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The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator
has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have
also been proposed, and we introduce new codes of this type here. These codes have yet to be com-
pared using the same error model; we provide such a comparison by determining the entanglement
fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal
recovery operation. We then compare achievable communication rates of the combined encoding-
error-recovery channel by calculating the channel’s hashing bound for each code. Cat and binomial
codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite
not being designed to protect against the pure-loss channel, GKP codes significantly outperform all
other codes for most values of the loss rate. We show that the performance of GKP and some bino-
mial codes increases monotonically with increasing average photon number of the codes. In order
to corroborate our numerical evidence of the cat/binomial/GKP order of performance occurring at
small loss rates, we analytically evaluate the quantum error-correction conditions of those codes.
For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanish-
ing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and
discrete-variable systems. First, we characterize one- and two-mode binomial as well as multi-qubit
permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to
introduce check operators and error-correction procedures for binomial codes. Second, we introduce
a generalization of spin-coherent states, extending our characterization to qudit binomial codes and
yielding a new multi-qudit code.

Keywords: continuous variable, microwave cavity, quantum communication

I. INTRODUCTION AND PROBLEM SETUP

Continuous-variable (CV) systems [1–4] continue to
gain applications in quantum information processing and
communication. The fundamental “moving part” of
discrete-variable (DV) systems is one physical qubit, and
one has to have a multitude of such qubits to construct a
reliable logical qubit. By contrast, one may cleverly uti-
lize the infinite-dimensional space of an oscillator or mode
— the fundamental “moving part” of CV systems — in
order to realize a comparably reliable logical qubit out of
fewer moving parts. While many current linear-optical
CV encodings use two modes per qubit in a “dual-rail”
scheme [5, 6] and CV logical qubits may consist of sev-
eral modes in the long-term, here we focus on a single
mode since its theoretical limitations are not yet well-
understood and since it is useful for communication.

There have been several error-correcting CV encod-
ing schemes proposed to-date, formulated in terms of
superpositions of either position/momentum eigenstates
[7–12], coherent states [13–17], or Fock states [18–24]
(see also other hybrid CV-DV schemes [25, 26]). Besides

∗ Equal contribution.

the rich variety of quantum codes, there are two pre-
vailing CV noise models: classical (i.e., Gaussian or dis-
placement) noise and pure loss (more generally, thermal
noise) [2]. Classical noise is modeled by a distribution
of phase-space displacements while pure loss contracts
phase space to the vacuum and is best understood in
terms of losses. Due to the differing physical pictures and
mathematical formalisms of these noise models, codes de-
signed to protect against one may or may not protect
against the other. However, it is often difficult to rigor-
ously prove protection from noise against which a code
wasn’t designed to protect. It is also difficult to study
CV codes using the conventional stabilizer formalism be-
cause the noise model operators are not as well-behaved.
This manuscript closes these gaps by applying tools from
qubit-based quantum error-correction to CV codes which
were not analyzed in this manner before.

A. Codes and error model

The code classes we consider are

code ∈ {cat, bin, num, gkps, gkp} . (1.1)

The logical states for the first code class — the cat-
codes (5.1) — consist of superpositions of coherent states
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Figure 1. Wigner function plots for maximally mixed logical states 1
2
Pcode for code being cat (5.1), bin (6.1), num (Appx. B),

gkps (7.7b), and gkp (7.8), evaluated for given values of the respective parameters of the codes. On the axes, Q = 1
2
〈â + â†〉

and I = i
2
〈â† − â〉; color scales are not the same for all plots.

which are evenly distributed around a circle in phase
space [13, 15, 27]. The second class of codes, the re-
cently developed binomial codes (6.1), are designed to
protect exactly against errors consisting of powers of rais-
ing/lowering operators up to some maximum order [23].
Here we show that bin codes are spin-coherent states em-
bedded in an oscillator. We also include numerically opti-
mized codes (some from Ref. [23] and the rest developed
here) that were obtained by minimizing the photon num-
ber of the code states subject to the constraints of pro-
tecting exactly against the first few errors powers of the
lowering operator. The last class consists of GKP codes
[9] which are the +1 eigenspace of two commuting phase-
space displacement operators; since the codespace is in-
variant under both displacements, the codespace makes
a lattice in phase space. The gkps (7.8) class, with s
standing for square, corresponds to a square lattice. The
gkp (B4) class consists of GKP codes built out of both
the square and other non-rectangular lattices as well as
codes whose lattice is shifted by half a lattice spacing
from the origin, thus subsuming the gkps class. The
gkps codes are presented separately in order to quantify
any advantages of other lattices.

A single-mode qubit CV code is a two-dimensional sub-
space of the bosonic Hilbert space picked to be able to
protect quantum information against errors.1 It is unam-
biguously represented by the corresponding orthogonal
projection onto the subspace,

Pcode = |0code〉〈0code|+ |1code〉〈1code| , (1.2)

where code is picked from Eq. (1.1) and |µcode〉 (for µ ∈
{0, 1}) is any orthonormal basis for the code subspace.
The maximally mixed state 1

2Pcode thus provides a concise
basis-independent fingerprint for each code; we plot the
Wigner function of this state in Fig. 1.

We deal exclusively with codes representing a single

1 While there is a more general definition for multi-qubit subsys-
tem codes [28], we stick with the simpler definition since to our
knowledge there are no single-mode CV subsystem codes.

qubit and are guided by the question:

Which code best protects against the pure-loss channel?

We are interested in the pure-loss channel because it is
a model for broadband-line and free-space communica-
tion [3] and it is the most common incoherent error pro-
cess in optical and microwave cavities [23]. The second
most common error is cavity dephasing, which is caused
by fluctuations in the cavity frequency. Optical cavities
have to be actively stabilized to fix the frequency, but the
effects of such fluctuations are small relative to effects of
energy loss, particularly in microwave cavities. There are
also other coherent error processes, such as a Kerr non-
linearity [29], which we briefly consider in Sec. VIIIA.

The pure-loss bosonic channel (also known as bosonic
amplitude damping or, more simply, as the lossy chan-
nel [2]) is Markovian: N = exp(χD) with superoperator
D(·) = â · â†− 1

2{n̂, ·}, where â/â
† is the lowering/raising

operator for the bosonic mode and n̂ ≡ â†â. The dimen-
sionless damping parameter equals χ = κt for microwave
or optical cavities (with excitation loss rate κ and time in-
terval t) or χ = l/latt for optical fibers (with fiber length
l and attenuation length latt). It is convenient to use the
dimensionless loss rate

γ ≡ 1− e−χ (1.3)

to quantify the severity of the error channel, denoted as
N ≡ Nγ from now on. This channel can be expressed via
unraveling [18, 30–32] or Lie-algebraic [33] techniques in
the Kraus representation, Nγ(·) =

∑∞
`=0E` · E

†
` , with

Kraus operators

E` ≡
(

γ

1− γ

)`/2
â`√
`!

(1− γ)
n̂/2

. (1.4)

To leading order in γ, expansions of the first two Kraus
operators suffice,

E0 = I − 1

2
γn̂ and E1 =

√
γâ . (1.5)

This channel can also be derived by introducing an envi-
ronment mode b̂, coupling our oscillator with the vacuum
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state of this mode via a beam-splitter interaction

â→
√

1− γ â+
√
γ b̂ , (1.6)

and tracing out the b̂-mode [3, 34]. The K-mode chan-
nel N⊗Kγ reduces to the multi-qubit amplitude damping
channel when restricted to the first two Fock states of
each mode and reduces to the erasure channel when re-
stricted to the single-excitation subspace.

Notice that this channel does not contain the identity
as a Kraus operator for γ 6= 0. This is due to the back-
action or damping term (1− γ)

n̂/2 in Eq. (1.4), which
reduces the probabilities of being in Fock states |n > 0〉
such that the only state remaining in the γ → 1 limit is
the vacuum Fock state |n = 0〉. Thus, when no losses
are recorded (i.e., if E`>0 has not yet acted on the state),
there is still a redistribution of probability caused by E0.
Colloquially for γ > 0, if one hasn’t lost any photons,
then one likely did not have many photons to begin with.

B. Channel fidelity and recovery optimization

The combined quantum channel we consider consists
of an encoding step Scode, action of the pure-loss chan-
nel Nγ , a recovery channel R, and a perfect decoding
step S−1

code. The encoding step maps the quantum infor-
mation from the qubit source space A [35] into the code
subspace of the bosonic Hilbert space; this step is repre-
sented by Scode. More precisely, Scode(ρ) = SρS−1 where
S = |0code〉〈0A|+|1code〉〈1A|, ρ is a qubit density matrix in
A, and |0A/1A〉 is a basis for A. Therefore, SS−1 = Pcode
and, if {|0code〉, |1code〉} are orthonormal, S−1S = IA, the
identity on A. The combined channel

E ≡ S−1
code ◦ R ◦ Nγ ◦ Scode (1.7)

thus maps density matrices in A back to A. In contrast,
R ◦ Nγ is a map from the bosonic space to the code
subspace. The form of E depends on the code, the loss
rate γ, and the recovery R. The channel can be written
in the Kraus representation, E(·) =

∑
k Ak ·A

†
k, or in the

matrix or Liouville representation — as a 4 × 4 matrix
with elements

Ekl = 1
2Tr{σkE(σ`)} , (1.8)

using the three Pauli matrices σ1,2,3 and identity IA ≡ σ0

(e.g., [36], Sec. 2.2). Composition “◦” in Eq. (1.7) is
equivalent to matrix multiplication in the matrix repre-
sentation, so we omit the symbol.

None of the codes we consider protect against all er-
rors in Nγ , so we have to consider approximate quantum
error correction [37, 38]. We compare the codes using the
channel fidelity FE [39] — a specific case of entanglement
fidelity [40] that is motivated as follows. Let the source
qubit A be in a maximally entangled state with ancillary
qubit B, i.e., |Ψ〉 = (|0A0B〉 + |1A1B〉)/

√
2. Qubit B is

left alone (i.e., acted on by the identity superoperator I)

while the source qubit is acted on by the channel E in
Eq. (1.7). The channel fidelity FE is simply the overlap
between the initial state |Ψ〉 and the final state

ρE ≡ E ⊗ I(|Ψ〉〈Ψ |) , (1.9)

(which we define to be the Choi matrix2 of E):

FE ≡ 〈Ψ |ρE |Ψ〉 . (1.10)

Remembering that TrB{|Ψ〉〈Ψ |} is the maximally mixed
state 1

2IA of qubit A, a few simple manipulations yield

FE =
1

4

4∑
k=1

|Tr{Ak}|2 =
1

4
Tr{E} , (1.11)

where Tr is the trace in the matrix representation (1.8).
Besides clearly being an intrinsic property of E that is

invariant under unitary rotations, several other proper-
ties of FE make the quantity both meaningful and practi-
cally useful. We first mention the property that is crucial
for our task, listing the remaining properties in Appx. A.
It turns out that the recovery R which gives the optimal
FE is computable via a semi-definite program [44] (see
also [39, 45]). This allows us to quickly obtain the high-
est possible FE using a laptop (given reasonable n̄code)
and without having to design a recovery for each code.
This procedure was applied to the multi-qubit context by
Fletcher, Shor, and Win [43] (see also [35] and references
therein), and our benchmarking is in some sense a coun-
terpart to that work in the oscillator context. From now
on and unless otherwise noted, we let the recovery piece
R of E (1.7) be one which gives the highest FE , given a
member of the code family and a loss rate γ.

C. Outline of this paper

In Sec. II, we state our main numerical code compari-
son results and summarize the supporting analytical cal-
culations. In Sec. III, we numerically analyze commu-
nication rates of our codes by calculating the hashing
bound of E . In Sec. IV, we review the quantum error-
correction conditions. In Secs. V, VI, and VII, we calcu-
late these conditions for the cat, bin, and gkp codes, re-
spectively. In Sec. VIC, we characterize single-qubit bin
codes in terms of spin-coherent states and relate them to
two-mode binomial codes and multi-qubit permutation-
invariant codes. In Sec. VIII, we analyze code perfor-
mance after a Kerr interaction is added to the pure loss
channel and briefly study the effect of tracking the pho-
ton number parity. We summarize our results and discuss
future directions in Sec. IX.

2 Note that I ⊗ E(|Ψ〉〈Ψ |) is used for the Choi matrix in [41, 42].
Our convention [35, 43] yields ρE =

∑
k |Ak〉〉〈〈Ak| for vectorized

Kraus operators |Ak〉〉 of E, but unfortunately makes Alice and
Bob switch places.
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II. TAKE-HOME MESSAGES

Here we summarize the results related to code per-
formance, but start off by mentioning two caveats to
our primary numerical comparison. Results relating the
structure of bin codes to spin-coherent states and other
multi-qubit codes are summarized in Sec. IXB.

Caveat 1© is that the encoding, recovery, and decoding
are all assumed perfect, meaning that there are no other
errors besides Nγ incurred by the state. Therefore, the
results of this section should be interpreted as theoretical
bounds on code capabilities and not as practical sugges-
tions on the best experimental design. Moreover, optimal
recovery procedures are not created equal in the eyes of
current technologies: cat code error correction has al-
ready been performed [29] while gkp states have yet to
be realized. We briefly investigate one additional imper-
fection in Sec. VIII by including a nonlinearity. There, we
also address the consequences of being able to perfectly
track the photon number parity.

Caveat 2© has to do with how we quantify the “size”
of the codes. Namely, we organize the codes by mean
occupation number

n̄code ≡ Tr {Pcoden̂} /2 . (2.1)

While n̄code is proportional to the average energy required
to construct a code state, it does not describe the spread
or variance in Fock space, σ2

code ≡ 1
2Tr{Pcoden̂

2} − n̄2
code.

While cat and bin codes follow approximately Poisson
and binomial distributions in Fock space, respectively,
we will show that gkp codes are geometrically (i.e., ther-
mally) distributed and thus have much larger “tails” in
Fock space at higher n̄. Therefore, for the same n̄code, gkp
codes utilize much more of the Fock space than cat/bin
and are therefore “larger” (in the same sense that multi-
qubit codes constructed out of ten physical qubits are
larger than those constructed out of five). A simple en-
ergy parameter does not quantify such a notion of size.

A. Numerical comparison

The procedure we use to determine the channel fideli-
ties shown in Fig. 2 is as follows. Recall that each code
family (1.1) contains multiple instances of codes. For ex-
ample, a member of the bin code family is parameterized
by the number of dephasing and loss errors it can correct
(N and S, respectively; more details are in Sec. IV). For
each loss rate γ in Eq. (1.3), we calculate the optimal FE
for all instances of each code family subject to the energy
constraint that n̄code ≤ 2, 5, 10 [shown in Figs. 2(a), (b),
and (c), respectively]. Then, we pick the highest FE out
of all members of the code family and plot it in the fig-
ure. We repeat for other values of γ ≤ 0.5 — the point at
which the one-way channel capacity of Nγ becomes zero
(see Sec. III for details). As a result of this simultaneous
optimization over each code family and over the recovery

Figure 2. Channel fidelity FE (1.11) given an optimal recovery
operation and optimized over all instances of each code given
an occupation number constraint n̄code ≤ 2 (a), 5 (b), or
10 (c). The dotted diagonal line, drawn for reference, is the
optimal FE for single-rail encoding [6] (whose logical states
are the Fock states |0〉, |1〉). While gkp codes perform worse
than the other codes for sufficiently small γ (see insets), they
outperform all other codes as γ is increased despite not being
designed to protect against the pure-loss channel. We were
not able to obtain significantly better num codes with n̄num > 5
due to a large set of parameters to be optimized over, so red
curves in (b) and (c) are identical. Parameters for all of the
codes used are in Table IV.

for a given member of the family, the code which gives
the highest FE may change with γ and curves in Fig. 2
may display discontinuous derivatives.

Let us first focus on the n̄code ≤ 2 case in Fig. 2(a) and
examine the infidelity (1− FE) shown in the log-plot in-
set. For γ ≤ 0.025, specific members of num, bin, and cat
perform the best (in that order), showing similar scaling
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with γ. All three of these codes were designed to deal
with errors {I, â}, the dominant terms in E`=0,1 at small
γ (1.5). The num and bin codes show quadratic scaling
versus small γ: in a polynomial fit up to order two for
γ ≤ 0.025, c0 +c1γ+c2γ

2, num/bin codes have negligible
coefficients c0, c1 ≈ 10−4, and a c2 of 1.3/1.8, respec-
tively. The cat codes have negligible c0, c1 ≈ 10−3, and
c2 ≈ 2.2. Following these codes, gkps and gkp perform
the worst for small γ, underperforming the other codes
as γ → 0. This should be expected since these codes were
designed to protect against small displacements and not
loss events. It is also reasonable that gkp should slightly
outperform gkps due to the idea that non-square lat-
tices allow for tighter packing than square lattices [9].
The main unexpected behavior for n̄code ≤ 2 occurs for
γ ≥ 0.025. There, we see that gkps and gkp actually
outperform the rest of the codes (this will be discussed
later).

We remark here that, for each γ, the amplitude α of the
coherent states making up cat codes [see Fig. 1(a)] for
the optimal cat code is at a fine-tuned “sweet spot” α?(γ)
which balances the backaction due to the difference in the
mean occupation number of the logical states (significant
for small α but zero at α → ∞) against the probability
that a photon will be lost (zero at α → 0). We discuss
this effect more in Sec. V, noting that it has also been
studied elsewhere [23, 46].

Continuing to n̄code ≤ 5 in Fig. 2(b), we see sub-
stantial increases in performance for all codes. We list
notable infidelities for selected γ and n̄code ≤ 5 in Ta-
ble I(b). For example, for the relatively lossy channel
having γ = 0.0952, there exist codes in all five families
which have a channel fidelity higher than 99.4%. More-
over, all such codes have only five photons in them on
average, so they could be within reach even with noisy
intermediate-scale quantum (NISQ) technologies [47]. At
small γ [inset of Fig. 2(b)], we again see polynomial scal-
ing for the cat/bin/num codes, which are able to deal
with loss errors {I, â, â2}. We also once again see gkp
outperform the other codes for γ ≥ 0.05 and underper-
form as γ → 0. The cat and bin code performances are
almost identical, with the exception of small γ, where
bin performs slightly better. Expounding on this behav-
ior in Sec. VIA, we show that bin allows for better error
suppression than cat in certain ranges of n̄. One num
code performs the best for all γ ≤ 0.4 — the code with
n̄num = 4.15 (see Appx. B).

Let us now consider the case n̄code ≤ 10 in Fig. 2(c).
While these codes may be difficult to create and cor-
rect experimentally in the near future, it is nevertheless
interesting to see whether doubling the occupation num-
ber constraint allows for any improvements of the code.
The most noticeable difference between n̄code ≤ 10 and
n̄code ≤ 5 is that gkp pulls away from the other codes
for all values of γ sampled. While it is believable that
the other codes will still scale more favorably for suffi-
ciently small γ, this occurs only at γ < 0.01. For larger
γ, gkp codes demonstrate FE ≥ 0.99 even at γ = 0.2 (see

(a) 1− FE(n̄ ≤ 2)

γ cat bin num gkps gkp

0.01 4.2e10−4 2.9e10−4 2.0e10−4 6.0e10−4 2.5e10−4

0.05 5.3e10−3 4.3e10−3 3.1e10−3 3.4e10−3 1.9e10−3

0.10 1.8e10−2 1.6e10−2 1.2e10−2 1.0e10−2 7.1e10−3

0.20 6.2e10−2 6.6e10−2 5.3e10−2 4.5e10−2 3.9e10−2

0.31 1.3e10−1 1.5e10−1 1.2e10−1 1.2e10−1 1.1e10−1

(b) 1− FE(n̄ ≤ 5)

γ cat bin num gkps gkp

0.01 4.4e10−5 2.8e10−5 3.7e10−7 1.4e10−6 3.2e10−7

0.05 1.1e10−3 1.1e10−3 8.8e10−5 6.3e10−5 2.2e10−5

0.10 4.9e10−3 5.4e10−3 1.2e10−3 7.6e10−4 3.9e10−4

0.20 3.4e10−2 3.6e10−2 2.1e10−2 1.5e10−2 1.2e10−2

0.31 1.1e10−1 1.1e10−1 9.2e10−2 8.2e10−2 7.7e10−2

(c) 1− FE(n̄ ≤ 10)

γ cat bin gkps gkp

0.01 1.7e10−5 3.7e10−7 3.0e10−10 1.0e10−11

0.05 6.3e10−4 1.5e10−4 8.2e10−7 1.5e10−7

0.10 4.9e10−3 1.7e10−3 7.9e10−5 2.9e10−5

0.20 3.4e10−2 3.1e10−2 6.5e10−3 4.6e10−3

0.31 1.1e10−1 1.1e10−1 6.3e10−2 5.9e10−2

Table I. Channel infidelity 1−FE from Figs. 2(a-c) at selected
loss rates γ (with γ rounded to the nearest hundredth).

Table I). Looking at Table IV, the best codes in those
families for most γ are those which also have n̄gkp ≈ 10.
In other words, gkp performs better with increasing n̄.
A similar monotonic increase in performance occurs for
subsets bin(N,S ≈ ξN) of binomial codes (with ξ de-
pendent on γ) when the n̄bin constraints are relaxed (see
Sec. VIB). We explain the bin increase in performance
in Secs. VIA-VIB, revealing that they have a larger
set of approximately correctable errors than previously
thought. This behavior is not seen in cat codes, which
do not perform much better than those in Fig. 2(b) and
work best at some finite n̄. This idea that increasing n̄
does not lead to better cat code performance has been
observed before in different contexts [46, 48, 49]. By con-
trast, the ideal gkp codes have infinite n̄, so it seems rea-
sonable that increasing n̄ should improve performance.
These results support the conjecture that the ordering of
the codes with respect to FE is gkp > bin > cat when
there is no energy constraint.

The numerical results show that codes designed to
work well at small γ do not perform well for large γ, and
vice versa. More specifically, extensions of the ideas used
to correct dominant errors at small γ do not necessarily
lead to good codes at larger γ. For instance, the cat and
bin codes protect exactly from the first few loss errors
by making sure there is adequate Fock state spacing S
between the states. As an example, an S = 2 cat/bin
code uses superpositions of Fock states |0〉, |6〉, · · · for
|0code〉 and |3〉, |9〉, · · · for |1code〉. This guarantees that
loss events E`=1,2, which lower each Fock state by either
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1 or 2, do not cause the logical states to overlap with
each other. Both cat and bin allow one to increase S
arbitrarily, while gkp codes have S ∈ {0, 1}, depending
on whether their lattice is shifted from the origin or not.
Figure 5 shows that, for sufficiently large γ and n̄code,
correcting a few errors exactly with spacing (done by
cat and bin) is not as helpful as suppressing all errors
approximately (done by gkp).

B. Analytical results

To summarize, the family of gkp codes outperforms
all of the other codes for most γ, with the exception
of small γ (which gets even smaller as the energy con-
straint is loosened). We see similar behavior analyzing
the optimal codes from an information-theoretic perspec-
tive in Sec. III. Since all of the other codes were specifi-
cally designed to protect against loss errors and gkp codes
were designed to protect against displacement errors, gkp
have apparently outperformed all of the other codes “at
their own game” (albeit a game whose rules were set
by caveats 1© and 2©). To understand this effect, we
have undertaken extensive analytical calculations to de-
termine the quantum error-correction conditions for the
pure-loss channel for gkp codes [see Eq. (7.18)] as well as
how 1− FE scales with γ. As noted in the previous sub-
section, while other codes protect against errors (to some
order in γ) exactly, gkp protect against all errors approx-
imately. In other words, other codes protect against the
first few errors exactly, but have low fidelity when there
is a large probability of an unprotected error occurring.
By contrast, gkp codes do not protect against most er-
rors exactly, but the contributions from all errors to the
infidelity is small.

In order to bound the scaling of FE(gkp) and since
there is no analytic expression for the optimal R, we
calculate a lower bound on the channel fidelity FAGKP

E
using a recovery RAGKP (7.22) which consists of phase-
insensitive amplification, followed by conventional gkp
recovery consisting of displacement measurements and
corrections. The recovery is based on the idea that, after
fine-tuning some of the channel parameters,

pure loss + amplification = Gaussian noise,

where Gaussian noise corresponds to uniform diffusion
in phase space and its channel has displacements for its
Kraus operators ([2], Sec. 2.3; see also [50]). In other
words, amplification (with gain 1

1−γ ) exactly compen-
sates the contractive effect of pure loss (with loss rate
γ) while at the same time adding noise that, in this con-
text, reduces to Gaussian noise (with variance γ

1−γ ). This
idea has been considered in the context of communication
schemes [51, 52]; we apply it to bosonic error-correction
by noting that Gaussian noise is exactly the type of noise
that gkp was designed for. That way, we can use ear-
lier tools [9, 53] developed to quantify gkp performance

against such noise. We consider single-mode behavior
here, noting that, in the multimode case, gkp codes can
be used to communicate efficiently across more general
Gaussian channels [54]. Note that the related idea of
“amplication+pure loss=Gaussian noise” has been re-
cently applied to determine bounds on quantum capaci-
ties of more general Gaussian channels [54–56].

The probability of failure of RAGKP gives a lower
bound on FAGKP

E , which in turn bounds FE(gkp) (see
Sec. VIIB). The bound contains an essential singularity
at γ = 0,

FE(gkp) > 1− exp

(
− π

4c

1− γ
γ

)
, (2.2)

where c is a constant determined by the lattice used to
construct the code. This exponential suppression of in-
fidelity explains the non-trivial scaling of gkp codes at
small γ and accounts for their breakaway performance
at higher γ. Due to the non-analyticity, having different
lattices becomes important for γ � 1, where gkp outper-
forms gkps by an order of magnitude [see Table I(c)].

III. THE HASHING BOUND OF E

Since channel fidelity provides a measure for entangle-
ment preservation, it is also of interest to examine these
results from an information-theoretic perspective. The
question we aim to answer in this section is:

What is the achievable communication rate of E?

As with the FE , this question also pre-supposes caveats
1© and 2© from Sec. II. In other words, we assume recov-
ery operations R can be done perfectly and organize the
codes by mean occupation number n̄code, ignoring their
“size” in terms of the number of Fock states necessary to
express the logical states.

The quantum communication rate of E =
S−1
codeRNγScode (1.7) is ultimately limited by its

most destructive link — the pure-loss channel Nγ (1.4).
Given an energy constraint of maximum n̄, the quantum
capacity of Nγ is given by {[57], Thm. 8; see also [58],
Eq. (12), and [59]}

Qn̄ = max {0, g ((1− γ)n̄)− g (γn̄)} , (3.1)

where g (n̄) = (n̄+ 1) log2 (n̄+ 1) − n̄ log2 n̄ is the von
Neumann entropy of a thermal state with n̄. Note that
in the limit of n̄ → ∞, this capacity approaches the un-
constrained quantum capacity3

Q∞ = max

{
0, log2

(
1− γ
γ

)}
. (3.2)

3 Equation (3.2) was proven in Ref. [60], which built on Ref. [61]
(see also remark 17 in Ref. [58]). A standalone derivation is, e.g.,
in Sec. III of Ref. [54].
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Figure 3. Hashing boundDE (3.3) of the codes which optimize
FE for a given γ and given constraints n̄code ≤ 2 (a), 5 (b), or
10 (c). The boundary of the gray region is Qn̄=2,5,10 (3.1), the
capacity of Nγ given the energy constraint of n̄. The gray line
is the unconstrained capacity Qn̄→∞ (3.2). The thin dotted
diagonal line is DE for the single-rail encoding, which has the
highest DE at large γ. Recall that cat/bin codes include the
single-rail encoding [i.e., this encoding is also cat(α = S = 0)
and bin(N = S = 0)], so bin/cat eventually jump to match
the dotted line. We also show DE for the four-qubit leung

code (3.5) vs. qubit amplitude damping (i.e., the pure-loss
channel restricted to the first two Fock states of four modes).
There are no num codes with n̄num ≥ 5, so red curves in (b)
and (c) are identical.

We see how close the codes giving the best FE (see
Fig. 2) come to Qn̄ for n̄ ≤ 2, 5, 10 by calculating a lower
bound on the capacity of E for each γ and each code listed
in Table IV. The lower bound we use is known as the
hashing bound DE of E [62] — the (reverse2 [63]) coherent
quantum information of E ’s Choi matrix ρE (1.9), where
|Ψ〉 = (|0A0B〉 + |1A1B〉)/

√
2 is a maximally entangled

state of A and B in an arbitrary basis:

DE ≡ H(TrB{ρE})−H(ρE) , (3.3)

where H(ρ) = −Tr{ρ log2 ρ}. This one-shot (i.e., with
one application of the channel) coherent information of
ρE provides an achievable rate of quantum communica-
tion and entanglement distillation, assuming many copies
of E are available ([63–65]; see also Corr. 21.2.1 and Thm.
23.9.1 in [62]). Therefore, DE does not supply an achiev-
able rate of any one oscillator code, but instead gives an
achievable rate of concatenation schemes of the oscillator
code with other (outer) codes with the restriction that
R is used as the recovery for the (inner) oscillator code.

The first term in DE can be simplified to yield an ex-
pression only in terms of E ,

DE = H

({
1
2 ±

1
2

√
1
2 ||E(IA)||2 − 1

})
−H(ρE) , (3.4)

where H ({x}) = −
∑
x x log2 x for a set of variables {x},

||O||2 ≡ Tr{O†O} is the Frobenius norm of an operator
O, and IA is the qubit identity. Derivation of the first
term was done by determining the reduced qubit density
matrix TrB{ρE} in terms E ’s matrix representation (1.8)
and then diagonalizing to yield the two eigenvalues in
the term’s argument. Note that this term is maximized
when E is unital [E(IA) = IA]. The second term — the
von Neumann entropy of the Choi matrix ρE — increases
with the minimal number of Kraus operators needed to
express E and is zero when E is a unitary channel.

Incidentally, the analytical formula for DE provides an
easily calculable lower bound on the quantum capacity
QE of any qubit channel E . It turns out that DE is quite
close toQE for a family of two-Kraus operator qubit chan-
nels {[66], Eq. (5)} which includes the dephasing and am-
plitude damping channel: we have checked numerically
that the difference QE −DE < 0.005.

A. Hashing bound for codes giving optimal FE

In Fig. 3, we plot the hashing bound DE for all of the
codes which produce the optimal channel fidelity FE in
Fig. 2 for the three energy constraints n̄code ≤ 2, 5, 10.
In other words, this plot is not an optimization of DE
over all codes, but merely a plot of DE for the codes
which give optimal FE . Recall that DE is a lower bound
on the entanglement that is theoretically distillable from
using unlimited instances of E and one-way classical com-
munication from B to A. By contrast, FE is an over-
lap which gauges how well entanglement was transmit-
ted over just one instance of E . While FE bounds one of
the terms in DE [see Eq. (A3)] and the two yield a sim-
ilar order of performance of the codes, there is no guar-
antee that codes giving the optimal value of FE should
also give optimal values for DE . In other words, even
if FE(one) > FE(two) given two codes one and two,
there could still exist an entanglement distillation scheme
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which extracts more entanglement from the unlimited in-
stances of E from code two. This is true for our codes at
large γ. Let us for example consider n̄ ≤ 10. At around
γ ≈ 0.37, all of the codes begin to have a lower DE than
the single-rail {|0〉, |1〉} Fock state encoding [thin black
line in Fig. 3(c)]. By contrast, the point at which the
codes begin to have a lower FE than the single-rail encod-
ing is γ ≈ 0.42 [see Fig. 2(c)]. The cat/bin codes include
this encoding [i.e., single-rail is also cat(α = S = 0) and
bin(N = S = 0)], so we can say for certain that the
cat/bin codes which optimize FE are not those which
optimize DE at 0.37 ≤ γ ≤ 0.42.

For γ . 0.3, we once again see similar behavior of the
codes (relative to each other) as with FE . For n̄code ≤
10, gkp codes break from the pack and bridge the gap
with Qn̄ most rapidly. For example, at the high loss rate
γ = 0.3, DE [gkp(n̄ ≤ 10)] ≈ 0.63 bits is about twice
that of the naive Fock state code. Moreover, DE [gkp(n̄)]
approaches roughly 1

2Qn̄ for large γ. In addition, bin
codes exhibit better performance with increasing n̄ in
the γ . 0.2 range. This begs the question of how close
DE for gkp and bin comes to Qn̄ when one encodes more
than a qubit’s worth of information and when one utilizes
two- or higher-mode generalizations of the codes. Such
a question is outside the scope of this work, but is being
investigated for a subsequent publication.

Since the pure-loss bosonic channel reduces to qubit
amplitude damping when restricted to the Fock states
|0〉 and |1〉, one interesting question to ask is whether
the n̄code photons, which so far are concentrated in one
mode, will produce a better rate when distributed the
first two Fock states of multiple modes. While comparing
single-mode codes to the various discrete-variable codes
specialized to protect against qubit amplitude damping
(e.g., [37, 67–76]) is outside the scope of this work, we
do provide a reference DE for one specialized code — the
four-qubit leung code [37] — that is the smallest known
discrete-variable code to protect against one amplitude
damping error.4 Each of the four physical qubits in the
leung code,

|±leung〉 =
1

2
(|00〉 ± |11〉)⊗2

, (3.5)

correspond to the first two Fock states of four oscillators.
We can then apply N⊗4

γ (which reduces to amplitude
damping within the |0〉, |1〉 Fock state subspace), opti-
mize FE to yield E , and calculate DE via the same proce-
dure as with the rest of the codes. A simple calculation
yields a total occupation number of n̄leung = 2 photons,
which in this case are distributed over the first two Fock
states of four modes. The leung code performs similar
to the cat/bin/num(n̄ ≤ 2) codes from Fig. 3(a), but
is outperformed by the gkp(n̄ ≤ 2) codes for γ ≤ 0.35.

4 Interestingly, this code can also protect against one erasure [77]
and be used as an error-detecting code for other errors [78].

This suggests that, at least for intermediate γ and all
else being equal, it is better to encode two photons in a
single-mode gkp state than to spread them out over four
modes. The leung code is outperformed at almost all γ
by all codes considered with n̄code ≤ 5, but this is not a
fair comparison since those codes use more photons.

IV. PRIMER: THE QEC MATRIX

In order to analyze errors for the codes, we consider
the quantum error-correction (QEC) conditions [79, 80]
(see also [81], Thm. 10.1). The errors we consider are the
Kraus operators E` (1.4), where ` denotes the number of
photons lost after application of the error. Calculating
the effect of the error E†`E`′ on the codespace yields a
2× 2 matrix ε``′ ,

PcodeE
†
`E`′Pcode = εcode``′ ∈ Mat2×2 . (4.1)

We write εcode``′ as a superposition of Pcode and matrices

Zcode = |0code〉〈0code| − |1code〉〈1code| (4.2a)
Xcode = |0code〉〈1code|+ |1code〉〈0code| (4.2b)
Ycode = |1code〉〈0code| − |0code〉〈1code| . (4.2c)

We define our matrix basis as such because both Pcode

and E` are real for our codes, so the QEC matrix εcode

is real, symmetric, and 2N -dimensional (with N → ∞
being the dimension of the oscillator). Expanding each
2× 2 subblock yields

εcode``′ = ccode``′ Pcode + xcode``′ Xcode + ycode``′ Ycode + zcode``′ Zcode ,
(4.3)

with coefficients denoted by

[c, x, y, z]code``′ =
1

2
Tr
{

[P,X, Y, Z]codeE
†
`E`′

}
. (4.4)

For E` to be perfectly correctable, one must satisfy the
QEC condition

εcode``′ = ccode``′ Pcode (4.5)

(equivalently, 〈µcode|E†`E`′ |νcode〉 = ccode``′ δµν for µ, ν ∈
{0, 1}). In words, a correctable error must act as the
identity within the code subspace (equivalently, the ef-
fect of the error must be the same on both code states).
Therefore, the coefficient ccode``′ represents the correctable
part of εcode``′ while {xcode``′ , y

code
``′ , z

code
``′ } represent various

uncorrectable parts corresponding to bit, phase, and joint
bit-phase flips, respectively. Since not all errors E` can
be corrected, we proceed to analyze the magnitude of
the uncorrectable parts — the 2N -dimensional matrix
εcode − ccode — with εcode``′ , c

code
``′ being 2 × 2 submatrices

of εcode, ccode, respectively.
The QEC matrix block εcode``′ can also be interpreted

([81], Fig. 10.5) as a matrix of overlaps between the
two error subspaces spanned by {E`|µcode〉}1µ=0 and
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{E`′ |µcode〉}1µ=0, i.e., the range of E`Pcode and E`′Pcode.
We call these subspaces E`Pcode and E`′Pcode for short.
When no loss events are occurring, the code state un-
dergoes the backaction-induced evolution corresponding
to the subspace E0Pcode. As ` loss events occur, one’s
ability to detect them hinges on the orthogonality be-
tween E0Pcode and E`Pcode, the latter being the space to
which a state has gone after losing ` photons. The εcode0`
and εcode`0 parts of the QEC matrix thus correspond to
the ability to distinguish between ` losses and no losses,
making their satisfaction similar to the satisfaction of the
error-detection conditions δcode` = PcodeE`Pcode ∝ Pcode

[82]. While the backaction in E0 makes εcode0` 6= δcode` , the
two converge to each other as γ → 0. Since bin and cat
codes satisfy both εcode0` , δcode` ∝ Pcode exactly up to some
` ≤ S, uncorrectable parts in the QEC matrix blocks
εcode0` quantify how well `-photon losses can be detected
for those codes.

Uncorrectable parts {xcode`` , ycode`` , zcode`` } for “diagonal”
errors E†`E` represent distortion of the quantum informa-
tion within the subspace E`Pcode and limit how well one
is able to correct the error E` after detection. Since our
codespace can become distorted even when there are no
loss events, we have to also consider backaction-induced
distortion captured by εcode00 . The loss event probability
distribution is governed by ccode`` and depends on both γ
and n̄code. For a fixed γ and sufficiently large n̄code, we
will see that ccode`` for cat (gkps) is a Poisson (geometric)
distribution having mean γn̄code. In such cases, we can
interpret γn̄code as the average number of photons lost,
and only when γn̄code � 1 can we say that E0 is the most
likely error for a code.

V. CAT CODES

Cat code logical states are coherent states projected
onto subspaces of occupation number modulo 2(S + 1):

|µcat〉 =
Π(S+1)µ|α〉√
N

(S+1)µ
α

, (5.1)

with α real (for simplicity), µ ∈ {0, 1}, and normalization

N (S+1)µ
α = 〈α|Π(S+1)µ|α〉 . (5.2)

The projections {Π0,ΠS+1} used to define the code states
belong to the family (for r ∈ {0, 1, · · · , 2S + 1})5

Πr =

∞∑
n=0

|2n(S + 1) + r〉〈2n(S + 1) + r| . (5.3)

5 One can also consider shifted cat and bin codes by picking sub-
spaces of Fock states n = s and n = S+1+s modulo 2(S+1) for
shift parameter s ∈ {0, 1, · · · , S}. Sampling some of the “sweet
spots” for shifted cat codes [46] did not alter the qualitative be-
havior of cat relative to the other codes.

In the large α limit, i.e., when

2α sin

(
π

S + 1

)
� 1 , (5.4)

cat-code states become equal superpositions of coherent
states {|αei

π
S+1k〉}2(S+1)−1

k=0 distributed equidistantly on
a circle of radius α in phase space. In that limit, the
seemingly bothersome normalization factors approach
the same constant, while when α . S, they become dis-
tinct in order to account for the various overlaps between
the coherent states. Expressing the normalization factor
in terms of such overlaps {[83], Eq. (3.22)}, we have

N (S+1)µ
α =

1

2(S + 1)

2S+1∑
s=0

(−1)
µs 〈α|αei

π
S+1 s〉 . (5.5)

Since the cat codes which produce the optimal FE have
α . S, we have to consider the factors N (S+1)µ

α at inter-
mediate α in order to explain Fig. 2.

Due to properties of coherent states and for α 6= 0, cat
logical states satisfy

(â/α)
2(S+1) |µcat〉 = |µcat〉 , (5.6)

and cat(S) [and bin(S), as we shall see] can detect ex-
actly S photon loss events using the check operator

Ccat = Cbin = exp

(
i

2πn̂

S + 1

)
. (5.7)

Its square root, exp(i πn̂S+1 ), makes for a logical Z-operator
within cat and bin code subspaces. We call this a check
operator (and not a stabilizer) since it has other eigen-
values which are not modulus one and is not part of a set
of commuting such operators which is used to construct
the code states.

The S = 0 cat code was proposed in Ref. [13] for
coherent-state quantum computation [84–87]. This code
cannot detect loss events since losing a photon causes
a logical bit-flip, but it of course can be concatenated
with, e.g., a bit-flip code [85]. The cat(S = 1, 2) codes
were studied first in Refs. [15, 27], followed by investiga-
tions into cat(S ≥ 2) and qudit extensions [46, 88, 89].
There are several theoretical and experimental schemes
for cat state preparation [90]. Schemes designed to pro-
tect against loss errors [29] (for S = 1) and backaction
errors [91] (for S = 0), respectively, were realized using
microwave cavities coupled to superconducting qubits.

A. A simple example

As an example of the utility of cat codes, consider the
simplest non-trivial code family cat(S = 1) whose logical
states are

|µS=1
cat 〉 =

|α〉+ |−α〉+ (−1)
µ

(|iα〉+ |−iα〉)
4
√

2[coshα2 + (−1)
µ

cosα2]
. (5.8)
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In the Fock basis, the above |0cat〉 is a superposition of
Fock states |0〉, |4〉, |8〉, · · · while |1cat〉 is supported by
|2〉, |6〉, |10〉, · · · . Therefore, there are exactly S = 1 Fock
states separating the Fock states supporting |0cat〉 from
those supporting |1cat〉, so we call S the spacing between
logical states. Due to this spacing, εcat01 = 0 — one loss
event is always detectable. However, such an event is not
always correctable since εcat11 contains uncorrectable parts
at generic values of α.

In general, εcat`` 6= c``Pcat because of the backaction
term (1 − γ)n̂/2 in E`. We will see that uncorrectable
parts in εcat`` are well-suppressed as α → ∞, but in that
limit the code consists of large-amplitude coherent states
and there is a high chance of losing more than one pho-
ton (i.e., uncorrectable parts in εcat02 become very large).
Therefore, for more general codes with a given spacing S
and loss rate γ, there is an optimal or “sweet spot” value
α = α?(γ) that balances the backaction with the loss er-
rors. This is exactly what we see in Figs. 4(a-c), where
FE is plotted vs n̄cat for various cat(S) and at a fixed γ.
We can see that FE [cat(S)] is maximized at certain n̄cat
[which in turn corresponds to a certain α?(γ)] and decays
with sufficiently large α. Note that there can be multi-
ple α? for a given S. By contrast, gkps code fidelities
increase monotonically with n̄gkps.

We now show how the sweet spot can be analytically
determined for cat(S = 1) and in the limit γ → 0, dis-
cussing general γ in the next subsection. Recalling the
form of the Kraus operators (1.5) for small γ, to suppress
distortion due to backaction, one has to make sure that
both code states have the same occupation number:

δn̄cat = 1
2Tr{Zcatn̂} = 0 . (5.9)

While δn̂cat → 0 as α→∞, there are certain fine-tuned
α at which the occupation numbers of the two logical
states also coincide due to the oscillatory nature of the
normalization factors Nα (5.5). Solving the above equa-
tion using |µS=1

cat 〉 (5.8) yields the transcendental equation

tanα2 = − tanhα2 , (5.10)

whose solution is α?(γ → 0) ≈ 1.538 (corresponding to
n̄code ≈ 2.324). Thus, in the small γ limit and at this
fine-tuned α?, a single loss event is both detectable and
correctable. This was about the value used in a recent
cat-code error-correction experiment [29].

B. QEC matrix for cat codes

Let us briefly elaborate on the discussion regarding
sweet spots using the QEC matrix for cat codes for finite
(but still small) γ. Due to the spacing of the codes, QEC
matrix subblocks ε``′ (4.1) contain uncorrectable parts
only for certain values of `, `′. Let us first study the
distortion due to errors εcat`` , which we can easily calculate
[46, 92] by using the representation (5.1) of the cat states,

Figure 4. Channel fidelity FE(γ = 0.095) (1.11) vs. mean
occupation number n̄ (2.1) for cat and bin at spacing (a)
S = 3 and (b) S = 4. Note that cat(S) depends contin-
uously on n̄ and bin exists only at discrete values. For a
given S, cat codes perform best at specific n̄, corresponding
to “sweet-spot” values of α = α?. However, due to the os-
cillatory nature of the errors in cat(S ? 3), the codes also
develop troughs in FE . On the other hand, bin(S) performs
similar to cat(S) at small and large n̄ but does not suffer
from troughs at intermediate n̄. (c) Plots of cat and bin for
S ∈ {1, 2, 3, 4, 5} along with gkps, which turns out to outper-
form both cat and bin and increase monotonically with n̄.
Similar trends are observed for smaller γ.

observing that Πrâ = âΠr+1, and using Eq. (D1a):

εcat`` =
(γα2)`e−γα

2

`!

N−`
α
√

1−γ
N0
α

0

0
NS+1−`
α
√

1−γ

NS+1
α

 , (5.11)

where Nα√1−γ are damped versions of the normalization
factors in Eq. (5.5). Expansion yields the correctable
part (4.4),

ccat`` ≡
1

2

(γα2)`e−γα
2

`!

(
N−`
α
√

1−γ

N0
α

+
NS+1−`
α
√

1−γ

NS+1
α

)
, (5.12)

and only one uncorrectable part (4.4),

zcat`` ≡
1

2

(γα2)`e−γα
2

`!

(
N−`
α
√

1−γ

N0
α

−
NS+1−`
α
√

1−γ

NS+1
α

)
. (5.13)

The correctable part represents the probability of losing `
photons. This distribution is Poisson in the large α limit,
in which the ratios of normalization factors inside the
parentheses both go to one exponentially with−(1−γ)α2.
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The uncorrectable part zcat`` represents the inability to
correct against ` loss events. It is suppressed as α→∞,
but is also zero at certain “sweet-spots” α?, which we
discuss using another example.

Consider cat(S = 2) for γ ≤ 0.0124 and n̄cat ≤ 5.
This is a case when γn̄ � 1 and so we only have to
consider distortion due to backaction εcat00 . We see from
Table IV that the cat code which achieves the highest FE
out of all cat codes with n̄ ≤ 5 is cat(α = 1.739, S = 2).
This is exactly the sweet spot at which the distortion
zcat00 is approximately zero: α?(γ = 0.005) ≈ 1.739. More
generally, α?(γ) at which zcat00 ≈ 0 decreases as γ → 0 to
the value α?(γ = 0) ≈ 1.737. [The reason that cat(α =
1.739) and not cat(α = 1.737) is the optimal code at
γ < 0.005 is because the resolution in our sampling of α
is not sufficient to resolve the difference.] As mentioned in
our discussion of cat(S = 1) in the previous subsection,
in the limit γ → 0, zcat00 becomes proportional to

δn̄cat =
1

2
Tr{Zcatn̂} =

α2

2

(
N−1
α

N0
α

− NS
α

NS+1
α

)
. (5.14)

This δn̄cat tells us how well we are able to correct against
distortion due to no loss events, the dominant error when
γn̄cat � 1. It is zero at exactly the “sweet spot” α?(γ =
0), and we can similarly relate α? to δn̄cat for cat at
other values of S. Having only covered cat(S = 2), we
refer the reader to Ref. [46] for such calculations.

We have seen that at α < S, backaction-induced errors
are not suppressed due to α not being sufficiently large
[see Eq. (5.4)]. So why are cat codes with high values of
α not optimal? This is because for α ≈ S, the fraction
γn̄cat ≈ γα2 of photons lost yields a large probability
of losing S + 1 photons, an uncorrectable error. More
technically, recall that due to spacing S, the effect of
` ≤ S loss events is zero, εcat0` = 0. However, the first
uncorrectable loss at ` = S + 1 produces an error that
scales unfavorably with α, prohibiting α from getting too
large. A calculation yields

εcat0,S+1 =
(γα2)

S+1
2 e−γα

2√
(S + 1)!N0

αN
S+1
α

(
0 N0

α
√

1−γ
NS+1
α
√

1−γ 0

)
.

(5.15)

Once again, the ratios of normalization factors go to one
as α→∞. In that limit, this error becomes proportional
to a pure bit flip, εcat0,S+1 ∼ xcat0,S+1Xcat (where we use the
mathematician’s definition of “∼”), with

xcat0,S+1 ∼
√
ccat00 c

cat
S+1,S+1 (5.16)

independently of γ. In other words, given even a very
small γ, the above equation is still satisfied for a suffi-
ciently large α. We claim that this is the worst possi-
ble scaling, making such errors completely undetectable
(and therefore uncorrectable). Recall that since the QEC
matrix (4.1) is positive semidefinite (ε ≥ 0), in the ab-
sence of other errors for a given `, `′, all bit-flip errors

are bounded by x``′ ≤
√
c``c`′`′ . Ideally we would like

to have no error (x``′ = 0), and in the worst case the in-
equality is saturated (x``′ =

√
c``c`′`′). In Eq. (5.16), we

see that the inequality is saturated as α → ∞. Because
the code states are eigenstates of â2(S+1), the behavior
upon 0 to 2(S + 1)− 1 losses repeats itself after 2(S + 1)
losses. More generally, a bit flip error of similar intensity
occurs at any ` − `′ = S + 1 modulo 2(S + 1). Thus,
as α → ∞, the QEC matrix ε develops sparse but large
bit-flip error entries at each such `, `′, implying a large
probability of undetectable errors. Therefore, cat codes
should work best for values of α at which the probability
of losing ` = S + 1 photons is small.

The reader should by now see that, for a given γ and
S, a cat code performs optimally at specific α?(γ). But
how does one determine the optimal S? We do not claim
to answer this question fully, only noting that (A) the
optimal S depends on γ and (B) our energy constraints
limit the selection of α? to choose from, which in turn
limit the selection of S. For an example of (A), notice
in Fig. 4(c) that n̄cat(α?, S = 1) < 2 while n̄cat(α?, S >
1) > 2, so the highest spacing achievable with a sweet-
spot is S = 1. Similarly for (B), for n̄cat ≤ 5, there are
three available α?, one for each S = 1, 2, 3. At γ = 0.095,
the FE is highest for S = 3 [as shown in Fig. 4(c)] while at
smaller γ, S = 2 is optimal (see Table IV). In summary,
cat codes cannot perform well at sufficiently large α and
instead are optimal for specific values of α? > S.

VI. BINOMIAL CODES

In terms of Fock states, the logical states (defined here
in the Xbin-basis [23]) are

|µbin〉 =
1√

2N+1

N+1∑
m=0

(−1)
µm

√(
N + 1

m

)
| (S + 1)m〉 .

(6.1)
Their mean occupation number (2.1) is

n̄bin =
1

2
(N + 1) (S + 1) . (6.2)

The non-negative integer N governs the order in γ to
which dephasing errors {n̂n}Nn=0 can be corrected exactly
and is similar to α in cat codes. The spacing S is the
same as that of cat codes since bin(S) and cat(S) are
spanned by the same Fock states.5 Therefore, the ability
for bin(S) to perfectly detect ` ≤ S loss events using
the check operator (5.7) is identical to that of cat(S):
εbin0` = PbinE

†
0E`Pbin = 0 in the language of the QEC

matrix (4.1). The difference lies in the other parameter
N , the discrete analogue of α for cat. Recall that for
cat(S), the limit α → ∞ exponentially suppresses all
uncorrectable parts in εcat`` for all `. Similarly, in bin(S),
tuning N allows one to suppress distortion due to loss
events up to a given order O(γN ). Therefore, it should
be no surprise that for a fixed S,

bin(N →∞, S) ∼ cat(α→∞, S) . (6.3)
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Figure 5. Uncorrectable parts of the QEC matrices, εcode − ccode (see Sec. IV), for code being (a) cat (5.1), (b) bin (6.1), (c)
gkps (7.8), and (d) gkp (B4) with parameters such that n̄code ≈ 6 for all codes and given γ = 0.095. Recall that εcode is a
block matrix consisting of 2× 2 matrices εcode``′ that quantify the overlap between error subspaces E`Pcode and E`′Pcode. These
2× 2 matrices are delineated by dotted lines. The four entries in εcode``′ are presented as colored squares; note that εcode``′ has no
imaginary part (all E`Pcode are real). From Fig. 4(c), we see that FE(cat) < FE(bin) < FE(gkps) at n̄code ≈ 6, and the above
QEC plots nicely corroborate that order of performance. Since cat and bin have spacing S = 3, there are no off-diagonal errors
for ` ≤ 3 (inside the red square). However, both codes suffer from distortion on the diagonal portions of εcode``′ , with bin suffering
noticeably less at this particular γ. On the other hand, gkps (square lattice) and gkp (shifted hexagonal lattice) barely suffer
from any noticeable errors. Since gkps codes have spacing S = 1 due to a symmetry of their underlying lattice, ε``′ does not
contain off-diagonal errors for ` ≤ 1 (more generally, for `− `′ odd). Shifted gkp codes do not have that symmetry, but perform
comparably.

While the two codes coincide in this limit, the advantage
of bin codes is that, unlike cat, the suppression of distor-
tion in εbin`` occurs without oscillations. While the oscilla-
tory nature of the normalization factors in εcat(S)

`` (5.11)
allows for peaks as well as troughs in FE vs. n̄ [shown
in Figs. 4(a-c)], there are no such oscillations in εbin(S)

`` .
Note that this difference only shows up at S ? 3 since
only then are there significant oscillations in FE(cat).
While cat and bin perform about the same at smaller
S, there is an intermediate n̄ regime for larger S at which
cat underperforms (due to being at a trough between two
sweet spots α?) while bin continues to improve. For ex-
ample, observe the difference between cat and bin at
S = 3 in Fig. 4(a): FE(bin) ≈ FE(cat) for all n̄ ≤ 15
except at n̄ ≈ 6.

In Sec. VIA, we delve into the performance of bin
codes from Figs. 2 and 4. In Sec. VIB, we comment on
their performance with no energy constraints. Switching
gears in Sec. VIC, we study their structure. We show
that qubit bin codes are spin-coherent states embedded
into the {|(S + 1)m〉}N+1

m=0 subspace of the oscillator. In
an alternative characterization in Appx. C, we link bin
codes to discrete-variable bit-flip codes. These formula-
tions extend to other sets of codes, summarized in Ta-
ble 7(a), and allow one to construct bin check operators
for dephasing errors. In Sec. VID, we introduce a scheme
to detect and correct errors in bin using the check oper-
ators from before.

A. QEC matrix for binomial codes

Let us fix S and compare bin(S) to cat(S). A
bin(N,S) code protects against loss errors â`≤S (due to
spacing S) and dephasing errors n̂n≤N (due to the na-
ture of the binomial distribution). Since loss operators
E` (1.4) consist of superpositions of the two errors, we
can readily read off the leading order in γ for which there
are uncorrectable parts in εbin0` — O(γS+1) — and distor-
tion matrices εbin`` — O(γN+1). However, that is not the
whole story.

We know that both bin and cat suppress all distortion
errors z`` with increasing n̄. The backaction distortion
zbin`` does not oscillate with n̄ (as opposed to zcat`` oscil-
lation with α) and yields a quicker suppression of errors
than zcat`` . We use the basis of positive/negative super-
positions |±bin〉 of the bin states (6.1) to calculate it,

Pbin = |+bin〉〈+bin|+ |−bin〉〈−bin| , (6.4)

in order to have the backaction-induced errors be along
the z-axis and match zcat`` . Note that this amounts to
the Zbin-basis of the original paper [23]. The respective
probabilities of no loss and backaction distortion can be
concisely expressed,

cbin`` =
γ`

`!

d`

dx`

(
1 + xS+1

2

)N+1
∣∣∣∣∣
x=1−γ

(6.5a)

zbin`` =
γ`

`!

d`

dx`

(
1− xS+1

2

)N+1
∣∣∣∣∣
x=1−γ

. (6.5b)

For ` = 0, the above should be compared to ccat00 (5.12)
and zcat00 (5.13). Clearly, zbin00 does not oscillate vs. N .
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While the above is still difficult to analyze analytically
for ` > 0, we see numerically that there are no oscil-
lations in n̄ of the fidelity of bin(S), leading to certain
regimes of n̄ at which bin outperforms cat for a given γ.
Heuristically, as n̄→∞, zbin(S)

`` → 0 order-by-order in γ
while zcat(S)

`` → 0 as a damped oscillating function with
damping coefficient (1− γ)α2. The latter limit turns out
to be less controlled, leading to detrimental oscillations
in F cat(S)

E . For example, we plot the uncorrectable parts
of εcat``′ and εbin``′ for γ = 0.095, n̄code ≈ 6, and S = 3 in
Fig. 5(a) and (b), respectively. While the uncorrectable
parts xbin0` , x

cat
0` are comparable in magnitude, one can see

that zbin`` is visibly less than zcat`` . However, this effect is
most prominent only when E0 is the only dominant error
(γn̄code � 1) and when cat oscillations begin to have a
detrimental effect (S ? 3 and n̄code ≥ 5). Inside those
regimes, we can see that bin breaks away from cat [see
Figs. 4(a-c) and insets in Figs. 2(b,c)] while outside of
those regions, the two codes perform quite similarly.

Another advantage of bin codes manifests itself at
large n̄bin. Studying xbin0,` and ybin0,` is quite difficult, so
we explain the advantage by studying subspaces that are
mapped to under errors. For cat codes, the undetectable
error âS+1 maps the code exactly to the code subspace,
âS+1Pcat ∝ Pcat. For bin codes, the mapping is to a
subspace that has a component orthogonal to the code
space. Quantum information in this component (which
may only be one-dimensional) can then be mapped back
to the code space, yielding an extra layer of approximate
error correction. The same is true for ` > S + 1 as long
as N is sufficiently high. We consider two examples of
this effect, one known and one new.

Let us consider the action of the undetectable error
â2 on bin(N = 1, S = 1) and cat(α � 1, S = 1) (α
is large only for simplicity; its value is irrelevant to the
key point). The logical states |+bin〉 ∝ |0〉 + |4〉 and
|−bin〉 = |2〉 are mapped to states |2〉 and |0〉, respec-
tively. We see that the latter error state, â2|−bin〉 ∝ |0〉,
overlaps with |0〉 − |4〉, a state orthogonal to the code
space. One can thus add an extra Kraus operator to the
recovery that maps any quantum information in this ex-
tra error subspace back to the code space. This cannot be
done for cat, where the logical states |+cat〉 ∝ |α〉+ |−α〉
and |−cat〉 ∝ |iα〉 + |−iα〉 are mapped to ±|±cat〉 un-
der â2 (recall that â|α〉 = α|α〉), yielding a completely
uncorrectable phase flip. For bin(N = 1, S = 1), this
extra one-dimensional subspace is used to correct from
the leading-order backaction error [23]. However, there
are enough such extra subspaces for sufficiently high N
to correct for both backaction (up to γN ) and some loss
errors â`≥S+1.

Now consider bin(N = 4, S = 1). Recall that a
bin(N = 4) protects from backaction up to γ4, so our cal-
culations are only to that order. While the code exactly
detects only one loss E1, it turns out there is an extra sub-
space allowing for approximate correction of E2 and even
E3. The two-dimensional code subspace Span{|±bin〉} is

Figure 6. Log10 plot of 1 − FE(γ = 0.095) (1.11) vs. (a)
cat code parameters S and α and (b) bin code parameters
S and N (cf. Fig. 1 in Ref. [23]). For a given S, cat achieves
the best performance (purple) at multiple S-dependent sweet-
spots α?. While FE(α?) for cat(S) does not increase with
increasing S for the values we’ve sampled, performance of
bin(N,S ≈ 2N) clearly does (cyan). There is thus reason to
believe that bin outperforms cat when no energy constraints
are imposed.

supported on the six-dimensional Fock subspace

F0 = Span{|0〉, |2〉, |4〉, |6〉, |8〉, |10〉} . (6.6)

Another two-dimensional subspace is reserved for correct-
ing backaction E0. This leaves an extra two dimensions
Span{Q0E2|±bin〉} ⊂ Hno-loss for approximately correct-
ing the loss error E2, where the projection Q0 removes
any overlap with the code space and the subspace used
for correcting backaction. Indeed, one can add an extra
isometry mapping such error states

Q0E2|+bin〉 ∝
√

2η2|2〉 − (1 + η2)|6〉+
√

10|10〉 (6.7a)

Q0E2|−bin〉 ∝
√

10η2|0〉 − (1 + η2)|4〉+
√

2|8〉 (6.7b)

back into the code space (η ≡ 1− γ).
Similarly, this code can also approximately correct the

next error E3. The relevant Fock subspace is now

F1 = Span{|1〉, |3〉, |5〉, |7〉, |9〉} . (6.8)

The two-dimensional subspace Span{E1|±bin〉} is de-
voted to correcting E1, leaving three extra dimensions.
Two of those dimensions are then used to correct against
E3. Letting Q1 be the projection on the remain-
ing three-dimensional subspace F1/Span{E1|±bin〉}, one
can construct a mapping from the extra error subspace
Span{Q1E3|±bin〉} back to the code space.

B. Removing energy constraints

We have numerically investigated n̄bin ≥ 10 in order
to see whether a certain direction in the N,S parameter
space produces increasing FE with increasing n̄bin (6.2).
While it is unlikely that FE → 1 as n̄ → ∞ for any



14

single-mode code, we have numerical evidence showing
that F bin(N)

E for certain S = ξN monotonically increases
to some value F bin(∞)

E < 1, with ξ ≥ 1 dependent on γ.
For example, as shown in Fig. 6, the limit S ≈ 2N →∞
does seem to be giving us monotonically increasing FE ;
we have verified this monotonic increase for N ≤ 14 and
S ≤ 36 at γ = 0.1 but it could very well be that the
curves eventually decrease for sufficiently high N,S.

The performance improvement of bin codes at large
n̄bin can be attributed to the advantage of having ex-
tra error subspaces, discussed in the latter portion of
Sec. VIA. To quantify this advantage, one can cook up
a recovery procedure consisting of two sets of isome-
tries. The first-level set of recovery isometries maps
the correctable (` ∈ {0, 1 · · · , S}) error-subspace code
states E`|±bin〉 back to the codespace. This part is
similar to the cat code recovery scheme from Ref. [46]
and to the bin scheme in Sec. VID. The second-level
set consists of isometries mapping extra error subspaces
Q`E`+S+1|±bin〉 back into the code space, where Q`
project out the first-level error subspaces Span{E`|±bin〉}
(and, in the case of ` = 0, the codespace as well). Of
course, such a multi-level recovery can be extended to
three and more levels. When implemented, the two-level
recovery yields a similar scaling with N,S as the optimal
recovery in Fig. 6(b) for the N,S we were able to sam-
ple. Nevertheless, it does not explain why S increases
faster than N for the best codes in that figure. While
we have shown that increasing both S and N allows bin
to correct (at least) approximately for more loss events,
the intricate choice of which parameter to increase faster
to give the optimal fidelity remains an interesting open
question.

C. Relation to spin-coherent states

We characterize all single-mode binomial codes, two-
mode binomial codes (closely related to noon codes [22]),
and multi-qubit permutation invariant codes [73] using ir-
reducible representations (irreps) of the Lie algebra su(2).
Interestingly, bin(S = 0) were of interest to the quantum
optical community due to their sub-Poissonian distribu-
tion [93] (see also [94], Ch. 5), and the connection to su(2)
was noticed first back then [95, 96].

Consider a spin-J consisting of 2J+1 levels and define
the standard spin operators

Jz ≡
2J∑
m=0

(m− J)|J,m− J〉〈J,m− J | , (6.9)

and similarly Jx and Jy ([97], Ch. 7). We can then define
its rotated version Jr (θ, φ) = Rθ,φJzR

†
θ,φ, where Rθ,φ is a

rotation by azimuthal angle θ ∈ [0, π] and polar angle φ ∈
[0, 2π) in the spherical coordinate system parameterizing
the spin’s Bloch sphere. For each {θ, φ}, Jr(θ, φ) has
eigenstates |θ, φ〉J with eigenvalue J . These are called

the su(2) or spin-coherent states [98] (see also [99]):

|θ, φ〉J =

2J∑
m=0

(eiφ tan θ
2 )m

(1 + tan2 θ
2 )J

√(
2J

m

)
|J,m− J〉 . (6.10)

For each J ∈ {0, 1
2 , 1, · · · }, {Jx, Jy, Jz} form an irrep

of the su(2) algebra, satisfying the well-known angular
momentum commutation relations. The labeling by J
exhaustively characterizes the irreps of su (2), so every
spin-coherent state corresponds to some irrep J . We go
through several codes and show how they all correspond
to the spin-coherent states

∣∣π
2 , πµ

〉
J

=
1

2J

2J∑
m=0

(−1)µm

√(
2J

m

)
|J,m− J〉, (6.11)

whose basis elements |J,m − J〉 are mapped either to
Fock states of an oscillator(s) or a multi-qubit system,
summarized in Fig. 7(a). Moreover,

Jx
J

∣∣π
2 , πµ

〉
J

= (−1)
µ ∣∣π

2 , πµ
〉
J
, (6.12)

providing us with a logical Z-operator Jx/J and a check
operator (Jx/J)2 for all of the codes. In addition, since
spin-coherent states resolve the identity operator of the
spin, they offer a way to visualize the location of var-
ious states before and after certain errors on a gener-
alized Bloch sphere of the spin. Shown in Fig. 7(b),
|π2 , πµ〉J correspond to spin-coherent states at the an-
tipodal points (π2 , 0) and (π2 , π).

1. Binomial codes

Setting 2J = N + 1, the coefficients of |π2 , πµ〉J (6.11)
match those of the bin states (6.1). If we additionally
map the spin states |J,m−J〉 into Fock states |m〉, then

|π2 , πµ〉J=N+1
2
→ |µbin(N,S=0)〉 . (6.13)

The operator Jz (6.9) is then mapped to n̂−J , revealing
the well-known Holstein-Primakoff mapping of a spin into
a boson. For larger spacing S > 0, we map |J,m − J〉
into Fock states |(S + 1)m〉. Therefore, we have shown
that bin codes correspond to single-mode irreps of su(2)
produced by the Holstein-Primakoff mapping.

For bin codes, the check operator (Jx/J)2 is related
to the protection from dephasing errors (characterized
by N), and its non-destructive measurement can be used
to detect such errors (see Sec. VID). Moreover, the
Bloch sphere picture offers a nice interpretation of why a
bin(N,S) code protects against k ≤ N dephasing errors.
Since Jz = n̂− J in this irrep, the action of a dephasing
error n̂k is directly related to application of Jz and the
code states are eigenstates of Jx at antipodal parts of the
Bloch sphere. Thus, one action of Jz raises (lowers) the
expectation value of Jx for the logical zero (one) state,
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moving them closer together from their antipodal posi-
tions at the equator [Fig. 7(b)]. The states only begin
to overlap when a high enough power (Jz)

k>N has been
applied, which corresponds to an unprotected dephasing
error n̂k>N in the bosonic representation.

2. Permutation-invariant codes

These codes (denoted here as perm) were introduced by
Ouyang [73] (see also [100]) to tackle single-qubit ampli-
tude damping. Given M qubits and parameters {J, S},
the logical states are

|µperm〉 =
1

2J

2J∑
m=0

(−1)
µm

√(
2J

m

)
|DM

(S+1)m〉 , (6.14)

where the Dicke state |DN
(S+1)m〉 is the fully symmetrized

M -qubit state with (S + 1)m qubits in state |1〉 and
the remaining qubits in |0〉. Therefore, we need to have
M ≥ 2J(S + 1) in order to accommodate all of the re-
quired Dicke states. If 2J = 3S + 1 and M = 3S2 + 5S,
these codes can protect against qubit amplitude damp-
ing errors of weight S [73]. In this context, the spacing S
(between excitations of the Dicke states) quantifies a dis-
tance of the codes. We can already see the resemblance
to spin-coherent states, but here the irrep is more com-
plicated. For simplicity, let us set S = 0 and M = 2J ;
the S > 0 case is a straightforward extension whose basis
elements are shown in Fig. 7(a). For such cases, |µperm〉
are spin-coherent states of the largest irrep of su (2) aris-
ing from tensoring M spin-1/2 particles, with J = M/2
playing the role of a collective spin.

3. Two-mode binomial codes

There is another well-known su(2)-related construct —
the Jordan-Schwinger mapping of a spin into two bosons.
Letting â1, â2 be the lowering operators of the two bosons
and X,Y, Z be the Pauli matrices, we have

J[x,y,z] =
1

2

1∑
j,k=0

â†j [X,Y, Z]jkâk . (6.15)

For example, Jz = 1
2 (â†1â1 − â†2â2). The state space as-

sociated with each irrep of this type corresponds to the
subspace of fixed total occupation number, i.e., all two-
mode Fock states |n1, n2〉 such that n1 + n2 = 2J for
an irrep of spin J . One can thus see that the total spin
is proportional to the “identity” component on the sub-
space, J = 1

2 (â†1â1+â†2â2). Any code within a subspace of
fixed J thus consists of eigenstates of the joint backaction
(1−γ)(â†1â1+â†2â2)/2 in the two-mode pure-loss error opera-
tors (1.4) (assuming identical γ’s for both modes). Codes
having this structure were first considered in Ref. [18].

(a) code basis

bin Fock states |(S + 1)m〉
perm M -qubit Dicke states |DM≥2J(S+1)

(S+1)m 〉
bin2 Fock states |(S + 1)(2J −m), (S + 1)m〉

Figure 7. (a) Table listing the basis elements used to express
binomial (6.1), permutation-invariant (6.14), and two-mode
binomial codes bin2 (6.16) (withm ∈ {0, 1, · · · , 2J}). The co-
efficients next to these basis states are those of spin-coherent
states |π

2
, πµ〉J (6.10) of a spin J . (b) Plots of overlaps

|J〈θ, φ|ψ〉|2 vs. θ, φ given a spin state |ψ〉. The first (second,
third) column shows normalized states {(Jz)p|π2 , πµ〉J=4}1µ=0

for p ∈ {0, 2, 4}. These plots show that powers of the “er-
ror” Jz cause |π

2
, 0〉J and |π

2
, 1〉J to approach each other in

the Bloch sphere and eventually overlap at the two poles.
The dashed arcs connecting θ = ± π

2J
p serve as a guide to

the eye. Since Jz is mapped to n̂ − J under the Holstein-
Primakoff transformation, this provides an interpretation of
dephasing errors for bin codes, which are correctable as long
as p < J = 1

2
(N + 1). Here, N = 7 and one can see from the

third column that (Jz)
4|π

2
, 0〉J and (Jz)

4|π
2
, 1〉J overlap.

Spin-coherent states of these irreps correspond to a
class of two-mode binomial codes (bin2). Mapping the
basis |J,m − J〉 from Eq. (6.11) to Fock states |(S +
1)(2J −m), (S + 1)m〉 yields the bin2 code states

|µbin2〉 =
1

2J

2J∑
m=0

(−1)
µm

√(
2J

m

)
|2J−(S+1)m, (S+1)m〉.

(6.16)
As with bin, we can parameterize bin2 in terms of
spacing S and a dephasing error parameter N . Then,
J = 1

2 (N + 1)(S + 1) in order to fit all of the required
two-mode Fock states. Note that bin2(S = 0) can be
obtained by acting on the Fock state |S + 1, 0〉 with a
50:50 beamsplitter [22] and were considered before in the
context of three-mode squeezing [101].

4. Further generalizations

We have covered four bases in which to embed a spin
— the spin’s own basis {|J,m − J〉}2Jm=0, Fock states



16

{|m〉}2Jm=0, Dicke states {|DM
m 〉}2Jm=0, and two-mode Fock

states {|2J −m,m〉}2Jm=0. There are other relations be-
tween these bases and further code extensions. First, we
can go in reverse of what was discussed above and em-
bed any bosonic code into a multi-qubit Hilbert space by
mapping Fock states to Dicke states. While this produces
perm codes when the bosonic code is bin, it produces pre-
viously unexplored codes when the bosonic code is, e.g.,
cat or gkp (although such states require J → ∞ due
their infinite-dimensional support). Second, Dicke states
{|DM

m 〉}2Jm=0 converge to Fock states in the limit of fixed
J but largeM � 2J [98]. This famous limit is equivalent
to the south pole of the Bloch sphere flattening out into
ordinary bosonic phase space in the limit that the Bloch
sphere is infinitely large. In this limit,

perm(M →∞, J, S)→ bin(N = 2J − 1, S) . (6.17)

Third, the bin2 states can be tensored 2J times to con-
struct logical states for the 4J-mode noon code [22],
|µnoon〉 = |µbin2〉⊗2J . The same procedure can of course
be applied to bin codes. Offering an interesting alter-
native to spacing, noon codes instead concatenate bin2
with a 2J-block bit-flip code to correct for up to 2J − 1
loss errors. Fourth, qubit (qudit) bin codes can them-
selves be thought of as bit-flip codes when expressed in
a basis of multi-qubit (multi-qudit) states (see Appx. C).

D. Error-correction procedure for binomial codes

The existence of approximate error recovery maps for
the various codes does not explicitly suggest by what
means these recovery maps can be implemented nor
whether fault-tolerant error recovery is possible for these
codes. For qubit stabilizer codes, the theory of fault-
tolerant error correction has been developed. For gkp,
methods of fault-tolerant quantum error correction [9]
are possible which simply generalize the techniques of
qudit (d-dimensional) stabilizer codes to d→∞.

In this section, we investigate for the binomial qubit
codes what measurements of commuting check operators
could give sufficient error information to undo a set of
errors. The recovery procedure we give is not necessarily
the optimal one obtained by optimization in Sec. II. The
binomial code family bin(N,S) can correct against errors
in the error set E = {I, â, . . . , âL, â†, . . . , (â†)G, n̂, . . . n̂D}
with S = L+G and N = max(L,G, 2D). We know from
Eq. (6.11) that the codewords correspond to antipodal
spin-coherent states of spin J = 1

2 (N + 1). We will refer
to the N + 1-dimensional subspace as the spin-space.

Imagine that one error from the set E has taken place
on an encoded state. The following procedure describes
how to undo this error. First, one non-destructively mea-
sures the eigenvalues of the check operator J2

x which has
eigenvalue +J2 on all states in the codespace. Here we
assume that the operator Jx only has support on the Fock
states |m(S+1)〉 and thus has zero eigenvalues elsewhere.
Of course the check operator Jx is not unique and any

form of non-destructively learning the value |mx| is per-
mitted. For odd N (integer spin J), such a measurement
has outcomes |mx|2 with |mx| = 0, 1, · · · , J . The out-
come mx = 0 cannot have come about from one of the
dephasing errors of the form n̂k since this error operator
maps an initial state with |mx| = J to a superposition
of states with |mx| ≥ J − k so that for k ≤ D, one can
not reach |mx| = 0. For even N (half-integer spin J), mx

will never be zero by the application of a dephasing error.
Hence if one finds the eigenvalue mx = 0, one concludes
that photon loss or photon gain errors of the form âk,
k ≤ L and (â†)l, l ≤ G must have occurred. In order to
learn more about these photon loss and gain errors, one
then measures the photon parity check operator (5.7). If
one finds any another value of |mx| = k for the first mea-
surement, one rotates the two-dimensionalmx = ±k sub-
space back to the two-dimensional mx = ±J subspace by
some unitary transformation. For stabilizer (resp. gkp),
this correction can be a Pauli operator (resp. small dis-
placement). Note that, unlike for stabilizer, cat or gkp
codes, it is necessary to physically apply the correction.
In other words, unlike the use of Pauli frames [102], we
cannot just record the value of |mx| and keep the quan-
tum information in this error space with a lower value
for |mx|: subsequent dephasing errors would lead to more
laddering up and down in the spin-space so the QEC con-
ditions would no longer be met [see Fig. 7(b)]. In case
mx = 0, one non-destructively measures the eigenvalues
of Cbin (5.7) (via phase estimation, say), allowing one to
learn the photon parity k modulo S + 1. When k ≤ G
(at most G photons are gained), one applies

U+
k =

1∑
µ=0

|µbin〉〈µbin|âk√
〈µbin|âk(â†)k|µbin〉

+ V +
else , (6.18)

where V +
else is chosen to make U+

k unitary. When k > G
(at most L photons lost), one applies

U−l =

1∑
µ=0

|µbin〉〈µbin|(â†)l√
〈µbin|(â†)lâl|µbin〉

+ V −else (6.19)

with l = S + 1 − k. These rotations are not a simple
adding or subtracting of photons since some Fock states
in |µbin〉 have been annihilated.

This form of error correction unfortunately does not
correct products of dephasing and photon loss/gain er-
rors, which are in principle errors against which the code
can correct [23]. Note also that Ref. [23] has shown that
specifically for the photon loss channel with errors as
in Eq. (1.4), only the measurement of the rotation op-
erator Cbin (5.7) is required (since there is one partic-
ular dephasing error associated with a particular num-
ber of photon losses). The procedure above thus falls
short of giving a general prescription for error correc-
tion for the binomial codes. However, for the binomial
qubit code bin(N = 2, S = 1), one can give a scheme
which corrects all the errors which meet the quantum
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error conditions. The code bin(N = 2, S = 1) can cor-
rect against the errors in E = {I, â, n̂}. For these pa-
rameters, the code space is inside the Fock space with
a maximum of 6 photons, F6 = Span{|0〉, · · · , |6〉}. We
split this space into the direct sum of the even subspace
and the odd subspace, that is F6 = Feven

6 ⊕ Fodd
6 =

Span{|0〉, |2〉, |4〉, |6〉} ⊕ Span{|1〉, |3〉, |5〉}.
The code space is inside Feven

6 . We identify Feven
6 with

a spin J = 3/2 via the mapping

|6〉 ≡
∣∣mz = 3

2

〉
, |4〉 ≡

∣∣mz = 1
2

〉
,

|2〉 ≡
∣∣mz = − 1

2

〉
, |0〉 ≡

∣∣mz = − 3
2

〉
,

so that |0bin〉 and |1bin〉 code states are the highest and
lowest eigenstates of Jx(J = 3/2),

|0bin〉 =
∣∣mx = 3

2

〉
, |1bin〉 =

∣∣mx = − 3
2

〉
.

One dephasing error leaves the code states inside Feven
6 .

More precisely, it is a linear combination of the identity
and Jz(J = 3/2) such that

n̂|0bin〉 = 2
∣∣mx = 1

2

〉
+ 3|0bin〉, (6.20a)

n̂|1bin〉 = 2
∣∣mx = − 1

2

〉
+ 3|1bin〉. (6.20b)

For convenience, we relabel the error states
∣∣mx = ± 1

2

〉
≡

|n±〉.
Remarkably, one photon loss maps Feven

6 onto Fodd
6 in

such a way that the code states are mapped onto shifted5

code states for N = 1. This is in fact true for general N
and S: one photon loss maps the code space (N,S) to
the code space (N − 1, S) but shifted by +S in the Fock
basis [23]. With this in mind, we can identify Fodd

6 with
a spin J = 1 with the mapping

|5〉 ≡ |mz = 1〉, |3〉 ≡ |mz = 0〉, |1〉 ≡ |mz = −1〉,

and then the error states are the highest and lowest eigen-
states of Jx(J = 1),

â|0bin〉 ∝ |mx = 1〉, â|1bin〉 ∝ |mx = −1〉,

which we rename for convenience: |mx = ±1〉 ≡ |a±〉.
The third state of this spin-1 subspace is called the un-
known state as ending up in this state means the loss of
logical information, |mx = 0〉 ≡ |?〉. To complete the
description, one can note that the action of n̂ on Fodd

6 is
also a linear combination of Jz(J = 1) and the identity I,
i.e mapping |a±〉 to a linear combination of itself and |?〉,
and using the fact that ân̂ = n̂â − â, one can note that
|n±〉 is mapped by â onto a linear combination of |a±〉
and |?〉. These relations are summarized in Table II.

One possible way to extract error information is then
to measure (via phase estimation) the eigenvalues of the
following unitary

U = exp

{
2πi

b

[
a (Jx(3/2))

2 ⊕ (Jx(1))
2
]}

, (6.21)

where the two parameters a and b can be chosen to obtain
good spacing between different eigenvalues. For example
one can choose a = 8 and b = 5, leading to Table III.

Jx(J = 3/2) Feven
6 Fodd

6 Jx(J = 1)
3
2

|µbin = 0〉 â−→ |a+〉 1

n̂ ↓ ↓ n̂
1
2

|n+〉 â−→ |?〉 0

− 1
2

|n−〉

n̂ ↑ ↑ n̂

− 3
2

|µbin = 1〉 â−→ |a−〉 −1

Table II. Relations between code states and error states for
bin(N = 2, S = 1).

To obtain the 4 eigenvalues of U (via phase esti-
mation), one needs at least 2 qubit ancillas. A more
direct method would be to first measure photon par-
ity. If odd, then correct for photon loss. If even,
then one measures the eigenvalues of J2

x by measuring
U = exp(i32πJx(3/2)2/9), which has eigenvalue +1 for
the no-error case and eigenvalue exp(i32π/36) ≈ −1 in
the dephasing error case.

Eigenstates |µ = 0 or 1〉 |n+〉, |n−〉 |a+〉, |a−〉 |?〉
Eigenvalues ei6π/5 ei4π/5 ei2π/5 1

Decoding no error dephasing photon loss failure

Table III. Eigenstructure of the proposed unitary to be mea-
sured for error correction of bin(N = 2, S = 1).

VII. GKP CODES

While their error-correcting properties were first re-
vealed in Ref. [9], gkp states have connections to quantum
foundations [103], solid-state physics [104], and signal
processing (where their analogues are frequency combs).
The ideal (i.e., infinite n̄) square lattice gkps codespace,
denoted by its projection P ideal

gkps , is the simultaneous +1
eigenspace of the two commuting stabilizers

Sx = D√2π and Sp = Di
√

2π , (7.1)

where Dα ≡ eαâ
†−α?â is the displacement operator (note

that D√2π = e−i2
√
πp̂). The projection onto the code can

be constructed out of all of their powers,

P ideal
gkps ≡

(
1√
π

∑
n∈Z

Snx

)(
1√
π

∑
n∈Z

Snp

)
≡ PxPp . (7.2)

Applying the Poisson summation formula allows us to
express Px (Pp) as a sum of projections onto eigenstates
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|n
√
π〉x̂ (|n

√
π〉p̂) of x̂ (p̂). We demonstrate this for Pp:

Pp =
1√
π

∑
n∈Z

ei2
√
πnx̂ (7.3a)

=
∑
n∈Z

δ
(
x̂−
√
πn
)

(7.3b)

=
∑
n∈Z
|
√
πn〉x̂〈

√
πn| . (7.3c)

These sets of positions and momenta makes up the code
lattice, the lattice dual to the stabilizer lattice (in the
language of Ref. [9]) and generated by the logical opera-
tors

Xgkps = D√
π/2

= S1/2
x (7.4a)

Zgkps = D
i
√
π/2

= S1/2
p . (7.4b)

The maximally mixed state 1
2Pgkps reproduces this lat-

tice, shown in the fourth panel in Fig. 1.
Conventionally, gkps logical states are expressed in

terms of squeezed states,

|µideal
gkps 〉 ∝

∑
n∈Z
|
√
π(2n+ µ)〉x̂ . (7.5)

One can obtain an equivalent (see Appx. D 2) representa-
tion in terms of coherent states by projecting the vacuum
state |0〉 onto the code and the ±1 eigenstates of Zgkps:

|µideal
gkps 〉 ∝ [I + (−1)µZgkps]P

ideal
gkps |0〉 (7.6)

=
∑
~n∈Z2

D√π
2 (2n1+µ)

D
i
√

π
2 n2
|0〉 ,

where ~n ≡ (n1, n2). The above displacements generate
the two state lattices for Zgkps-logical states, whose hori-
zontal spacing is twice that of the code lattice due to the
I ± Zgkps term. In general, the state lattice depends on
the logical basis used (see Fig. 8) while the code lattice
is basis-independent.

The usual way to make the states (7.5) have finite
n̄ (and therefore be normalizable) is to assume finite
squeezing for each position eigenstate and add a ∆2-
dependent Gaussian envelope, producing the gkps states
in Eq. (7.7a) below. Alternatively, one can add a Gaus-
sian envelope to Eq. (7.6), yielding a representation in
terms of coherent states, Eq. (7.7b). A third finite-n̄ rep-
resentation can be written in terms of |µideal

gkps 〉 smeared
by a Gaussian distribution of displacements [9], making
contact with the errors that the codes are designed to
correct. This is the third equation below:

|µ∆
gkps〉 ∝

∑
n∈Z

e−
π
2 ∆2(2n+µ)2

D√π
2 (2n+µ)

S− ln ∆|0〉 (7.7a)

∼
∑
~n∈Z2

e−
π
2 ∆2[(2n1+µ)2+n2

2]D√π
2 (2n1+µ)

D
i
√

π
2 n2
|0〉

(7.7b)

∼
∫
d2α

e−|α|
2/∆2√

π∆2/2
Dα|µideal

gkps 〉 , (7.7c)

where µ ∈ {0, 1} and Sr = e+ 1
2 r(â

2−â†2) is the squeez-
ing operator. We use ∆ ∈ [0, 1] for both the envelope
and squeezing parameters for simplicity. These represen-
tations numerically converge to each other very quickly
in the ∆ → 0 limit, but there are visual differences be-
tween them for small envelopes. A fourth representation
in terms of Fock states is possible using Eq. (86) from
Ref. [94]. Note that |0∆

gkps〉 and |1∆
gkps〉 are non-orthogonal

for nonzero ∆, and this source of error manifests itself in
the QEC matrix.

Recall that gkps(∆ → 0) states can protect against
displacement errors Dα1+iα2

in phase space, where
|α1|, |α2| <

√
π/8. The representations can easily gen-

eralize to more tightly-packed lattices, yielding a slightly
larger volume of correctable displacements. To con-
struct the coherent-state representation of the Zgkp-
logical states, one first constructs commuting stabilizers
(following Ref. [9]) and repeats Eq. (7.6). Adding an en-
velope, this representation (7.7b) is particularly simple
to express:

|µ∆
gkp〉 ∝

∑
α∈L(µ)

e−∆2|α|2e−iα1α2 |α〉 , (7.8)

where |α = α1 + iα2〉 is a coherent state and L(µ) is
the state lattice for each code state µ. We considered
both these lattices and their shifted versions (B4) for the
gkp numerics (see Appx. B). For all analytics below, we
use the finite-n̄gkps unshifted square-lattice states |µ∆

gkps〉
(7.7c), noting any generalizations to other lattices.

We have calculated moments of the occupation num-
ber, yielding a geometric (i.e., thermal) distribution:

n`gkps ≡
1

2
Tr{Pgkpsn̂

`} ∼ `!n̄`gkps , (7.9)

where the average occupation number is

n̄gkps ∼
1

2∆2
− 1

2
. (7.10)

As expected, the moments diverge as the states become
unnormalizable in the small ∆ limit.

A. QEC matrix for GKP codes

Recall that any trace class bosonic operator A (i.e.,
satisfying Tr{A†A} < ∞) can be expanded in terms of
displacement operators using the orthogonality condition
of Dα at the superoperator level [105],

Tr{D†αDβ} = πδ2 (α− β) . (7.11)

The expansion is then A =
∫
d2α
π Tr{D†αA}Dα, where the

integral is over all of phase space and Tr{D†αA} is the
characteristic function of A. Protection of gkp against
pure loss was previously discussed using an approxima-
tion of â in terms of a sum of displacements instead of
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Figure 8. Wigner function sketches of the two Zgkps-, Xgkps-,
Ygkps-logical states. Comparing to the fourth panel in Fig. 1,
which shows that the code lattice is square, here we see that
the lattices formed by the logical states may be square or
rectangular, depending on which logical operator is consid-
ered. The unit cell of the state lattices (7.6) is marked by
“×” in the two leftmost panels; the remaining dots appear as
a result of the coherences between different coherent states.

an integral, at first very briefly [9] and subsequently tak-
ing into account the maximum number of photons in the
oscillator [106]. Here we calculate the QEC matrix εgkps``′

(4.1) by expressing Kraus operators in terms of the full
integral expansion.

Unlike â, the error operator E` and its variants are
trace class due to the damping term, yielding

E†`E`′ =

∫
d2α

π
e−

1
2 (1−γ)|α|2〈`|Dα? |`′〉Dα

√
γ , (7.12)

where 〈`|Dα? |`′〉 are matrix elements of the displacement
operator Dα in the Fock state basis (D2). To obtain this,
one can express the trace in Tr{D†αE

†
`E`′} as a sum over

Fock states, plug in Eq. (D2), and use the generating
function of Laguerre polynomials (D3). Complementing
the expansion of Gaussian noise {Dα} in terms of photon
creation and annihilation operators (e.g., Ref. [107]), the
above equation completes the “Rosetta stone” expressing
each of the two primary noise models in the language of
the other.

To gain a flavor of the calculations below, let us first
examine how we can calculate cgkps`` = 1

2Tr{PgkpsE
†
`E`}.

Using Eq. (7.12), this calculation boils down to determin-
ing Tr{PgkpsDα}. Consider first the infinite n̄gkps limit,
recalling from Fig. 1 that Pgkps is a sum of (unphysi-
cal) points of fixed position and momentum arranged
in a square code lattice. Then, Tr{PgkpsDα} will be
nonzero only for those α which displace the lattice back
on top of itself, i.e., α displaces by a multiple of the
lattice’s unit cell. For those cases, the overlap of each
point with itself will be infinite, and so the total re-
sult is

∑
Λ δ

2(α−Λ), where the sum is over all displace-

ments Λ ∈
√
π/2(n1, n2) (with integers n1,2) preserving

the code lattice. Coming back to finite n̄gkps, a natural
guess would be to substitute the Gaussian representation
1
∆e
− 1

2∆2 |α−Λ|2 for the Dirac δ-function in the sum. This
almost obtains the right result, but there are two more
steps. The first is normalization, which cancels the 1

∆
in front of the Gaussian representation of the δ-function.
The second is addition of the Gaussian envelope, yielding

1

2
Tr{PgkpsDα} ∼

∑
Λ

e−
1

2∆2 |α−Λ|2e−
∆2

2 |Λ|
2

. (7.13)

Notice that what used to be a Dirac δ is now a Kronecker
δα,Λ ∼ e−

1
2∆2 |α−Λ|2 in the small ∆ limit. As a sanity

check, setting α = 0 yields unity in that limit.
Calculating these overlaps is more involved (see

Appx. D 3), but we can nevertheless use the above in-
tuition to understand the more general element (with
ν ∈ {0, 1})

〈µ∆
gkps|Dα|ν∆

gkps〉 ∼ (7.14)∑
~n∈Z2

eiπ(n1+µ+ν
2 )n2e−

1
2∆2 |α−Λ~nδµ|

2

e−
∆2

2 |Λ
~n
δµ|

2

,

where δµ ≡ µ − ν and Λ~nδµ ≡
√

π
2 [(2n1 + δµ) + in2].

Since there are two different state lattices, there are extra
phases in the sum and the sum is over displacements
α ∈ Λ~nδµ which overlap the two lattices. We can now
plug this into E†`E`′ (7.12) and proceed to calculate the
integral (see Appx. D 4), yielding

〈µ∆
gkps|E

†
`E`′ |ν

∆
gkps〉 ∼

√
cgkps`` cgkps`′`′

∑
~n∈Z2

e−
(1−γ)

2γ |Λ
~n
δµ|

2

× eiπ(n1+µ+ν
2 )n2e−

∆2

2 |Λ
~n
δµ|

2

〈`|D(Λ~nδµ)?/
√
γ |`′〉,
(7.15)

for γn̄gkps →∞, where cgkps`` will turn out to be the prob-
ability of losing ` photons,

cgkps`` =
1

2
Tr{PgkpsE

†
`E`} ∼

(γn̄gkps)
`

(γn̄gkps + 1)`+1
. (7.16)

Thus, the photon loss distribution for gkps is a asymp-
totically thermal with mean γn̄. Ignoring the ∆2 enve-
lope term from now on, all ∆-dependence of Eq. (7.15)
is contained in cgkps`` .

Notice that |〈`|D(Λ~nδµ)?/
√
γ |`′〉| ≤ 1 because they are

overlaps between two states. Thus, the only quantity reg-
ulating the sum (7.15) is e−

(1−γ)
2γ |Λ

~n
δµ|

2

. Assuming γ � 1,
the “on-site” term (~n = ~0) in Eq. (7.15) is µ-independent
and thus contributes to

c
gkps
``′ ∼ c

gkps
`` δ``′ , (7.17)

while the “nearest-neighbor” terms (|~n| = 1) contribute
to the leading-order uncorrectable parts

|zgkps``′ | ∼
√
cgkps`` cgkps`′`′ e

−π4
1−γ
γ 〈`|(D√ π

2γ
+D†√ π

2γ

)|`′〉

(7.18)
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and |xgkps``′ | = |zgkps``′ |. (There is no |ygkps``′ | to this order.)
The uncorrectable parts are the same (up to sign) due
to the identical effect of position and momentum dis-
placements on the code. So, while the nearest neighbors
~n = (0,±1) contributed to zgkps``′ and ~n = (±1, 0) con-
tributed to xgkps``′ , the two quantities have to be equal
in magnitude due to this effect. (Considering more gen-
eral lattices can of course break this balance.) We can
also see another symmetry manifest itself — the invari-
ance of the lattice under parity (−1)n̂. Since the sum
of displacements is even under parity, it does not con-
nect even Fock states to odd ones and guarantees that
zgkps``′ = 0 unless ` − `′ is even. This means that tech-
nically gkps codes have spacing S = 1. However, this
spacing disappears when the lattice is slightly shifted and
the symmetry lost, but the performance of the codes re-
mains. This should not be surprising since shifted gkps
codespaces are akin to Pauli frames in the stabilizer for-
malism [106]. The most striking result is that the reason
for this high performance is not due to the spacing, but
to the suppression by the γ-dependent exponential factor
in Eq. (7.18). Namely, while εgkps``′ contains uncorrectable
parts for all `, `′ (modulo symmetry constraints), all of
these parts are suppressed exponentially by e−

π
4

1−γ
γ when

γ � 1. As an example, we show the comparable strength
of the exponential suppression of uncorrectable parts for
gkps(n̄ ≈ 6) in Fig. 5. Assuming that the infidelity 1−FE
to leading order in γ is polynomial in all uncorrectable
parts, one expects 1 − FE to also be exponentially sup-
pressed by 1−γ

γ . We proceed to show this by bounding
1− FE using an explicit recovery.

B. Removing energy constraints

In Fig. 2, we have observed that F gkps
E is significantly

higher than that for all other codes for most γ. While

the non-trivial exponential suppression of uncorrectable
parts (7.18) of the QEC matrix hints at an analytical ex-
planation, this still does not tell us how FE scales with
γ. For this, we need to consider a specific analytically
tractable recovery. Having investigated several recov-
eries, the simplest one we found is based on the fact
that the combination of amplification and pure loss pro-
duces Gaussian (i.e., displacement) noise [2] — a channel
which most naturally fits the error-correction capabilities
of gkps.

Coming back to the formulation of N in terms of a
beam-splitter (1.6), consider amplifying the signal

â→
√
Gâ+

√
G− 1b̂† (7.19)

after application of N . Here, G is the gain of the ampli-
fier, which we set to G = eχ = 1

1−γ to compensate the
effect of damping. Tracing out the b̂ mode, amplification
is simply the properly normalized transpose of pure loss,

A(·) = (1− γ)N ‡(·) , (7.20)
where “‡” is the adjoint in the matrix representation. The
Kraus operators of A are

√
1− γE†` for ` ∈ {0, 1, · · · }

{e.g., Ref. [34], Eq. (5.5)} and it is simple to verify that
A is indeed a channel: (1− γ)

∑∞
`=0E`E

†
` = I.

Upon amplification, the pure-loss channel N is trans-
formed into a Gaussian noise channel with variance γ

1−γ .
The noise comes from two parts: the intrinsic noise due
to amplification and the amplified noise due to pure loss.
More explicitly, we can apply Eq. (7.12) to express AN
in terms of displacements and use displacement orthogo-
nality (7.11):

AN (ρ) = (1− γ)

∫
d2α

π

d2β

π
e−

1−γ
2 (|α|2+|β|2)D α√

γ
ρD β√

γ

∞∑
`,`′=0

〈`|Dα? |`′〉〈`′|Dβ? |`〉 (7.21)

= (1− γ)

∫
d2α

π
d2βe−

1−γ
2 (|α|2+|β|2)D α√

γ
ρD β√

γ
δ2(α+ β) =

1− γ
γ

∫
d2α

π
e−

1−γ
γ |α|

2

Dα ρD
†
α .

Appending amplification with the conventional gkp re-
covery RGKP which measures and corrects displacements
within the correctable unit cell [9], the total recovery we
consider is

RAGKP = RGKPA . (7.22)

Note that the above derivation of Gaussian noise is
exact for all values of γ. We bound FE by calculating the
success probability thatRAGKP will succeed in correcting

the above Gaussian noise AN starting with ideal (i.e.,
infinite n̄gkps) code states:

Psucc(γ) =
1− γ
γ

∫
�

dα1dα2

π
e−

1−γ
γ (α2

1+α2
2) , (7.23)

where the integration is over correctable displacements
|α1|, |α2| ≤

√
π/8 denoted by �. The channel infidelity

1−FAGKP
E can then be estimated using the failure proba-

bility, which is the complementary integral outside of the
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Figure 9. Contour plot of FE vs. dimensionless Kerr parameter Kt and damping parameter χ ≡ κt for cat, bin, num, and gkps

picked such that they all have n̄ ≈ 2. Here, K is the strength of the Kerr Hamiltonian (8.1), κ is the cavity decay rate, and t is
time. Starting with a fixed χ and tracking increasing Kt, we see that FE quickly decreases to a constant for all codes considered,
implying a potentially universal failure of error-correction when Kt is large. However, FE is minimal at high-symmetry points
of the codes (dashed red lines) and maximal in-between. For example, 1

2
Pnum for the num code is three-fold symmetric (see

Fig. 1), and FE(num) is minimal at Kt being the first few multiples of 2π/3.

unit cell. Upper bounding that integral by integrating
the complement of the circle with radius

√
π/8 (instead

of the complement of the square with length
√
π/8) yields

Pfail(γ) <
1− γ
γ

∫
|α|≥
√

π
8

d2α

π
e−

1−γ
γ |α|

2

= e−
π
8

1−γ
γ .

(7.24)

We remark that this bound can be improved to e−
π

4
√

3

1−γ
γ

using ideal hexagonal gkp.

VIII. ADDITIONAL FEATURES

A. Nonlinearity

We have tried to address the effect of pure loss on our
codes, but real-world microwave cavities have undesired
unitary evolution (i.e., coherent errors). In general, the
joint effect of pure loss and a unitary process on the state
depends not only on how many losses have occurred, but
also their specific times. The purpose of this subsection
is to answer the following:

Does adding coherent errors reduce code performance?

The answer to this, at least in our case, is a firm “yes”.
The coherent (i.e., unitary) error we add is generated

by a Kerr nonlinearity with Hamiltonian

HK ≡
1

2
Kn̂ (n̂− 1) =

1

2
Kâ†2â2 , (8.1)

with Kerr parameter K. Here, we show what happens
when our codes get exposed to the joint evolution of pure
loss and Kerr, namely, the channel

Nχ,Kt(·) = e−iKt[
1
2 n̂(n̂−1),·]+χD(·) , (8.2)

where D(·) is the Lindbladian for the pure loss channel
from Sec. IA. Since the Kerr nonlinearity is prominent

in cavities coupled with transmons (as opposed to optical
fibers), we use the excitation loss rate κ to quantify the
strength of pure loss (recall that γ = 1 − e−κt). Thus,
the two unitless scales of the problem are χ ≡ κt and
Kt. An analytic Kraus representation for Nχ,Kt has yet
to be obtained, but various approaches have come close
[108, 109].

Figure 9 plots FE(Kt, χ) for four code families at
n̄code ≈ 2. For Kt = 0 (horizontal axis in each plot), we
see the same behavior in FE vs. pure loss strength as we
saw before. For the other extreme of χ = 0 (vertical axis),
we see unit FE since Kerr nonlinearity alone is a per-
fectly correctable unitary process. Starting with a fixed
nonzero χ and looking up at the vertical line of increas-
ing Kt, we see that FE quickly decreases to a (roughly)
constant value for all codes. Since the optimal recovery is
not able to ascertain exactly when photon loss events oc-
curred, Kerr evolution induces rotations of unknown an-
gle between those events, e−iHKtâ ∝ âein̂Kte−iHKt, and
thus destroys the quantum information. Metrology pro-
tocols are also susceptible to this effect [110]. The value
to which FE decreases at large Kt seems to be (roughly)
universal across all codes, so there might be a fundamen-
tal limit to correcting large n̄-dependent coherent errors
in the presence of incoherent errors. However, it is still
possible to use error-correction to our advantage in, e.g.,
the Kt ≈ 1 regime (given n̄ ≈ 2). Incidentally, in that
regime, cat shows an increase in FE , implying that a
slight amount of Kerr is actually helping cat-code per-
formance. We are investigating this effect in a subsequent
publication.

Lastly, we want to mention that FE for a given code is
minimal when Kt is at an angle by which rotating 1

2Pcode

leaves the projection invariant. Recall that evolution un-
der e−iHKt causes a coherent state to transform into cat
states at certain rational t [111–113], but such recur-
rences are quickly degraded under pure loss [114]. Nev-
ertheless, we see some periodicity in code performance,
e.g., in the case of num in the third panel in Fig. 9. From
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Fig. 1, we know that 1
2Pnum for this num code is three-fold

rotationally symmetric in phase space. Coincidentally,
FE(num) is minimal at Kt being the first few multiples of
2π/3 (dashed red lines) and maximal in-between. We do
not know the reason for this effect, but one can see that
it occurs for all codes to various extent.

B. Parity measurements

Here, we briefly consider the question

What if we know how many photons were lost?

While microwave cavities still do not have the capa-
bility to directly count photons, one can perform non-
demolition photon parity measurements of microwave
cavity modes [29, 115] and vibrational modes of trapped
ions [116]. If we assume that (1) we have a fixed-parity
initial state and (2) we can measure parity (−1)n̂ dur-
ing the loss portion of the channel E perfectly and faster
than any timescale of the system, then we can in princi-
ple track every loss event â without destroying the state.
This results in an unraveled [117] system, where part of
the knowledge reserved for the environment — the num-
ber and times of the loss events — is now learned by
the experimenter. For example, a trajectory lasting time
t during which jumps occurred at times τ2 ≥ τ1 would
incur the conditional evolution

Ẽ2|ψ〉 ≡ e−
1
2κ(t−τ2)n̂âe−

1
2κ(τ2−τ1)n̂âe−

1
2κτ1n̂|ψ〉 , (8.3)

where |ψ〉 is the initial state of the oscillator and we have
not yet renormalized the state. Defining Ẽ` in similar
fashion and permuting all â’s to the left leaves us with
Ẽ` = f`E`, where E` (1.4) is the Kraus operator for the
pure-loss channel and f` is a function of the jump times.
Since f` is a scalar, knowledge of jump times is irrelevant
to error-correction against pure loss, and we can ignore it
from now on. We model this process using an extended
version of pure loss N — the quantum instrument [62]

Ñ (ρ) =

∞∑
`=0

E`ρE
†
` ⊗ |`〉〈`| , (8.4)

where ρ is a single-mode density matrix. The second
tensor factor represents our knowledge of `, making sure
that each E`ρE

†
` is mapped into an orthogonal subspace

of the extended Hilbert space. The corresponding recov-
ery R has Kraus operators Ucode

` ⊗ 〈`|, with Ucode
` being

a unitary mapping E`Pcode into Pcode.
We compare FE (1.11) with FẼ , the fidelity given the

extended loss channel Ñ (8.4), in Figs. 10(a) and (b), re-
spectively. Code performance improves for all codes, even
the naive 0/1 Fock state encoding (dashed gray line).
Note that, given this extra knowledge, only the diago-
nal blocks εcode`` of the QEC matrix (4.1) are relevant.
The gkps codes have the largest uncorrectable parts in

Figure 10. Channel fidelity for cat, bin, num, and gkps picked
such that they all have n̄ ≈ 2, given (a) the pure-loss channel
N (1.4) and (b) the pure-loss channel with the capability of
knowing the number of photons lost, modeled by the quantum
instrument Ñ (8.4). (c) Uncorrectable parts of the QEC
matrices, εcode − ccode (see Sec. IV), for the four codes (cf.
Fig. 5). Since uncorrectable parts in the diagonal blocks εcode``

are all that matter in recovering from Ñ , we see that cat,
bin, and num outperform gkp at this n̄.

those blocks at this n̄gkps [see Fig. 10(c)], so their perfor-
mance increases the least out of all the codes. The num
code winds up being the optimal encoding in the eyeball
norm, but the parity-tracking procedure described above
is not applicable to this code since its states (B2a) are
not of fixed parity.
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IX. CONCLUSION

The results of this manuscript can be categorized into
two parts: one regarding code performance and one re-
garding code structure. Here, we summarize these results
and comment on future directions and open questions.

A. Code performance

We gave a numerical and analytical performance com-
parison of the four primary single-mode continuous-
variable quantum codes — cat [13, 15, 27], binomial
[23], numerically optimized ([23] and here), and gkp [9]
codes — against the pure loss channel with loss rate γ.
For the numerical part, we compared the codes’ abil-
ity to preserve entanglement using channel-adapted er-
ror correction [35] subject to two caveats: 1© the encod-
ing, recovery, and decoding are all assumed perfect and
2© the codes are grouped by their mean occupation num-
ber n̄code ≤ 2, 5, 10. For the analytical part, we calculated
the quantum error-correction (QEC) conditions for cat,
bin, and gkp. We briefly discuss our results below, but
encourage the reader to peruse Sec. II for more details.

Even though cat and bin follow the traditional con-
vention of correcting exactly against a subset of errors,
their performance is significantly worse than that of gkp
for many γ. While gkp do not exactly correct against any
errors, we find that the violation of the QEC conditions
for each error is insignificant compared to the violation
of the leading-order uncorrectable errors for cat and bin
for most n̄code.

In the limit of vanishing γ, we observe the following
order of performance: gkp < cat < bin < num. On the
one hand, since cat and bin codes correct exactly against
the first few errors, their performance scales polynomially
with γ. We further reveal the regions in the {γ, n̄code} pa-
rameter space in which bin codes outperform cat codes.
On the other hand, we analytically show that gkp code
entanglement infidelity is O(e−

c
γ ) (with c a constant de-

pendent on the type of gkp code).
As γ increases, gkp quickly overpowers the rest of

the codes and their performance persists even for high
γ. For example, optimal recovery of a gkp state with
10 photons on average yields a fidelity of 99.5% given
γ ≈ 20%, compared to a fidelity of 96.9% for bin and
96.6% for cat. At γ ≈ 30%, where about one in every
three photons are lost, the fidelity of gkp is still 95%,
which is 5% higher than that of cat and bin. At such
high γ, we observed the following order of performance:
bin > cat < num < gkp.

We extended our analysis of entanglement preserva-
tion to determine achievable rates of quantum commu-
nication using these codes, where we saw similar orders
of performance. We also show that sending a gkp state
with an average occupation number of two photons pro-
duces a higher communication rate than distributing two

photons among four modes using the smallest encoding
protecting against one loss error.

Relaxing the n̄code constraint, we have numerical evi-
dence showing that performance of gkp codes and a sub-
set of bin codes increases with increasing n̄code. Since the
ideal gkp states indeed have infinite n̄gkp, it is reason-
able that their performance increases monotonically as
they become more ideal. To back this claim analytically,
we cook up a simple recovery procedure involving phase-
insensitive amplification that converts the pure-loss chan-
nel into Gaussian noise; this procedure can also be used
in multimode extensions of gkp codes [54]. The bin in-
crease in performance can be justified by showing they
have a larger set of approximately correctable errors than
previously thought; we do so in Secs. VIA-VIB.

We added a unitary error in the form of a Kerr nonlin-
earityK in order to see how code performance is changed.
We observed that cat code performance increases slightly
at small K and that all code performance oscillates with
periods depending on their symmetries; these are sub-
jects of future investigation. We also observed that, at
sufficiently large K, the performance of all codes fails
at about the same rate, signaling the need to keep such
coherent errors low in a real device. We also briefly ad-
dressed changes in code performance if one is able to learn
how many photons were lost.

There are obvious generalizations of this analysis to
other multi-mode codes mentioned in the introduction,
storing multiple qubits worth of information; we are cur-
rently pursuing some of them. Another direction has
to do with having gkp and bin codes catch up to cat
codes in terms of experimental realizability. While gkp
codes may have been considered by some to be unphys-
ical in the past, recent technological advances in, e.g.,
microwave cavity [118], atomic ensemble [119, 120], or
trapped ion [121] control, suggest that making these
states may be within reach. In fact, there are recent
theoretical proposals related to making and maintain-
ing gkp states in two of the aforementioned technologies
[106, 122] (see Refs. [123–128] for other proposals) and
a related trapped-ion experiment [129]. While the com-
parison offered here is completely free from consideration
of experimental imperfections, we hope that our conclu-
sions will motivate the community to pursue quantum
information processing and communication schemes with
bin and gkp states.

B. Code structure

We discussed a connection between bin codes and spin-
coherent states and used it to characterize related two-
mode binomial codes as well as multi-qubit permutation-
invariant codes [73]. This connection yields a check op-
erator for bin dephasing errors, and we discussed an
error-correction scheme that utilizes this operator. This
connection was also extended to qudit versions of the
aforementioned codes, yielding a generalization of spin-
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coherent states and a check operator for qudit codes.
By mapping the coefficients of the qudit bin code into

a particular subspace of multiple qudits, we introduced
a multi-qudit (i.e., discrete variable) code that extends
the multi-qubit permutation-invariant codes. The exten-
sion, which we call perm′ in order to differentiate it from
another extension [75], turns out to be nothing but a
multi-qudit bit-flip code when expressed in the basis of
products of the individual qudit states. However, when
expressed in terms of a qudit extension of Dicke states,
the coefficients next to those states match those of the
qudit binomial codes. This relates the protection of the
continuous-variable binomial codes to that of a discrete-
variable bit-flip code. A similar bit-flip-like trick was
used for another code — the noon code [22] — where
two-mode noon states and their multi-mode generaliza-
tions were tensored together to form codes protecting
against pure loss. Such intriguing connections between
discrete- and continuous-variable codes should be inves-
tigated further. In addition, the generalization of spin-
coherent states introduced here may be useful in experi-
mental settings such as atomic ensembles (e.g., [120, 130])
and magnetometry (e.g., [131–133]).
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Appendix A: The many faces of channel fidelity

A well-known property of FE is the relation to the av-
erage input-output fidelity of E [134] (see also [135]),∫

dψ〈ψ|E(|ψ〉〈ψ|)|ψ〉 =
dFE + 1

d+ 1
, (A1)

where d is the dimension of the system. Above,
〈ψ|E(|ψ〉〈ψ|)|ψ〉 is the input-output fidelity for some ini-
tial state |ψ〉 of the source qubit and dψ is a uniform

distribution over all pure states. Due to the above equal-
ity, one should not be surprised that the capacity of en-
tanglement transmission determined by FE is equivalent
to the capacity of pure state preservation determined by
the input-output fidelity [136]. In addition, since FE is
a fidelity between two states, it gives rise to a metric,
is stable under addition of ancillary systems, and satis-
fies the chaining property (meaning that it can be used to
provide a bound on the error of a larger quantum compu-
tation). These properties can be proven using Ref. [137],
where FE = Fpro(E , I).

The channel fidelity can be related to the worst-case
input-output fidelity min|ψ〉〈ψ|E(|ψ〉〈ψ|)|ψ〉 [138],

1− d
√

1− F 2
E ≤ min

|ψ〉
〈ψ|E(|ψ〉〈ψ|)|ψ〉 . (A2)

The dependence of the bound on the dimension as well as
the square of FE suggests that FE is not a good measure
of the worst case scenario. There is indeed a discrepancy
between average and worst-case behavior for channels
that contain a combination of coherent and incoherent
noise [139, 140]. Such an example here is pure loss with
an additional Kerr nonlinearity, considered in Sec. VIII.
However, the pure loss channel alone contains only in-
coherent noise and so FE is a reasonable marker of even
worst-case behavior; moreover, one can prove that the di-
mension dependence goes away entirely [141]. Note that
Eq. (A2) was derived starting from the worst-case infi-
delity 1−min|ψ〉〈ψ|E(|ψ〉〈ψ|)|ψ〉, applying the Fuchs–van
de Graaf inequalities [142] to convert the infidelity to the
maximum trace distance max|ψ〉 ‖(E−I)(|ψ〉〈ψ|)‖tr (with
‖A‖tr ≡ Tr{

√
A†A}), upper-bounding said trace distance

by its stabilized version max|ψ〉 ‖(E ⊗I −I⊗2)(|ψ〉〈ψ|)‖tr
(i.e., the diamond norm), upper-bounding the diamond
norm by the trace norm d‖ρE − ρI‖tr between the Choi
matrices of E and I using Lemma 7 from Refs. [143, 144]
(this is where the d-dependence comes in), and once again
applying Fuchs–van de Graaf to turn the trace norm into
d
√

1− F 2
E .

An information-theoretic property of FE is its presence
in the quantum Fano inequality [145] (see also [81], Thm.
12.9). This is an upper bound on the von Neumann en-
tropy of ρE ,

H(ρE) ≤ H({FE , 1−FE}) + (1−FE) log2(d2− 1) , (A3)

where H(ρE) = −Tr{ρE log2 ρE}. The entropy H(ρE) is
also called the entropy exchange since it quantifies the
entropy gained by the environment responsible for the
non-unitary nature of E . There is also the anti-Fano in-
equality [36], a lower bound on FE in terms of the entropy,

FE ≥ e−2H(ρE) . (A4)

A similar relation to information-theoretic quantities
can be made regarding a specific error map — the erasure
channel. Let us divide B into two regions, B1 and B2, and
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trace over B2. Then, the FE given the optimal recovery
which reconstructs B2 using only B1 satisfies

FE ≥ e−
1
2 I(A:B2|B1) , (A5)

where I(A : B2|B1) is the conditional mutual information
quantifying correlations between A and B2 given infor-
mation from B1 [146]. In this context, FE is also called
the fidelity of recovery [147].

From yet another information theory perspective ([41],
Thm. 2), the optimal FE yields the equality

dFE = 2−Hmin(B|A)NS , (A6)

whereHmin (B|A)NS is the conditional min entropy of the
Choi matrix ρNS (1.9) of the encoding and loss portions
of E . This inequality can be adapted from the equation
below Eq. (4.5) in Ref. [42] by noting that R‡S is a unital
map. In this context, A and B (of dimensions∞ and two,
respectively) share a state ρNS = NS ⊗ I(|Ψ〉〈Ψ |), and
Hmin (B|A)NS is the most conservative way to quantify
the uncertainty about the state of B after the state of A
is sampled.

Appendix B: Numerical benchmarking details

The parameters for the specific members of the
cat/bin/gkps/gkp code families that optimize FE(γ) in
Fig. 2 are given in Table IV.

There are a total of five num codes, organized by their
approximate mean occupation number

n̄num ∈ {1.562, 2.696, 2.770, 4.149, 4.336} . (B1)

Interestingly, the first code — the
√

17 code [23] — can
be expressed as

|0n̄≈1.562
num 〉 = 1√

6

(√
7−
√

17|0〉+
√√

17− 1|3〉
)
,

(B2a)

|1n̄≈1.562
num 〉 = 1√

6

(√
9−
√

17|1〉 −
√√

17− 3|4〉
)
.

(B2b)

All five code states are listed in the ancillary Mathe-
matica notebook accompanying this manuscript on the
arXiv. The n̄num ∈ {1.562, 2.696, 4.149} codes are from
Ref. [23] while the n̄num ∈ {2.770, 4.336} codes were ob-
tained here using a different optimization routine, de-
scribed as follows. In order to find logical states |µnum〉
for µ ∈ {0, 1} which allow for the correction of er-
ror operators e` ∈ {I, â, â2}, we create a cost func-
tion from the QEC matrix fµν``′ = 〈µnum|e†`e`′ |νnum〉,
c1 =

∑
`,`′ |f00``′ − f11``′ |2 + |f01``′ |2. In order to prefer

lower occupation, the penalty c2 = λn̄n̄num is introduced
with λn̄ = 10−3. Code words are produced by numeri-
cally optimizing the total cost over complex unit vectors:

minimize
|ψ0〉,|ψ1〉∈CNmax

c1 + c2 , (B3)

where Nmax is the Fock space cutoff. The
√

17 code is
the only code below n̄num = 2. For n̄num ≤ 5, 10, the
best-performing code for γ ≤ 0.3935 is num(4.149), for
γ = 0.4084 is num(2.770), and for γ ≥ 0.4231 is the

√
17

code. We were unable to find good codes with n̄num > 5
due to the prominence of shallow local minima.

For the numerical comparison, we swept all values of
the code parameters for cat(α, S), bin(N,S), num(n̄),
and gkps(∆) subject to the energy constraints. For
gkp(∆, a), we only considered values of ∆ which gave
n̄gkp ≈ 2, 5, or 10 (since we knew from the gkps calcu-
lations that increasing n̄ generally increased FE for all
but the largest values of γ). We also did not consider
all possible non-rectangular lattices, but instead imple-
mented a subset of them by sweeping the lattice param-
eter a ∈ [1, 2] in the following coherent-state representa-
tion for the shifted non-square gkp code states:

|µshift
gkp 〉 ∝

∑
~n∈Z

(−1)
µn1 e−i

π
2 n2(2n1+µ)e−

πa
4 ∆2[(2n1+µ)2+( 2

an2)2]
∣∣∣∣√πa2

(
2n1 + µ+ i

2

a
n2

)〉
. (B4)

The ∆→ 0 states are stabilized by

Sx = −D√πa
2 (1+i 2

a ) and Sp = D
4i
√

π
2a
.

The resulting code lattice formed by 1
2P

shift
gkp is shifted,

retaining its error-correcting properties but not having a
lattice point at the origin. Both shifted and unshifted lat-

tices are used in the numerics, but only unshifted lattices
are used for analytical calculations in Appx. D. Note that
|0shift

gkp 〉 is odd while |1shift
gkp 〉 is even under parity (−1)n̂, so

there is no spacing S.
Since cat and gkp code states are formally superpo-

sitions of an infinite number of Fock states, we have
to truncate them and use a finite Fock state superposi-
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γ n̄code ≤ 2

cat bin gkps gkp

α S N S ∆ ∆ a

0.0124 1.440 1 1 1 0.481 0.477 1.550
0.0247 1.440 1 1 1 0.481 0.477 1.618
0.0488 1.396 1 1 1 0.481 0.477 1.618
0.0723 1.369 1 1 1 0.481 0.477 1.618
0.0952 1.351 1 1 1 0.481 0.477 1.618
0.1175 1.332 1 1 1 0.481 0.477 1.618
0.1393 1.508 2 1 1 0.481 0.477 1.618
0.1605 1.508 2 1 1 0.481 0.477 1.618
0.1813 1.508 2 1 1 0.481 0.477 1.618
0.2015 1.508 2 1 1 0.481 0.477 1.618
0.2212 1.508 2 1 1 0.481 0.477 1.618
0.2404 1.508 2 1 1 0.481 0.477 1.618
0.2592 1.508 2 1 1 0.481 0.477 1.618
0.2775 1.508 2 1 1 0.481 0.477 1.618
0.2953 1.508 2 1 1 0.481 0.477 1.618
0.3127 1.508 2 1 1 0.481 0.477 1.618
0.3297 1.508 2 1 1 0.481 0.477 1.618
0.3462 1.508 2 1 1 0.481 0.477 1.618
0.3624 1.508 2 1 1 0.481 0.477 1.618
0.3781 1.194 1 0 0 0.481 0.477 1.618
0.3935 1.183 1 0 0 0.481 0.477 1.525
0.4084 1.173 1 0 0 0.481 0.477 1.525
0.4231 1.173 1 0 0 0.481 0.510 1.450
0.4373 1.162 1 0 0 0.500 0.659 1.350
0.4512 0 0 0 0 0.535 0.659 1.350
0.4647 0 0 0 0 0.577 0.913 1.250
0.4780 0 0 0 0 0.632 0.933 1.200
0.4908 0 0 0 0 0.632 0.953 1.150
0.5034 0 0 0 0 0.632 0.976 1.100

n̄code ≤ 5

cat bin gkps gkp

α S N S ∆ ∆ a

1.739 2 2 2 0.309 0.309 1.650
1.746 2 2 2 0.309 0.309 1.650
1.962 3 1 2 0.309 0.309 1.650
1.969 3 1 3 0.309 0.309 1.700
1.975 3 1 3 0.309 0.309 1.700
1.981 3 1 3 0.309 0.309 1.700
1.987 3 1 3 0.309 0.309 1.700
1.994 3 1 3 0.309 0.309 1.700
1.994 3 1 3 0.309 0.309 1.700
2.000 3 1 3 0.309 0.309 1.700
2.000 3 1 3 0.309 0.309 1.700
2.000 3 1 3 0.309 0.309 1.700
2.000 3 1 3 0.309 0.309 1.700
1.994 3 1 3 0.309 0.309 1.700
1.994 3 1 3 0.309 0.309 1.700
1.987 3 1 3 0.309 0.309 1.700
1.981 3 1 3 0.309 0.309 1.700
1.975 3 1 3 0.309 0.309 1.700
1.969 3 1 3 0.309 0.309 1.700
1.643 2 1 3 0.309 0.309 1.700
1.636 2 1 2 0.316 0.312 1.732
1.628 2 1 2 0.392 0.394 1.650
1.612 2 1 2 0.471 0.510 1.450
1.162 1 0 0 0.500 0.659 1.350
0 0 0 0 0.535 0.659 1.350
0 0 0 0 0.577 0.913 1.250
0 0 0 0 0.632 0.933 1.200
0 0 0 0 0.632 0.953 1.150
0 0 0 0 0.632 0.976 1.100

n̄code ≤ 10

cat bin gkps gkp

α S N S ∆ ∆ a

2.890 3 3 4 0.221 0.221 "
2.890 3 3 4 0.221 0.221 "
3.162 4 2 4 0.221 0.221 "
3.162 4 2 5 0.221 0.221 "
1.975 3 2 5 0.221 0.221 "
1.981 3 2 5 0.221 0.221 1.725
1.987 3 2 5 0.221 0.221 1.725
1.994 3 2 5 0.221 0.221 1.725
1.994 3 2 5 0.221 0.221 1.725
2.000 3 2 5 0.221 0.221 1.725
2.000 3 2 5 0.221 0.221 1.725
2.000 3 1 3 0.221 0.221 1.725
2.000 3 1 3 0.221 0.221 1.725
1.994 3 1 3 0.221 0.221 1.725
1.994 3 1 3 0.221 0.221 1.725
1.987 3 1 3 0.221 0.221 1.725
1.981 3 1 3 0.221 0.221 1.725
1.975 3 1 3 0.221 0.221 1.725
1.969 3 1 3 0.221 0.221 1.725
1.643 2 1 3 0.246 0.243 1.700
1.636 2 1 2 0.316 0.312 1.732
1.628 2 1 2 0.392 0.394 1.650
1.612 2 1 2 0.471 0.510 1.450
1.162 1 0 0 0.500 0.659 1.350
0 0 0 0 0.535 0.659 1.350
0 0 0 0 0.577 0.913 1.250
0 0 0 0 0.632 0.933 1.200
0 0 0 0 0.632 0.953 1.150
0 0 0 0 0.632 0.976 1.100

Table IV. Code parameters for the code giving the highest FE (1.11) out of all codes of a given code family with the constraint
n̄code ≤ 2, 5, 10 and a given loss rate γ (1.3). The first column lists the γ’s sampled while the next three sets of seven columns give
the code parameters for cat(α, S) (5.1), bin(N,S) (6.1), gkps(∆) (7.8), and gkp(∆, a) (B4). Each of the three sets corresponds
to one of the three energy constraints. Optimal code values below γ ≤ 0.0124 do not change significantly and so are not shown.
For γ ≥ 0.4512, a small n̄ is preferable for all codes and optimal cat and bin switch to encoding into the first two Fock states.
For n̄gkp ≤ 10 and γ ≤ 0.05, denoted with the " symbol in the last column, we bound FE with the channel fidelity FQR

E that
uses the quadratic recovery RQR [148] (see also [149, 150]) for unshifted hexagonal gkp (7.8) because FE decreases significantly
around that regime due to numerical precision limitations of the optimization. We also use FQR

E to bound FE in Sec. VIB.

tion
∑Nmax
n=0 cn|n〉 for each logical state. We picked Nmax

such that
∑Nmax
n=0 |cn|2 ≥ 0.99999 for both logical states.

For gkps/gkp code states, we used the coherent state
representation and picked only the lattice points values
s, t ≤ b4/∆c. The codes were generated with Math-
ematica while the semidefinite program was executed
using the CVX package [151] in MATLab, with the
MATLink add-on [152] for Mathematica acting as the
bridge. Helpful routines were borrowed from Toby S.
Cubitt [153].

Appendix C: Qudit bin and bin2 codes

Here we extend the analogy from Sec. VIC between
bin codes and spin-coherent states to qudit bin codes,
introducing a new multi-qudit code perm′ in the process
and eventually yielding a logical Xcode-operator and a
check operator for the qudit bin [23] and bin2 codes.
We consider the following generalization of spin-coherent
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Figure 11. Overlap |J〈θ, φ|π2 ,
2π
d
µ〉J,d|2 vs. θ, φ (in radians)

for qudit states |π
2
, 2π
d
µ〉J,d (C1) with µ = 0 and d,N picked

such that the spin J = 1
2
(d − 1)(N + 1) = 12. These states

resemble spin-squeezed states and characterize the qudit bin
and bin2 codes (see Appx. C). For fixed J , the degree of
squeezing increases with d.

states (6.10),

|θ, φ〉J,d =

2J∑
m=0

√(
N+1
m

)
d
eiφm tan2m d−1

d θ√(∑d−1
µ=0 tan2µ d−1

d θ
)N+1

|J,m− J〉 ,

(C1)
where |J,m − J〉 is the spin basis of a spin J =
1
2 (d− 1) (N + 1), and

(
N+1
m

)
d
are extended binomial co-

efficients [154] (also called polynomial coefficients [155]),
defined by

(
1 + x+ · · ·+ xd−1

)N+1
=

(d−1)(N+1)∑
m=0

(
N + 1

m

)
d

xm .

(C2)
(Note a similar generalization in the proof of Ref. [75],
Thm. 1.2). For d = 2, {|π2 , πµ〉J,d=2}1µ=0 reduce to the
two antipodal spin-coherent states discussed in the main
text. In general, the d states {|π2 ,

2π
d µ〉J,d}

d−1
µ=0 are similar

to squeezed spin-coherent states equidistantly distributed
along the equator of the Bloch sphere. For a fixed J , the
amount of squeezing increases with increasing d, as shown
in an example in Fig. 11. This is sensible since increasing
d for fixed J means fitting more quantum information in
the same amount of space.

Mapping the basis |J,m− J〉 to Fock states
| (S + 1)m〉 or two-mode Fock states

| (S + 1) [(d− 1) (N + 1)−m], (S + 1)m〉

yields qudit versions of bin and bin2, respectively, for
general parameters N,S. It was shown in Ref. [23] that
qudit bin codes can protect to order O(γN ) against de-
phasing and O(γS) against loss. We do not prove this
for bin2 here, but anticipate this to also be the case for

those codes. Observing the protection offered by noon
codes [22], it is also reasonable to believe that tensor
products |π2 ,

2π
d µ〉

⊗M
J,d (with |J,m − J〉 mapped to one-

or two-mode Fock states) will yield yet another class of
multi-mode codes. Regarding the multi-qubit mapping,
we introduce perm′ — a new extension of qubit perm
codes to qudits. These codes can be obtained by map-
ping |J,m− J〉 to a qudit generalization of Dicke states
|DN+1

m 〉 that we denote as the extended binomial states
|Ed−1,N+1
m 〉, i.e.,

|µperm′〉 =

(d−1)(N+1)∑
m=0

ei
2π
d µm

√
dN+1

√(
N + 1

m

)
d

|Ed−1,N+1
m 〉 .

(C3)

The states |Ed−1,N+1
m 〉 are defined as normalized equal

superpositions of all multi-qudit states having a total of
m excitations distributed over N + 1 qudits,

|Ed−1,N+1
m 〉 =

1√(
N+1
m

)
d

d−1∑
v1,··· ,vN+1=0∑

i vi=m

|v1, · · · , vN+1〉 .

(C4)
The normalization of these states happens to be exactly
the extended binomial coefficient because

(
N+1
m

)
d
is, by

definition, the number of ways of obtaining m as the sum
of N+1 independent random variables which take values
from 0 to d− 1 [155].

The code perm′ is different from the qudit perm codes
[75] because those utilize a different generalization of
qubit Dicke states. For example, extended binomial
states for d = 3 and N = 1 are

|E2,2
0 〉 = |00〉, |E2,2

1 〉 =
1√
2

(|01〉+ |10〉) , (C5a)

|E2,2
2 〉 =

1√
3

(|02〉+ |11〉+ |20〉) , (C5b)

|E2,2
3 〉 =

1√
2

(|21〉+ |12〉) , |E2,2
4 〉 = |22〉 . (C5c)

In contrast, qudit Dicke states [75] are superpositions
of a multi-qudit state which has a fixed number of ex-
citations for each qudit and all of that state’s permu-
tations. For the above case, the qudit Dicke states are
|E2,2

0 〉, |E
2,2
1 〉, |E

2,2
3 〉, |E

2,2
4 〉 along with 1√

2
(|02〉+|20〉) and

|11〉. In the general case of N +1 qudits, there are
(
N+d
d−1

)
qudit Dicke states while only (d−1) (N + 1)+1 extended
binomial states. While the qudit Dicke states span the
entire fully symmetric N + 1-qudit subspace, extended
binomial states span only a subspace of that subspace.
After introduction of a spacing S 6= 0 in similar fashion to
perm codes (see Sec. VIC 2), it may be that |µperm′〉 pro-
tects against multi-qubit amplitude damping, but such
properties have yet to be proven.

We conclude this section by relating perm′ to eigen-
states of an N -qudit generalization of an N -qubit col-
lective spin operator. This reveals that such codes are
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closely related to bit-flip codes and provides a check op-
erator for qudit bin and bin2 codes.

1. Relating perm′ codes to bit-flip codes

We start with the spin-coherent states from Sec. VI
(i.e., d = 2) written in the irrep for which Jx is a collective
operator for a 2J = M -qubit system with S = 0. In
other words, Jx = 1

2

∑M
k=1Xk, where Xk is the Pauli

matrix of the kth qubit. For those parameters, the qubit
states |µperm〉 in this irrep are simply tensor products of
eigenstates | (−1)

µ〉k of Xk,

|µperm〉 =

M⊗
k=1

| (−1)
µ〉k =

1√
2M

M⊗
k=1

[|0〉k + (−1)
µ |1〉k]

(C6)
with Xk| (−1)

µ〉k = (−1)
µ | (−1)

µ〉k. Proving this is sim-
ple if one writes out

⊗M
k=1 | (−1)

µ〉k in terms of the Dicke
states {|DM

m 〉}Mm=1. Observe that, after performing all
tensor products, |µperm〉 will consist of an equal linear
superposition of multi-qubit states (denoted by binary
strings) with coefficients ±1/

√
2M . To change basis to

Dicke states, we group multi-qubit states by their total
number of excitations (i.e., the number of 1’s in each bi-
nary string). For m excitations out of M qubits, the
number of such states is

(
M
m

)
. Moreover, since each ad-

ditional excitation brings about an additional factor of
−1, all states with the same number of excitations have
matching coefficients. Thus, we can group each superpo-
sition of states with fixed excitations into unnormalized
Dicke states. Multiplying and dividing each unnormal-
ized Dicke state by

(
M
m

)−1/2
yields the original form of

|µperm〉 in Eq. (6.14).
We can now generalize the above setup to qudits. Con-

sider M qudits of dimension d and let

X =

d−1∑
ν=0

|ν〉〈ν + 1 mod d| (C7)

now be the shift operator for a qudit (i.e., defined such
that X|d− 1〉 = |0〉). This X has d eigenstates

|ei 2π
d µ〉 =

1√
d

d−1∑
ν=0

ei
2π
d µν |ν〉 (C8)

(with µ ∈ {0, 1, · · · , d− 1}) whose eigenvalues are ei
2π
d µ.

Using the same procedure as above, one can consider
tensor products of |ei 2π

d µ〉,

|µperm′〉 =
(
|ei 2π

d µ〉
)⊗M

, (C9)

and express them in the extended binomial basis. Now,
|µperm′〉 consists of equal superpositions of multi-qudit
states with coefficients {ei 2π

d µν/
√
dM}d−1

ν=0, but the coef-
ficients in front of multi-qudit states of fixed total excita-
tion match. The normalization of |Ed−1,M

m 〉 is the square

root of the number of multi-qudit states in |Ed−1,M
m 〉,

which we have already defined to be
(
M
m

)
d
. This yields

the perm′ code states from Eq. (C3) with M = N + 1.
An important consequence of the above description is

that now all qudit codes ∈ {bin, bin2} admit a logical
operator

Xcode =
1

M

M∑
k=1

Xk , (C10)

where Xk is X for the kth qudit, and a corresponding
check operator (Xcode)

M . It is implied that both of these
are projected only onto the subspace spanned by the ex-
tended binomial states {|Ed−1,M

m 〉}(d−1)M
m=0 (vs. the full

permutation-symmetric subspace spanned by the qudit
Dicke states discussed above). Thus, the logical operator
will be a matrix of dimension (d− 1)M satisfying

Xcode|µperm′〉 = ei
2π
d µ|µperm′〉 . (C11)

Mapping the extended binomial state basis to the corre-
sponding Fock states thus creates analogous check oper-
ators for bin and bin2. One can also consider products
of Xk’s and form other check operators. Such check op-
erators should prove useful in experimental realizations
of the error correcting procedures of these codes.

Appendix D: Calculations for gkp codes

1. Useful identities

Throughout the text, we have used the following stan-
dard identities for coherent states Dα|0〉 = |α〉 and |β〉:

exn̂|α〉 = e−
1
2 |α|

2(1−|ex|2)|αex〉 (D1a)

DαDβ = e
1
2 (αβ?−α?β)Dα+β (D1b)

〈α|β〉 = e−
1
2 (|α|2+|β|2)+α?β . (D1c)

We also use the Fock space matrix elements of Dα [156],

〈`|Dα|`′〉 = e−
|α|2

2

√
`′!

`!
L

(`−`′)
`′ (|α|2)α`−`

′
(D2)

for ` ≥ `′ and 〈`|Dα|`′〉 = (〈`′|D−α|`〉)? for ` < `′, where
L

(a)
n (x) is the generalized Laguerre polynomial. The gen-

erating function of these polynomials is

∞∑
p=0

(m+ p)!

p!
tpL

(α)
m+p(x) =

m!e−
tx

1−t

(1− t)m+α+1
L(α)
m

(
x

1− t

)
.

(D3)

Finally, we use the Poisson summation formula; for a
function f (x),∑

n∈Z
f (n) =

∑
n∈Z

∫ ∞
−∞

dxe2πinxf (x) . (D4)
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2. Equivalence between squeezed and coherent
state representations for gkp

We sketch a derivation of Eq. (7.5) from Eq. (7.6).
Writing the displacements in Eq. (7.7b) in terms of po-
sition and momentum operators x̂ and p̂, inserting a res-
olution of the identity in terms of position eigenstates
between the displacements, and using e−ix2p̂|x1〉x̂ =
|x1 + x2〉x̂ yields

|µideal
gkps 〉 ∝

∑
~n∈Z2

∫
dx|x+

√
π(2n1 + µ)〉x̂ x̂〈x|ei

√
πn2x̂|vac〉 ,

(D5)

where ~n = (n1, n2), |vac〉 is the Fock state |0〉, and we
use “∝” to ignore normalization and any constant pre-

factors that we obtain throughout the calculation. Now,
we recall that x̂〈x|vac〉 ∝ exp(− 1

2x
2) and apply the Pois-

son summation (D4) to the sum over n2, yielding a sum
over Dirac δ-functions. We can then easily evaluate the
integral over x, yielding

|µideal
gkps 〉 ∝

∑
~n∈Z2

e−2πn2
2 |
√
π(2n1 + 2n2 + µ)〉x̂ . (D6)

Finally, we can redefine indices and evaluate one of the
new sums to yield

|µideal
gkps 〉 ∝

∑
n∈Z
|
√
π(2n+ µ)〉x̂ . (D7)

3. Projecting displacements onto the gkp code space

We have utilized all three representations (7.7a-c) to verify the calculations below, initially calculating overlaps
〈µ∆

gkps|â†pâq|µ∆
gkps〉 and summing them up to yield the QEC matrix εgkps``′ . We will not report on these calculations,

noting that they are cumbersome, but do yield the right answers.
We evaluate matrix elements 〈µideal

gkps |Dα|νideal
gkps 〉 of the displacement operator for ideal gkps states (written in terms

of position eigenstates |
√
π(2n+µ)〉x̂) from Eq. (7.5). We can split Dα = Dα1+iα2 into a shift by

√
2α1 in position and

by
√

2α2 in momentum. The latter translates |
√
π(2n+µ)〉x̂ while the former turns into a phase since |

√
π(2n+µ)〉x̂

are eigenstates of x̂. We can then use the orthogonality of position eigenstates, x̂〈x1|x2〉x̂ = δ(x1 − x2), and change
indices to obtain

〈µideal
gkps |Dα|νideal

gkps 〉 =

√
2

π

∑
n1,n2∈Z

e−iα1α2e−i
√

2π(2n2+µ)α2δ

(
α1 −

√
π

2
(2n1 + δµ)

)
, (D8)

where we multiplied each |µideal
gkps 〉 by ( 2√

π
)1/2 to remove constants in front of the sum (D9) below. We now apply the

Poisson summation formula (D4) to turn the sum of n2-dependent phases into another sum of Dirac δ-functions for
α2, yielding

〈µideal
gkps |Dα|νideal

gkps 〉 =
∑
~n∈Z

eiπ(n1+µ+ν
2 )n2δ2

(
α− Λ~nδµ

)
, (D9)

where Λ~nδµ =
√

π
2 [(2n1 + δµ) + in2].

Now let us consider finite gkps states in the smeared representation (7.7c) and calculate

〈µ∆
gkps|Dα|ν∆

gkps〉 =

∫
d2βd2γ

π∆2/2
e−

1
∆2 (|β|2+|γ|2)〈µideal

gkps |D−βDαDγ |νideal
gkps 〉 . (D10)

We add the displacements and use Eq. (D9), whose δ-functions allow us to immediately evaluate one of the integrals.
The remaining Gaussian integral is also simply evaluated to yield

〈µ∆
gkps|Dα|ν∆

gkps〉 =
∑
~n∈Z2

eiπ(n1+µ+ν
2 )n2e−

1
2∆2 |α−Λ~nδµ|

2

e−
∆2

8 |α+Λ~nδµ|
2

. (D11)

We can then substitute α ∼ Λ~nδµ into the envelope function in the ∆→ 0 limit, yielding Eq. (7.14).

4. QEC matrix for gkp codes
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To compute the QEC matrix for gkps, let us sandwich both sides of Eq. (7.12) by 〈µ∆
gkps| and |ν∆

gkps〉:

〈µ∆
gkps|E

†
`E`′ |ν

∆
gkps〉 =

∫
d2α

π
e−

(1−γ)
2 |α|2〈`|Dα? |`′〉〈µ∆

gkps|D√γα|ν∆
gkps〉 . (D12)

Plugging in Eq. (D11) with α ∼ Λ~nδµ in the ∆2-dependent envelope and switching the sum and integral, one obtains

〈µ∆
gkps|E

†
`E`′ |ν

∆
gkps〉 ∼

∑
~n∈Z2

eiπ(n1+µ+ν
2 )n2e−

∆2

2 |Λ
~n
δµ|

2

∫
d2α

π
e−

(1−γ)
2 |α|2〈`|Dα? |`′〉e−

γ

2∆2 |α−Λ~nδµ/
√
γ|2 . (D13)

Next, we evaluate the integral by changing to polar coordinates α = |α| eiθ and evaluating the angular integral
first. This integral turns out to be integral representation of the modified Bessel function of the first kind, In(z) =∫ π

0
dθ
π e

z cos θ cos(nθ). Recalling that 〈`|Dα? |`′〉 (D2) contain Laguerre polynomials, the remaining integral over |α|
contains both L(|`−`′|)

`min
and I|`−`′|. Luckily, it can be evaluated using Ref. [157], Sec. 2.19.12, Eq. (6):∫ ∞

0

dxx
λ
2 e−pxIλ(2b

√
x)L(λ)

n (x) = bλ
(p− 1)n

pλ+n+1
e
b2

p L(λ)
n

(
b2

p(p− 1)

)
. (D14)

The pre-factor (p−1)n

pn+1 eventually gives the thermal weights in the QEC coefficients cgkps`` (7.16). The resulting Laguerre
polynomials can then be re-expressed in terms of displacement matrix elements (D2). During this simplification, we
take the limit

γ

(
1

2∆2
− 1

2

)
∼ γn̄gkps � 1 , (D15)

relating γ to n̄gkps. This yields the QEC matrix elements

〈µ∆
gkps|E

†
`E`′ |ν

∆
gkps〉 ∼

(γn̄gkps)
`+`′

2

(γn̄gkps + 1)
`+`′

2 +1

∑
~n∈Z2

e−
(1−γ)

2γ |Λ
~n
δµ|

2

eiπ(n1+µ+ν
2 )n2e−

∆2

2 |Λ
~n
δµ|

2

〈`|D(Λ~nδµ)?/
√
γ |`′〉 , (D16)

where we can once again let ∆→ 0 to produce Eq. (7.15).
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