figure
out what computational tasks a noisy many-body quan-
tum system can perform well or we use partially-coherent
qubits as the elementary constituents of more robust log-
ical qubits through quantum error correction. The choice
of quantum error correcting architecture determines all
operations at the physical hardware level. It constrains
the compilation from quantum software and quantum al-
gorithms to actions on elementary qubits in hardware.
For superconducting qubits, efforts to build a first logi-
cal qubit of the surface code are underway at places such
as IBM Research4,5, UCSB in partnership with Google6

and the TU Delft7.
Quantum error correction works by making quantum

information highly redundant so that errors affecting a
few degrees of freedom become correctable8. One can for-
mulate some rough desiderata of a quantum error correct-
ing architecture which aim at minimizing experimental
complexity: (1) the architecture has a high noise thresh-
old, providing logical qubits that have a lower logical
error probability per logical gate than their physical con-
stituent qubits, (2) it allows for the implementation of a
universal9 set of logical gates, and (3) it achieves these
goals with low spatial (number of physical qubits per log-
ical qubit) and temporal overhead (time duration of log-
ical gate versus physical gate). In addition, (4) it should
be possible to process error information sufficiently fast,
keeping up with the advancing quantum computation. A

last desired property (5) may be that the code is a LDPC
(low-density parity check) code: each parity check10 in-
volves at most k qubits (parity check weight k) and each
qubit participates in at most l parity checks (qubit de-
gree l) where both l and k are small constants. Strongly
preferred for solid-state qubits is a code for which the
parity checks act on neighboring qubits in a 2D or 3D
array.

An important universal gate set is the Clifford+T
set. The subset of Hadamard H, CNOT and S =
diag(1, eiπ/2) are Clifford gates. A quantum circuit com-
prising only Clifford gates is not universal and confers no
quantum computational advantage as it can be classically
simulated by the Gottesman-Knill theorem11,12. When
single-qubit gates come about through resonant driving
fields, rotating the qubit vector around its Bloch sphere,
a T = diag(1, eiπ/4) gate is similar in complexity to an S
or H gate. For a logical qubit, say, the one encoded by
Steane’s 7-qubit code (Box 1), the logical Hadamard is
implemented by applying a Hadamard gate on each of the
seven physical qubits. This is advantageous since it takes
the same time as an elementary Hadamard gate and the
transversal13 character of the logical gate ensures that
errors do not spread between qubits of the code. The
S gate and the CNOT gate are similarly transversal for
the Steane code, but the T gate is not. Certainly some
sequence of single and two-qubit gates can be designed
to enact a logical T gate. While this is true, the pres-
ence of two-qubit gates in such a T gate construction will
entirely negate the benefits of using a logical qubit. A
sequence of two-qubit gates can spread correctable single-
qubit errors to uncorrectable multi-qubit errors, making
the logical qubit error probability higher than the error
probability of a single constituent qubit.

Transversal logical gates are the easiest example of
fault-tolerant logical gates, meaning logical gates which
do not convert correctable errors into uncorrectable ones.
Transversal gates are optimal in both spatial and tempo-
ral overhead. However, it was proved14,15 that no non-
trivial code allows for the transversal implementation of
all gates needed for universality, demonstrating the need
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FIG. 1. (a) One logical qubit is encoded in a surface code sheet consisting of d2 physical qubits at the vertices of the lattice
(d = 5 in the Figure). Black faces represent X-parity checks and white faces represent Z-parity checks on the qubits. (b) A
CNOT circuit is equivalent to performing non-destructive XX and ZZ measurements for the control and target qubits with
an ancillary qubit. Lattice code surgery provides a method for non-destructively measuring a logical ZZ or XX between
two encoded qubits. (c) Lattice code surgery between two surface code sheets which realizes a logical ZZ measurement. By
measuring and merging the parity checks between two surface code sheets, we merge the two sheets into one. At the same time
one learns the value of the logical ZZ as it equals the product of the newly measured grey faces. The two sheets can then be
split again for further operations.

for other constructions.

A promising architecture uses the surface code,
which was first put forward as a topological quantum
memory18. It has a high noise threshold pc ≈ 0.6 −
1%19–21 and requires only a 2D qubit connectivity with
qubit degree 4. One logical qubit comprises d2 physical
qubits (plus d2 − 1 ancilla qubits for parity check mea-
surements) for a code distance d, see Fig. 1. Besides this
encoding, there are at least two other ways of defining
logical qubits in the surface code. A logical qubit can
comprise two holes in an extended surface code sheet22

or a logical qubit could be represented by two pairs of lat-
tice defects or twists23,24. The logical error probability
per round of parity check measurements PL is determined
by the distance, i.e. PL ∝ (p/pc)

d/2. Numerical studies21

estimate that, assuming a depolarizing error probability
p < 10−3 per elementary gate, a logical qubit will consist
of more than 104 physical qubits in order for PL < 10−15.

How does the surface code architecture handle the
fault-tolerant implementation of gates? This is partially
achieved by code deformation, which is a versatile tech-
nique used in fault-tolerantly executing the logical gates:
The code is altered by changing which parity check mea-
surements are done where. A logical CNOT can be ob-
tained with the encoding in Fig. 1 through a deformation
technique called lattice code surgery25, see Fig. 1b and
1c. The encoding of Fig. 1 can also be deformed to a
twist defect encoding where the four corners of the lattice
correspond to four defects26. Braiding of the four twist
defects through the bulk of the lattice then generates the
single-qubit S and Hadamard gate26. Hence all Clifford
gates could be done in situ on 2D surface code sheets.
Another common approach to logical S gates is shown
in Fig. 2b and uses state injection of a |Y 〉 ∝ |0〉 + i |1〉
state, which is an inexpensive resource as it may be used
many times27,28.

II. TOWARDS UNIVERSALITY

A. First Ideas

The necessity of finding effective means to implement
a universal set of gates was realized from the earliest be-
ginnings of the field. One useful tool is the simple circuit,
shown in Fig. 2a, where we replace executing the T gate
by preparing the ancilla state |A〉 = TH |0〉, called a T
magic state. The circuit can be executed at the logi-
cal level where one encodes qubit and ancilla in a base
code. Peter Shor provided the first construction29 for
fault-tolerantly preparing a Toffoli magic state. A sim-
ilar construction16,30 was proposed for fault-tolerantly
preparing a T magic state. In these constructions one
uses the fact that the logical magic state is an eigenstate
of a logical Clifford gate which is transversal for the base
code. Ancillary cat states are used to fault-tolerantly
project onto this eigenstate, see Fig. 2c, but the approach
does not scale favourably for topological codes.

B. Magic State Distillation

The mindset of Magic State Distillation (MSD) is to
accept a preparation procedure providing noisy magic
states, and then proceed by filtering many noisy magic
states into fewer, yet better quality states. Efficient pro-
tocols for magic state distillation are designed, almost ex-
clusively, using an error correction code with a transver-
sal non-Clifford gate, typically the T gate. We call this
code the distillation code. The [[15, 1, 3]] quantum Reed-
Muller code was shown16 to have a transversal T , and
using this code for magic state distillation was proposed
by Bravyi and Kitaev31. The [[15, 1, 3]] code is now also
recognized as the smallest member of a 3D color code
family, see Fig. 4. All MSD protocols work at the logical
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Box 1 | Steane’s Code
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Andrew Steane’s 7-qubit code [[7,1,3]] is the smallest example
of a 2D color code encoding a single logical qubit k = 1. The code is defined
as the +1 eigenspace of the 3 sets of commuting X-parity checks SrX , S

g
X , S

b
X

and Z-parity checks SrZ , S
g
Z , S

b
Z , acting on the 7 qubits located at the vertices.

Quantum error correction proceeds by nondestructively measuring these
parity checks using ancilla qubits. The X-operator of the logical qubit can be
chosen as Π7

i=1Xi and the Z-operator is Π7
i=1Zi, both of which can be reduced

to products of 3 Pauli operators (parity check weight 3) by multiplication
with check operators. The code distance is thus 3. The symmetry between
X and Z-checks ensures that Hadamard and S gates can be implemented
transversally. Seven CNOT gates between two blocks of Steane code realize
the logical CNOT as can be verified from its action on the logical operators
and the stabilizer group generated by the parity check operators. It was shown16

that one can implement a fault-tolerant controlled-S gate between two Steane
blocks by applying 7 rounds, each with 7 block-wise Controlled-S gates, each
round followed by X error correction. This makes for a fault-tolerant universal
set of gates. The Steane code has been implemented in ion-trap qubits17.
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FIG. 2. (a) Implementation of a T gate via preparing the magic ancilla |A〉 = TH |0〉. (b) Implementation of a S gate via
preparing the magic ancilla |Y 〉 = SH |0〉. (c) Fault-tolerant implementation of the projection of a code state onto an eigenstate
of a transversal logical Clifford gate CL =

∏n
j=1 Cj assuming that the Clifford gate C has ±1 eigenvalues. To prepare a T

magic state one takes C = TXT † ∝ SX, using a transversal logical S gate for the base code. Since a single error can flip the
outcome p, the circuit has to be repeated and a majority vote over the outcomes taken.

level of an underlying base code and so assume reliable
Clifford operations. In Fig. 3 we outline one variant of
MSD.

One figure of merit is the number of noisy magic states
consumed per single T gate. Advances in distillation
codes have improved the asymptotic efficiency by this
metric (see Box 2). However, the number of physical
qubits involved (space cost) and protocol duration (time
cost) are more realistic metrics, although they depend on
the choice of base code. When optimizing full space-time
costs, an important trick is to increase the base code dis-
tance with successive distillation rounds (see step 5 of
Fig. 3). Using this trick in conjunction with the sur-
face code, resource overheads become dominated by the
surface code cost in the final distillation round21,22,32,33.
This results in a space-time cost for the T gate that
is only a constant multiple of a surface code overhead,
namely a O(d2) spatial cost and a O(d) temporal cost.

More precisely, the space-time cost of a T gate realized
in a distance-d surface code is CT d

3 with CT ≈ 160−310
when employing Bravyi-Haah codes21,32,33. For Clifford
gates the overhead per logical gate is also O(d3) but the
constant prefactor is of order of unity. Using even higher
yield MSD protocols (see Box 2) may reduce the CT fac-
tor further, with the Bravyi-Haah codes already shown32

to have three times lower space-time costs than [[15,1,3]].
Obtaining a fault-tolerant logical T gate is only a par-

tial goal as Clifford+T gates are then used to synthesize
other logical gates needed in quantum algorithms34–37.
A more efficient solution can be to directly distill magic
states providing the most frequently required logic gates.
Magic state distillation has been shown for smaller angle
Z rotations38–40, the Toffoli gate41,42, and a general class
of multi-qubit circuits43.

Given that magic state distillation takes up space and
time, it requires an allocation of resources and commu-
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FIG. 3. Sketch of magic state distillation using a [[n2, 1, d2]] distillation code with a transversal T gate, while Clifford operations
are protected by a [[n1, 1, d1]] base code. Given fewer than d2 errors in the noisy magic states, they are detected in step 3.
This implies that the logical error probability is suppressed from ε to O(εd2). Iterating r times, the error probability reduces

to O(εd
r
2 ).

nication infrastructure (in the form of logical roads) to
these resources inside the 2D surface code architecture.
Clifford gates in such an architecture could be done in
situ on a ‘Clifford substrate’ of 2D surface code sheets.
Throughout this 2D array of sheets, areas are reserved for
magic state distillation factories for non-Clifford gates.
The optimal spatial density of these factories depends on
the typical quantum algorithmic use (frequency, paral-
lelism) of non-Clifford gates. Clearly, any design of such
a quantum computer will require a huge effort in inte-
grated quantum circuit design and optimization, a quan-
tum analog to VLSI design. This effort has barely gotten
underway44.

C. Color Codes

The [[7,1,3]] and [[15,1,3]] codes are the smallest mem-
bers of a family of 2D and 3D, respectively, color
codes55–57. Examples are given in Fig. 4. These color
codes retain the transversality properties of their respec-
tive smallest instances. Therefore, the 2D color codes
have transversal Clifford gates58–60. The 3D color codes
can have a transversal non-Clifford gate53,56, such as a
T gate in the tetrahedral 3D color code. Lattice code
surgery61 can again be used to locally perform CNOT
gates. Color codes can also be extended to higher dimen-
sions (see Box 3), with transversality properties related
to the dimensionality.

The 3D color code does not have the symmetry be-
tween X- and Z-checks, and so lacks a transversal
Hadamard gate. Ideas to get around this caused a surge
of interest in 3D color codes. One idea is that of switch-
ing between different (3D color) codes via the important
concept of gauge fixing60,62. Using gauge fixing it is pos-
sible to use the transversal T gate of the 3D color code
while only doing error correction and the Hadamard gate
with the 3D gauge color code63. The advantage of us-
ing the 3D gauge color code over the 3D color code, see
Table I, are the lower parity check weights and the fea-
ture of single-shot error correction of the 3D gauge color
code (see Sec. III C). A CNOT gate realized via lattice
code surgery allows for the injection of the T gate from a
3D gauge color code into a 2D color code64,65. One can
imagine a 2D color code architecture augmented with 3D
gauge color code T -stations where logical qubits can un-
dergo a T gate, similar as a 2D surface code with 2D
non-Clifford processing occurring at dedicated locations.

We summarize some of the known thresholds and prop-
erties of codes in Table I. Note that the 3D color and
gauge color codes have a cubic spatial overhead O(d3)
for a given distance d while this overhead is O(d2) for
2D codes. The complexity of decoding 3D color and
3D and 4D surface codes poses new challenges and is
not fully understood while good algorithms exist for sur-
face code decoding. The best thresholds for 2D color
codes are lower than those of the surface code, possibly
due to the fact that parity checks have higher weight.
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Box 2 | High yield MSD
Protocol [[n, k, d]] limn→∞ γ
Reed-Muller [[15, 1, 3]] 2.464
Meier-Eastin-Knill45 [[10, 2, 2]] 2.322
Bravyi-Haah46 [[3k + 8, k, 2]] 1.585
Jones 2nd level47 [[5k +O(1), k, 4]] 1.160
Jones rth level47 [[(2r + 1)k +O(1), k, 2r]] 1

The yield is the number of distilled
magic states, on average, per input noisy magic state.
Using an [[n2, k2, d2]] distillation code for enough rounds
to achieve some target εout has an asymptotic yield
1/O(log(ε−1

out)
γ) where γ = logd2(n2/k2). Therefore,

lower γ values indicates more efficient distillation
protocols. More sophisticated protocols (see table) can
reduce the scaling factor γ, with γ = 1 conjectured46 to be optimal.

Parity Check Threshold Threshold
Code Qubit Degree Weight (Phen. Model) (Circuit Model) Single-Shot Logic

2D Surface 4 4 2.9%48 0.6%19-1%20,21 No Clifford
2D 6.6.6 Color 6 6 2.8%49,50 0.3%49,50 No Clifford

3D Gauge Color 12 6 0.31%51 Unknown Yes Clifford
3D Color 10 24 Unknown Unknown No Transversal T

4D Surface 8 6 1.59%52 Unknown Yes †

TABLE I. Parity check weight is given for the bulk of the code lattice. The threshold depends on noise model: The phenomeno-
logical model assigns probability p equally to X & Z errors and an error in the parity check measurements; The circuit model
applies depolarizing noise with probability p to every elementary component in the circuit implementing the parity checks. The
phenomenological threshold is always higher than circuit model threshold, especially for codes with high parity check weight.
†It has been shown53 that one can perform a fault-tolerant non-Clifford 4-qubit-controlled-Z using a constant depth circuit.

However, 2D color code decoding is also more compu-
tationally complex than surface code decoding66. The
best threshold numbers for circuit-based noise in which
each gate undergoes depolarizing noise with probability p
are 0.3%49,50 for a triangular color code and 0.41% for a
half-color or [[4, 2, 2]]-concatenated toric code67 (compare
with 0.6− 1% for the surface code).

D. Alternative Code Constructions

An alternative to topological error correction is con-
catenated coding in which the physical qubits in a code
block are repeatedly replaced by logical qubits. Extensive
work68 has been performed on comparing the overheads
and noise thresholds of various schemes. For a (concate-
nated) [[23,1,7]] Golay code (with a transversal Clifford
set) it has been shown that the asymptotic noise thresh-
old is at least 0.13%69 (compare with the numerical value
0.6−1.0% of the asymptotic surface code). Any concate-
nated scheme with easy Clifford gates could be combined
with magic state distillation. The performance compari-
son with the surface code would largely rely on how much
spatial overhead one pays for a logical Clifford gate.

Another concatenation idea is to combine the transver-
sality of different gates in two different codes70 and get rid
of magic state distillation. For example, one can choose
[[7,1,3]] as a top code, i.e. replacing each physical qubit
by 7, and then take [[15,1,3]] as bottom code, replacing
each of the 7 qubits again by a block of 15. The resulting
code is [[105, 1, 9]]. Due to the non-transversality of the
Hadamard at the bottom level and the non-transversality

of the T gate at the top level, the total logical error proba-
bility of these gates will suffer, but single-qubit errors can
still be corrected in this construction. The asymptotic
noise threshold of this construction was lower-bounded
by 0.28%71.

In Box 1 it was stated that the Steane code has a piece-
able fault-tolerant72 Controlled-S gate. This means that
we can break down the execution of the gate in rounds
or pieces, each round containing X error-correction to
maintain fault-tolerance, but holding off on Z error cor-
rection until the entire gate is done. This idea does not
easily scale to topological codes, but it could be analyzed
for concatenated codes. It obviates the need for magic
state distillation, but trades this, mostly likely, with a
poorer asymptotic noise threshold.

Any scheme based on the concatenation of small codes
can be converted to a coding scheme that is local in 1D
or 2D at the cost of some additional overhead for gates
which move qubits. If a large 3D color code is imple-
mented in pure 2D hardware, it requires non-planar con-
nections whose length grows with the size of the color
code. Recent work73–75 has shown how to systematically
construct codes that have a transversal T gate and con-
vert these codes to so-called doubled color or 2D gauge
color codes. However, by making all connections local on
a 2D lattice the resulting 2D codes are non-topological.
This means that the code performance is maximal for a
certain code size and declines for larger code sizes. The
performance of doubled color or 2D gauge color codes in
producing a low-noise logical T ancilla (which can then
be transferred to the 2D Clifford substrate) has not yet
been compared with MSD or the usage of 3D T stations.
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(a) (b)

FIG. 4. (a) Smallest example [[15, 1, 3]] of a tetrahedral 3D color code with qubits on the vertices. Each colored cell corresponds
to a weight-8 X-check and each face corresponds to a weight-4 Z-check. A logical Z is any weight-3 Z-string along an edge of
the entire tetrahedron. The logical X is any weight-7 X-face of the entire tetrahedron. A logical T † is implemented by applying
a T gate on every qubit. The online Supplementary Information54 has a movie of a larger 3D color code. (b) A 2D triangular
[[31,1,7]] code, generalizing Steane’s code, based on a 4.8.8. lattice. The qubits are associated with vertices and each colored
face corresponds to both an X and a Z-check. A logical X or Z is a X-string (resp. Z-string) running along any of the edges
of the entire triangle.

Box 3 | Arbitrary dimension color codes

The general construction D-dimensional gauge or stabilizer color codes is based on a D-dimensional simplicial complex
whose vertices are D + 1-colorable (adjacent vertices have different colors). One associates qubits with D-simplices, X-
and Z-parity checks with respectively x- and z-simplices, obeying x+ z ≤ D − 2. This inequality and the colorability
property enforce the commutation of the checks, leading to a code family ColorCodeD(x, z)59,60. A common boundary
configuration for such codes is obtained by tiling the inside of a big D-simplex, respecting colorability but omitting
elements of the bigger simplex as possible checks (see Suppl. Inf.54 for the construction of a 3D code). Such color codes
encode one logical qubit and we can call them simplicial color codes.
In 2D qubits are on triangles and the only choice is x = z = 0. This implies that a X- and a Z-parity check is associated
with each vertex, leading directly a transversal H gate. The simplicial (or triangular) version also has a transversal S
gate. The common representation of such codes, Fig. 4, is obtained by going to the dual lattice where qubits are
associated with vertices and checks are associated with faces of the lattice.
For dimensions higher than 2D, it is possible to choose x+ z < D − 2. In that case, the code space contains gauge qubits
whose X- and Z-gauge checks are given respectively by (D − 2− z)- and (D − 2− x)-simplices. Remarkably, the gauge
checks redundantly represent the stabilizer check information giving rise to single-shot error correction, discussed in III C.
In 3D qubits are on tetrahedra and one has three choices for (x, z). Choosing (x, z) = (0, 0) gives a 3D gauge color
code60. This code has a X- and Z-stabilizer check for each vertex leading to a transversal Hadamard and gauge checks
associated with edges. Another option is the 3D color family with (x, z) = (0, 1) in which the X-checks are associated
with vertices and the Z-checks with edges. The simplicial (or tetrahedral) version of this 3D color code has a transversal
T 55 and the smallest example [[15,1,3]] is shown in Fig. 4a. The third option (x, z) = (1, 0) is trivially (Clifford)
equivalent to the (x, z) = (0, 1) codes.

E. Comparison of Resource Overheads

The combination of MSD with the surface code is cur-
rently considered a competitive scheme since it combines
a high-noise threshold, a 2D architecture and a T gate
that is a few hundred times as costly as Clifford gates in
terms of its space-time overhead. Replacing MSD by 3D
T -gate stations and/or the surface code substrate by a
color code substrate is an alternative whose appeal de-
pends on the physical error probability versus the 2D and
3D color code thresholds. The use of the 3D gauge color

code for a T gate requires O(d3) qubits, but single-shot
error correction makes the space-time cost again O(d3)63.

An analysis71 of the concatenation scheme discussed in
Sec. II D shows that the spatial overhead is still not favor-
able as compared to using surface codes with MSD. This
analysis includes the consideration of a smaller, more ef-
ficient, 49-qubit code76. To get to the target error prob-
ability PL < 10−15 starting with a physical error prob-
ability of O(10−5) it is estimated that the concatenated
scheme uses at least 107 physical qubit for a logical qubit
(versus 104 for surface codes with MSD).
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III. THE BLESSING OF DIMENSIONALITY?

A. Transversality and Dimensionality

A deep connection between transversality and dimen-
sionality of a topological stabilizer code was proved by
Bravyi and Koenig77. Their theorem says that for D-
dimensional topological stabilizer codes, the only logical
gates that one can implement via a transversal or con-
stant depth circuit are in the so-called mth level of the
Clifford hierarchy Cm. Here C1 is the group of n-qubit
Pauli operators, C2 is the Clifford group, C3 contains gates
such as T and Toffoli and the mth level includes a small
rotation gate such as diag(1, exp( 2πi

2m )). While the gate
set Clifford+T is universal, it can be shown that using
gates in higher levels of the Clifford hierarchy reduces the
time overhead associated with gate synthesis. The gates
that one can realize with D-dimensional color and surface
codes saturate the Bravyi-Koenig theorem53,59,60. This
theorem does not prove that there are no good 2D alter-
natives to magic state distillation. It does suggest that
any alternative might come at the price of a lower thresh-
old for universal quantum logic as it requires a non-trivial
fault-tolerant gate construction.

B. Tradeoff Bounds

For the design of a storage medium, a quantum hard-
drive, one can drop the universal gate set desideratum (2)
as long as quantum information can be read and written
to storage. Ideally, the storage code is a [[n, k, d]] code
with high rate k/n and high distance d scaling as some
function of n. It was shown78 that 2D Euclidean topolog-
ical stabilizer codes are constrained by kd2 ≤ cn for some
constant c: the surface code clearly saturates this bound.
The adjective Euclidean means that the qubits can be
placed on a 2D regular grid with each qubit connecting
to O(1) neighbors. Consequently, the rate of these codes
vanishes with increasing distance, leading to a substantial
overhead as a storage code. Hyperbolic surface codes79

are only bound by kd2 ≤ c(log k)2n80. There is a simple
hyperbolic surface code in which qubits are placed on the
edges of square tiles and five tiles meet at a vertex. Such
{5, 4}-hyperbolic surface codes have an asymptotic rate
k
n = 1

10 and logarithmically growing distance79.

C. Single-shot Error Correction

2D topological codes have an intrinsic temporal over-
head in executing code deformation in a fault-tolerant
manner, making gates that rely on this technique take
O(d) time. The reason is that in code deformation new
parity check measurements are repeated O(d) times in or-
der for this record to be sufficiently reliable. The absence
of redundancy in the parity check measurement record is
an immediate consequence of the lack of self-correction

of 2D topological stabilizer codes81. A 4D hypercubic
lattice version of the surface code18 allows for single-shot
error correction instead. Due to redundancy in the parity
check data in this code, it is possible to repair the data for
measurement errors after a single round of measurement.
Codes which have such single-shot error correction then
have potentially higher noise thresholds and faster logical
gates. Interestingly, Bombin showed that single-shot er-
ror correction is possible for 3D gauge color codes63. For
such code the value of the stabilizer parity checks is ac-
quired through measuring non-commuting lower-weight
gauge qubit checks whose products determine the sta-
bilizer parity checks. Curiously, in the 3D gauge color
code, the gauge qubit checks hold redundant information,
which allows one to construct a robust record for the sta-
bilizer parity checks in O(1) time. The result shows the
power of using subsystem codes with gauge degrees of
freedom since we do not expect to have single-shot error
correction for 3D stabilizer codes.

IV. OUTLOOK

We have discussed several ideas for adding universal
computing power to a quantum device. Presently, using
surface codes with magic state distillation is the most
practical solution. We have seen that there is a wealth
of fascinating alternatives, but so far they have yet to
demonstrate a comparably high threshold or significant
improvements in resource scaling. A interesting direction
is to move away from the constraints of low dimensional
topological codes.

More general LDPC codes could be considered, for ex-
ample the 4D surface code in Table I. Homological quan-
tum (LDPC) codes can in principle be constructed from
tilings of any D-dimensional manifold. Generalizations
of classical LDPC codes based on expander graphs to
quantum codes are also known to exist82,83.

Such approaches require hardware that supports long-
range connectivity. Fortunately, various long-range ex-
perimental platforms such as ion-trap qubits or nuclear
spins coupled to NV centers in diamond, do not neces-
sarily conform to the paradigm of a 2D ‘sea’ of qubits.
One may expect such architectures to work with modu-
lar components with photonic interconnects84,85, which
would allow for more flexible and long-range connectivity.

The advantage of using a higher-dimensional LDPC
code or more general quantum LDPC code for computa-
tion or storage in a concrete coding architecture remains
to be fully explored, in particular efficient decoding soft-
ware needs to be developed. Independent of whether
these codes can be used in a coding architecture, we ex-
pect that the study and development of quantum LDPC
codes will lead to new insights into robust macroscopic
quantum information processing.
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