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This paper reports on experiments realized on several IBM 5Q chips which show evidence

for the advantage of using error detection and fault-tolerant design of quantum circuits.
We show an average improvement of the task of sampling from states that can be fault-
tolerantly prepared in the [[4, 2, 2]] code, when using a fault-tolerant technique well suited
to the layout of the chip. By showing that fault-tolerant quantum computation is already
within our reach, the author hopes to encourage this approach.
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1 Introduction

Quantum systems in laboratories around the world are reaching unprecedented level of control

and precision for a variety of devices aiming at implementing reliable qubits. Yet, due to the

very nature of those devices, errors are still notably present. In order to be able to execute

long quantum algorithms, improvements should be made using quantum error correction

and fault-tolerant schemes. So-called threshold theorems [1, 2] prove that there exist error

rates below which this approach is guaranteed to improve the device performance. However,

between those theorems and real experiments there remains a fog of technical details which

clouds the actual practicality of error correcting codes.

Already some experiments which demonstrate the usefulness of quantum error correcting

codes to protect a quantum memory have been done, e.g. [3–7], but a demonstration of

protected computation is still missing.

Inspired by a recent proposal by D. Gottesman [8], we use an IBM 5Q chip to show that

error detection can improve some simple sampling tasks, thus turning a tiny portion of fog into

blue sky. Closely related to this work, [6] and [7] present experiments based on the same error

detecting code, on trapped-ion qubits and on a similar superconducting chip, respectively.

Both those works focus on the preparation of few states and only one of the two encoded

qubits is handled fault-tolerantly. In this work an extensive set of fault-tolerant circuits is

studied and both logical qubits are protected. Moreover [6] and [7] introduce artificial Pauli

errors to study the robustness of their preparation whereas this work takes a higher level
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approach, treating the experimental set-up as a black box, probing only the intrinsic errors

in the system. These considerations make the present work closer to the spirit of [8]. This

work is, to the author’s knowledge, the first experimental demonstration of error detection

and fault-tolerance improving a quantum computation.

The paper is organized as follows. In section 2 we present the principle of the approach

and its specialization to the IBM 5Q chip. In section 3 the experimental results are shown

and analyzed.

2 Demonstrating fault-tolerance

The idea behind fault-tolerance is to devise error correcting codes and the corresponding

processes of encoding, correcting, computing or measuring with encoded information such

that more errors are corrected than introduced [9]. The difficulty in devising such processes is

that they are built out of components that are all faulty, so adding some might do more harm

than it can help. Devising, proving and simulating fault-tolerant schemes has been pursued

for the last 20 years, e.g. [1, 9–15], but improving and finding better schemes is still important

and a subject of ongoing research, e.g. [16–20].

Taking one of these schemes and experimentally demonstrating its fault-tolerance, i.e

finding an improvement of performance going from bare to encoded implementation, provides

the ultimate validation of the scheme.

2.1 General approach

A description of a general approach to demonstrate fault-tolerant quantum computation is

given in [8]; we just briefly recall it here. The idea is to choose a quantum error correcting

code C, admitting fault-tolerant circuits for the preparation of some logical states, denoted as

|s1〉 , . . . , |sm〉 ∈ SC
FT, as well as for some logical quantum gates, denoted as U1, . . . , Un ∈ GC

FT.

Using these as building blocks one can then randomly draw a state preparation from SC
FT,

then draw a sequence of gates from GC
FT to obtain an encoded fault-tolerant circuit.

More precisely, following the formalism of rectangles and extended rectangle introduced in

[10], one interleaves the logical units (gates in GC
FT, or preparation of states in SC

FT) with a

fault-tolerant circuit for error correction. Rectangles designate circuits comprising one logical

unit preceded by a round of error correction, extended rectangles designate circuits comprising

one logical unit preceded and followed by a round of error correction. The precise conditions

to satisfy in order to be fault-tolerant for distance 3 codes are stated in [10]. This ensures

that the whole computation is error free if there is at most one fault per extended rectangle.

The error model considered in this paper is that the failure of any component can introduce

any Pauli error on the qubits acted on by the component. In our case, we cannot repeat fault-

tolerant detection of errors, so our circuits will only tolerate a single fault in total.

The encoded circuits then have to be compared to a bare implementation on the physical

qubits. Sampling from the final state produced by the circuit in the computational basis and

comparing the probability distribution obtained with the expected one gives a simple com-

parison metric. Note that this supposes that the circuits are small enough or simple enough

so that one can classically simulate sampling from the final state efficiently. A successful

demonstration of fault-tolerant quantum computation happens if the encoded circuits show

better performance than the bare circuits. To be the most convincing, one needs to use the
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best of the physical qubits as well as the most efficient implementation for the bare circuits.

2.2 The IBM 5Q chip and [[4,2,2]]

(a) Layout

q2

4

q1 1q32

q43 q0 A

(b) [[4, 2, 2]] Code

1 2

3 4

SX , SZ

Z2, X1

Z1, X2

Fig. 1. (a) The connectivity between the qubits in the IBM 5Q Raven chip. Arrows indicate
CNOT capabilities where the arrow points towards the target of the CNOT. Red labels indicate
our choice of qubit numbering. A is an ancillary qubit used in verification of state preparation.
(b) The usual representation layout for the [[4, 2, 2]] code. The numbered circles represent the
qubits and the rectangular boxes represent the support of different Pauli operators: logical Pauli
operators Z1, X2 are highlighted in blue, logical Pauli operators Z2, X1 in green and stabilizers
SX , SZ in black.

In 2016 IBM released a quantum chip with fixed-frequency superconducting transmon

qubits, named IBM 5Q. They provide worldwide cloud access to the chip under an initiative

called the “IBM Quantum Experience” [21]. The current iteration on which the experiments

were done is nicknamed Raven. The appendix also presents and compares preliminary results

obtained with a previous iteration, Sparrow. The chip has five qubits, natively named q0 to q4.

It features single qubit Clifford gates, the T gate (diag(1, eiπ/4)) as well as some two-qubits

CNOTs with a certain layout represented in Fig. 1a. This many qubits is the right number

to use for a demonstration using the [[4, 2, 2]] code as discussed in [8].

The [[4, 2, 2]] code encodes two qubits into four physical qubits. Its code space is stabilized

by the all-X and all-Z Pauli operators (SX = X⊗X⊗X⊗X , SZ = Z⊗Z⊗Z⊗Z), together

with the logical Pauli operators, they are represented in Fig. 1b. The logical code states are

|00〉
L

= 1√
2
(|0000〉+ |1111〉) (1)

|01〉
L

= 1√
2
(|1100〉+ |0011〉) (2)

|10〉
L

= 1√
2
(|1010〉+ |0101〉) (3)

|11〉
L

= 1√
2
(|1001〉+ |0110〉) . (4)

The code also admits transversal implementations of two Clifford gates, namely H⊗H ·SWAP,

where H is the Hadamard gate, see Fig. 2a, and the controlled phase or CZ gate, see Fig. 2b.

Moreover, if the five qubits have the right connectivity then there are fault-tolerant circuits

preparing the logical states |00〉
L
, |0+〉

L
and |00〉

L
+ |11〉

L
. For the cat state |00〉

L
, see

Equation (1), there exists fault-tolerant preparations including one ancillary qubit to verify

the preparation. One post-selects on a successful preparation. The logical states |0+〉
L

and

|00〉
L
+ |11〉

L
are both two Bell pairs but with different pairings. They both also have fault-

tolerant preparation circuits. In [8], some circuits are proposed, they can be adapted to

the layout of the chip. We tested another preparation for |00〉
L

inspired by [16], which is

substantially shorter so more relevant to this layout.
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(a)

q1 H

H ×
≡

q2 H

H × q3 H

q4 H

(b)

q1 S

•
≡

q2 S

H H q3 S

q4 S
Fig. 2. (a) Bare and encoded versions of H⊗H ·SWAP, where H is the Hadamard gate. In practice
the SWAP gate is not done physically on the bare version but just in software, by renumbering
the two qubits. (b) Bare and encoded versions of the CZ gate, where S = diag(1, i).

(a) FTv1

q0 → |0〉 ✌✌
✌

q1 → |0〉
q2 → |0〉 H • • H H • •
q3 → |0〉 H • H

q4 → |0〉

(b) FTv2

|0〉 ✌✌
✌

|0〉 •
|0〉 H • × •
|0〉 H • H •
|0〉 ×

Fig. 3. The two different implementations for preparing the state |00〉
L
: (a) Based on a flagging

technique with 5 CNOTs, (b) based on the circular connectivity circuit with 8 CNOTs. In both
circuits if the ancillary qubit q0 is measured as 1, we reject the preparation.

The flagging technique in [16] for the preparation of |00〉
L

can be implemented with the

given CNOT connectivity, see Fig. 3a. We call this the fault-tolerant version one (FTv1).

The technique based on a circular layout proposed by [8] cannot be implemented directly

due to the connectivity. A clever introduction of one SWAP gate permits to implement it

still fault-tolerantly at the cost of 8 CNOT gates in total, see Fig. 3b. We call this the

fault-tolerant version two (FTv2). We present below, the results for FTv1, which is more

appropriate for the layout. For both those circuits one can check that every possible single

fault leads to a detectable error, or an error that stabilizes the prepared state. We also tried

a non-fault-tolerant one that has the advantage of being short, involving only 3 CNOTs, see

Figure 4. We call this the non-fault-tolerant version (NFT). For the preparation of |0+〉
L
,

we want to create a Bell pair between q1 and q3 and between q2 and q4. There is a missing

connection between q1 and q3, but we can do a similar SWAP trick, see the resulting circuit in

Fig. 6a. This circuit is not fault-tolerant as an undetected logical Z1⊗Z2 = Z⊗1⊗1⊗Z can

occur if the SWAP gate fails. This is the only possible harmful logical error for this circuit.

We’ll see below that we only use this circuit in cases were the possible undetected Z1 ⊗ Z2

error doesn’t change the outcome of the sampling test. The preparation for |00〉
L
+ |11〉

L
can

itself be straightforwardly implemented fault-tolerantly, see Fig. 6b. To summarize, our sets

of initial states and gates are

SFT =

{

|00〉 , |0+〉 , |00〉+ |11〉√
2

}

,

GFT = {X1, X2, Z1, Z2, H ⊗H · SWAP,CZ} .

The [[4, 2, 2]] code is only an error detecting code, that is, it can detect one Pauli error
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q0 → |0〉
q1 → |0〉
q2 → |0〉 •
q3 → |0〉 H • •
q4 → |0〉

Fig. 4. A short but non-fault-tolerant circuit to prepare |00〉
L
.

but cannot correct it. This means that in place of error correction we have to rely on post-

selection to remove errors. In other words, we throw away runs where we detect that an error

occurred, either from the ancilla measurement checking state preparation, or from the final

measurement which indicates, when the parity of the outcomes is odd, that SZ has value −1.

As mentioned before, we cannot interleave rounds of error detection between state prepa-

ration and the gates. That means that the final circuit can only be tolerant to a single fault

during the whole computation, except for the specific undetectable Z1⊗Z2 failure mentioned

above and when we use the non-fault-tolerant version to prepare |00〉
L
.

×
=

• H • H •
× H H

Fig. 5. Implementation of the SWAP gate.

(a)

q1 → |0〉 H ×
q2 → |0〉 × •
q3 → |0〉 H •
q4 → |0〉

(b)

|0〉
|0〉 H •
|0〉 H •
|0〉

Fig. 6. (a) Preparation circuits of the logical state |0+〉
L
, with 5 CNOTs. (b) Preparation circuits

of the logical Bell state
(

|00〉
L
+ |11〉

L

)

/
√
2 with 2 CNOTs.

2.3 Comments on the tested circuits

Since we work with such a small system, we can exhaustively find and try all the logically

equivalent circuits and optimize the bare version for each one. Essentially, we are making it

most likely for the bare version of the task to prevail. From the set of states SFT, and the

set of gates GFT, one can obtain 20 different stabilizer states. All the states with their most

efficient bare preparation circuit, using the native set of gates provided by IBM, are listed in

Figure 7. A brute force approach was used to find them.

Note that adding more gates in the sequence would test states that are already tested with

shorter circuits. Therefore those would certainly give worse results as we cannot interleave

error detections between gates. Hence we kept only these 20 different preparations. This still

extensively probes the computational capabilities of the [[4, 2, 2]] code.
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Initial state Unitary Final state # Instructions

|00〉 1⊗ 1 |00〉 5

|0+〉 1⊗ 1
|00〉+|01〉√

2
6

|00〉 1⊗X |01〉 6

|00〉 X ⊗ 1 |10〉 6

|00〉+|11〉√
2

1⊗ 1
|00〉+|11〉√

2
7

|0+〉 1⊗ Z
|00〉−|01〉√

2
7

|00〉 H ⊗H · SWAP |00〉+|01〉+|10〉+|11〉
2

7

|0+〉 X ⊗ 1
|10〉+|11〉√

2
7

|00〉 X ⊗X |11〉 7

|00〉+|11〉√
2

1⊗ Z
|00〉−|11〉√

2
8

|00〉+|11〉√
2

X ⊗ 1
|10〉+|01〉√

2
8

|00〉 1⊗ Z ·H ⊗H · SWAP |00〉−|01〉+|10〉−|11〉
2

8

|00〉 Z ⊗ 1 ·H ⊗H · SWAP |00〉+|01〉−|10〉−|11〉
2

8

|0+〉 X ⊗ Z
|10〉−|11〉√

2
8

|00〉+|11〉√
2

1⊗ ZX
|10〉−|01〉√

2
9

|00〉 Z ⊗ Z ·H ⊗H · SWAP |00〉−|01〉−|10〉+|11〉
2

9

|00〉 CZ ·H ⊗H · SWAP |00〉+|01〉+|10〉−|11〉
2

10

|00〉 CZ · 1⊗ Z ·H ⊗H · SWAP |00〉−|01〉+|10〉+|11〉
2

11

|00〉 CZ · Z ⊗ 1 ·H ⊗H · SWAP |00〉+|01〉−|10〉+|11〉
2

11

|00〉 1⊗X · CZ ·H ⊗H · SWAP ·X ⊗ 1
|00〉−|01〉−|10〉−|11〉

2
12

Fig. 7. The list of initial states and unitary circuits and the number of QASM instructions in
the bare circuit (including final measurements). The final states are written exclusively in the
computational basis since that is how they are measured.
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3 Experimental results

The code and data can be found on GitHub [22]: it uses the Python SDK that can be found

at [23].

3.1 Parameters and runs

Using the IBM chip one can run circuits in batches. For each individual run, 8192 shots are

done right one after another in a short time, where each shot outputs 5 bits as measurement

outcomes. We consider that the chip is exactly in the same conditions during each run.

We consider all the runs to be independent of one another but each to be done in different

conditions, so sampling from different output distributions.

For each run, IBM also provides calibration data describing the state of the chip such as:

gate error rates, readout error rates, T1, T2 and fridge temperature. We give the average

values that we observed for our runs in the appendix.

3.2 Performance metric

For each circuit run we want to compare the observed outcome distribution with the ideal

one. The ideal distribution is 8192 independent samples from a distribution with four possible

outcomes occurring with probabilities p00, p01, p10 and p11. The values for pij can be read

from Figure 7. Since we assume that the conditions stay identical during one run and that the

8192 shots are independent, we observe independent samples from a four-outcome distribution

with some different probabilities p̃00, p̃01, p̃10 and p̃11.

We then use the statistical distance as a metric:

D =
1

2

(

|p00 − p̃00|+ |p01 − p̃01|+ |p10 − p̃10|+ |p11 − p̃11|
)

.

This quantity is estimated for each run by

D̂ =
1

2

(
∣

∣

∣

∣

p00 −
n00

nvalid

∣

∣

∣

∣

+

∣

∣

∣

∣

p01 −
n01

nvalid

∣

∣

∣

∣

+

∣

∣

∣

∣

p10 −
n10

nvalid

∣

∣

∣

∣

+

∣

∣

∣

∣

p11 −
n11

nvalid

∣

∣

∣

∣

)

,

where nij is the number of observation of outcome ij after post-selection and nvalid is the

number of shots kept after post-selection. This estimator for D is slightly biased except for

the case where only one of the pij is non-zero (because in this case it becomes linear). We

use this estimator to keep the analysis simple.

Each of the runs has some different p̃ij and we have no information about how the p̃ijs

vary. Therefore we will assume that there are fluctuations around the mean of D̂ following

some unknown normal distribution and use this model to compute confidence intervals [24].

This means that the final data points and their confidence intervals don’t exactly reflect

knowledge of D but only of D̂ which we believe is still a valid quantity to characterize the

performance of the circuits.

3.3 Comparisons

We first need to decide on what pair of bare qubits is the best to be compared to the encoded

qubits. It is not immediately clear how to choose this given only the calibration numbers.

Thus we tried out the six different connected pairs and we found the performance shown in

Figure 8. There is no clear “best pair” but one can see that the pairs [2− 0] or [3− 2] seem to
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Fig. 8. Comparison of the different pairs of qubits to implement the bare circuits together with
the number of instructions for each circuit.
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be slightly better. Since we don’t have a systematic method for predicting the best pair given

the calibration data and the circuit, we will look at average performance for each pair over all

the circuits. When averaging, we find the pair [2− 0] to be the best, see Table 1. The second

observation that we can make based on Figure 8 is that the number of instructions does not

explain the performance. It seems that the type of state sampled from is more important.

Roughly it is easier to sample from equal superposition of the four computational basis states,

than from equal superposition of two, than from just one. This can be understood with the

fact that with more states in equal superposition there are less Pauli errors or readout errors

that can affect the outcome distribution.

We then go on, comparing the encoded versions of the circuits to the elected best pair

in Figure 9. The encoded circuits using the preparations |0+〉
L

and |00〉
L
+ |11〉

L
are short

and fault-tolerant and indeed show better performance than the bare ones. For the different

preparations for |00〉
L
, the fault-tolerant version FTv1 is, except in a few cases, better than

the non-fault-tolerant one despite being substantially longer. This shows that fault-tolerant

design of circuits can be useful. Although they both compare unfavourably to the bare version,

except for 4 circuits for FTv1 and only 1 circuit for NFT.

We cannot make an absolute statement as for some circuits the bare version is always

better. We also don’t want to cherry pick the best version for each circuit since we don’t

have a systematic way of predicting the best version. Average performance when fixing a



Christophe Vuillot 9

Fig. 9. Comparing encoded performance with bare qubit pair [2−0]. The performance is defined as
the statistical distance to the ideal outcome distribution. The figure shows the difference between
encoded and bare performance. The error bars show confidence intervals at 99%.
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preparation for |00〉
L

are shown in Table 1. One can see that FTv1, with 4.51 × 10−2, is

better than the best bare implementation with 5.5 × 10−2, whereas NFT (6.05 × 10−2) is

worse.

4 Conclusion

In conclusion, we have shown that already on the IBM 5Q chip one can improve some quan-

tum computation task, namely sampling from a class of states, by using error detection and

fault-tolerant design of circuits. This improvement is only on average over 20 different states

that the [[4, 2, 2]] code can fault-tolerantly prepare. We also can see that shorter but non

fault-tolerant circuits can be bested by longer but fault-tolerant circuits, showing the useful-

ness of these. As better and better hardware is developed, with more physical qubits, more

connectivity and smaller error rates, demonstrations of fault-tolerance will become easier to

produce and become more convincing. The set of gates shown to be fault-tolerant in this

paper is very restricted. For the [[4, 2, 2]] code a few more qubits and connections would be

needed to realize fully fault-tolerant circuits with error detection in between logical units. Be-

ing able to demonstrate the fault-tolerance of larger gate sets, for example the whole Clifford

group for several logical qubits would be an important milestone towards harnessing universal
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Implementation Avg.Perf.(×10−2) Post-selection ratio

Bare[1-0] 6.72 1.00
Bare[2-0] 5.50 1.00
Bare[2-1] 6.49 1.00
Bare[2-4] 6.98 1.00
Bare[3-2] 6.27 1.00
Bare[3-4] 7.73 1.00

FTv1 4.51 0.65
NFT 6.05 0.71

Table 1. Average performance for the different bare and encoded possible implementations with
the post-selection ratio (ratio of data kept). The encoded implementations only differ in how they
prepare the state |00〉

L
.

quantum computation.

Acknowledgements

I would like to thank the IBM Quantum Experience team for providing extensive access to

the chip and support on how to interface with it. I also would like to thank Barbara Terhal

for valuable comments and feedback. CV acknowledge support through the EU via the ERC

GRANT EQEC and support by the Excellence Initiative of DFG. The views expressed are

those of the author and do not reflect the official policy or position of IBM or the IBM

Quantum Experience team.

References

[1] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error.

In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing,

STOC ’97, pages 176–188, New York, NY, USA, 1997. ACM. ISBN 0-89791-888-6.

[2] Emanuel Knill, Raymond Laflamme, and Wojciech H. Zurek. Resilient quantum com-

putation: error models and thresholds. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 454(1969):365–384, 1998. ISSN 1364-

5021.

[3] E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne. Benchmarking quantum com-

puters: The five-qubit error correcting code. Phys. Rev. Lett., 86:5811–5814, Jun 2001.

[4] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-

Delgado, and R. Blatt. Quantum computations on a topologically encoded qubit. Science,

345(6194):302–305, 2014. ISSN 0036-8075.

[5] A. D. Córcoles, Easwar Magesan, Srikanth J. Srinivasan, Andrew W. Cross, M. Steffen,

Jay M. Gambetta, and Jerry M. Chow. Demonstration of a quantum error detection

code using a square lattice of four superconducting qubits. Nature Communications, 6

(6979), April 2015.



Christophe Vuillot 11

[6] Norbert M. Linke, Mauricio Gutierrez, Kevin A. Landsman, Caroline Fig-

gatt, Shantanu Debnath, Kenneth R. Brown, and Christopher Monroe.

Fault-tolerant quantum error detection. Science Advances, 3(10), 2017,

http://advances.sciencemag.org/content/3/10/e1701074.full.pdf.

[7] Maika Takita, Andrew W. Cross, A. D. Córcoles, Jerry M. Chow, and Jay M. Gambetta.

Experimental demonstration of fault-tolerant state preparation with superconducting

qubits. Phys. Rev. Lett., 119:180501, Oct 2017.

[8] Daniel Gottesman. Quantum fault tolerance in small experiments. ArXiv e-prints, Oc-

tober 2016, 1610.03507. URL https://arxiv.org/abs/1610.03507.

[9] P. W. Shor. Fault-tolerant quantum computation. In Proceedings of the 37th Annual

Symposium on Foundations of Computer Science, FOCS ’96, pages 56–, Washington,

DC, USA, 1996. IEEE Computer Society.

[10] Panos Aliferis, Daniel Gottesman, and John Preskill. Quantum accuracy threshold for

concatenated distance-3 codes. Quantum Info. Comput., 6(2):97–165, March 2006. ISSN

1533-7146.

[11] Panos Aliferis, Daniel Gottesman, and John Preskill. Accuracy threshold for postselected

quantum computation. Quantum Info. Comput., 8(3):181–244, March 2008. ISSN 1533-

7146.

[12] Andrew W. Cross, David P. DiVincenzo, and Barbara M. Terhal. A comparative code

study for quantum fault tolerance. Quantum Info. Comput., 9(7):541–572, July 2009.

ISSN 1533-7146.

[13] Adam Paetznick and Ben W. Reichardt. Fault-tolerant ancilla preparation and noise

threshold lower bounds for the 23-qubit golay code. Quantum Information & Computa-

tion, 12:1034–1080, 2012, 1106.2190v2.

[14] Yu Tomita and Krysta M. Svore. Low-distance surface codes under realistic quantum

noise. Phys. Rev. A, 90:062320, Dec 2014.

[15] Christopher Chamberland, Tomas Jochym-O’Connor, and Raymond Laflamme. Thresh-

olds for universal concatenated quantum codes. Phys. Rev. Lett., 117:010501, June 2016.

[16] Rui Chao and Ben W. Reichardt. Quantum error correction with only two extra qubits.

ArXiv e-prints, May 2017, 1705.02329v1. URL https://arxiv.org/abs/1705.02329.

[17] Rui Chao and Ben W. Reichardt. Fault-tolerant quantum computation with few qubits.

ArXiv e-prints, May 2017, 1705.05365. URL https://arxiv.org/abs/1705.05365.

[18] Ryuji Takagi, Theodore J. Yoder, and Isaac L. Chuang. Error rates and resource over-

heads of encoded three-qubit gates. Phys. Rev. A, 96:042302, Oct 2017.

[19] Christopher Chamberland, Tomas Jochym-O’Connor, and Raymond Laflamme. Over-

head analysis of universal concatenated quantum codes. Phys. Rev. A, 95:022313, Feb

2017.

https://arxiv.org/abs/1610.03507
https://arxiv.org/abs/1705.02329
https://arxiv.org/abs/1705.05365


12 Is Error Detection Helpful on IBM 5Q Chips ?

[20] Christopher Chamberland and Michael E. Beverland. Flag fault-tolerant error correc-

tion with arbitrary distance codes. ArXiv e-prints, August 2017, 1708.02246v2. URL

https://arxiv.org/abs/1708.02246.

[21] IBM Quantum Experience. URL https://quantumexperience.ng.bluemix.net.

[22] Code and data of the experiments. URL https://github.com/ChristopheVuillot/.

[23] Python sdk. URL https://github.com/IBM/qiskit-sdk-py.

[24] Ronald E. Walpole and Raymond H. Myers. Probability and Statistics for Engineers and

Scientists, chapter 8.6. Macmillan USA, 1985. ISBN 9780024241702.

https://arxiv.org/abs/1708.02246
https://quantumexperience.ng.bluemix.net
https://github.com/ChristopheVuillot/
https://github.com/IBM/qiskit-sdk-py


Christophe Vuillot 13

Appendix A

This appendix presents the calibration data for the experiments, averaged over all the

different runs as well as the observed standard deviation. It also shows previous runs on a

previous iteration of the chip, called Sparrow, which was showing better performance but has

been taken down by IBM. The current iteration is named Raven: the more extensive runs

presented in this paper were done on this chip. Note that for the runs on Sparrow, there were

only 4 different calibrations and 36 runs for each circuit. For Raven we have more than 100

runs for each circuit and almost a new calibration per run.

chip Temperature (mK)

Raven 21
Sparrow 19

Table A.1. Average fridge temperatures for the two chips at the time of the runs in mK.

(a) Raven

qubit T1(µs) σ[T1] T2(µs) σ[T2]

Q0 46 6.5 40 7.3
Q1 57 6.8 45 6.3
Q2 39 5.1 40 3.2
Q3 40 4.8 57 12.5
Q4 54 9.1 21 1.3

(b) Sparrow

qubit T1(µs) σ[T1] T2(µs) σ[T2]

Q0 49 8.9 39 4.5
Q1 46 11.0 39 13.3
Q2 56 1.7 91 9.9
Q3 47 4.9 62 12.0
Q4 55 6.0 81 13.2

Table A.2. Average T1 and T2 parameters for the runs together with their standard deviation all
in µs.

The two chips are similar, the gate and readout error rates have been slightly improved

with Raven but the fridge temperature as well as T1 and T2 times became a bit worse. The

layout differs only in the orientation of the CNOTs, see Figure A.1. The circuits run on

Sparrow are showed in Figure A.2 and Figure A.3. Comparison of the bare and encoded

performance between Raven and Sparrow are presented in Figure A.4 and Figure A.5. One

can see that the previous iteration was performing better.

q2

4

q1 1q32

q43 q0 A

Fig. A.1. Layout of the Sparrow chip.
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(a) Raven

qubit gate error (%) σ[gate error] readout error (%) σ[readout error]

Q0 0.1 0.021 4.1 0.63
Q1 0.08 0.035 4.7 0.96
Q2 0.15 0.024 2.7 0.36
Q3 0.15 0.016 6.2 1.11
Q4 0.19 0.026 5.1 1.1

(b) Sparrow

qubit gate error (%) σ[gate error] readout error (%) σ[readout error]

Q0 0.23 0.009 1.9 0.22
Q1 0.30 0.099 8.3 2.19
Q2 0.42 0.085 1.5 0.29
Q3 0.52 0.213 12.3 3.60
Q4 0.33 0.027 6.6 0.83

Table A.3. Average single-qubit gate and readout error rates for the runs together with their
standard deviation, all in percent.

(a) Raven

pair gate error (%) σ[gate error]

1-0 2.2 0.32
2-0 2.3 0.25
2-1 2.7 0.36
2-4 3.9 0.78
3-2 2.2 0.30
3-4 2.7 0.38

(b) Sparrow

pair CNOT error (%) σ[CNOT error]

1-0 4.0 0.74
2-0 3.0 0.24
2-1 4.6 0.86
2-4 3.7 0.34
3-2 6.2 0.90
3-4 5.8 2.05

Table A.4. Average CNOT gate error rates and their standard deviation for the runs, all in percent.

q0 → |0〉 H • • H ✌✌✌

q1 → |0〉 × H H

q2 → |0〉 × H H

q3 → |0〉 H • •
q4 → |0〉 •

Fig. A.2. The circuit previously implemented on the IBM 5Q Sparrow chip preparing the logical
state |00〉

L
. The SWAP gate is implemented via the circuit in Figure 5. If the SWAP gate fails,

it can introduce Pauli X errors on q1 and q2, which would not be detected and which constitute
a logical X1 ⊗X2 error.
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(a)

q1 |0〉 ×
q2 |0〉 ×
q3 |0〉 H •
q4 |0〉 H •

(b)

|0〉 H •
|0〉
|0〉 H •
|0〉

Fig. A.3. (a) Preparation circuits of the logical state |0+〉
L
, with 5 CNOTs. If the SWAP gate fails,

it can introduce Pauli X errors on q1 and q2, which would not be detected and which constitute a
logical X1 ⊗ X2 error. (b) Preparation circuits of the logical Bell state

(

|00〉
L
+ |11〉

L

)

/
√
2 with

2 CNOTs.

Fig. A.4. Comparison of the performances of the bare circuits between the Raven and Sparrow
chips. Except for the four circuits involving a two-qubit gate, Sparrow was showing better perfor-
mance. This is probably due to improvement of the two-qubit gates but shorter T1 and T2 times
on Raven, see Table A.2 and Table A.4.
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Fig. A.5. Comparing encoded versions on Raven and Sparrow. The |00〉
L

and |0+〉
L

preparations
were suffering from possible X1X2 logical errors.
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