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Quantum Pin Codes
Christophe Vuillot and Nikolas P. Breuckmann

Abstract—We introduce quantum pin codes: a class of quan-
tum CSS codes. Quantum pin codes are a vast generalization
of quantum color codes and Reed-Muller codes. A lot of the
structure and properties of color codes carries over to pin codes.
Pin codes have gauge operators, an unfolding procedure and their
stabilizers form multi-orthogonal spaces. This last feature makes
them interesting for devising magic-state distillation protocols.
We study examples of these codes and their properties.

I. INTRODUCTION

THE REALIZATION of a fault-tolerant universal quantum
computer is a tremendous challenge. At each level of

the architecture, from the hardware implementation up to the
quantum software, there are difficult problems that need to be
overcome. Hovering in the middle of the stack, quantum error
correcting codes influence both hardware design and software
compilation. They play a major role not only in mitigating
noise and faulty operations but also in devising protocols
to distill the necessary resources granting universality to an
error corrected quantum computer [1]. The study and design
of quantum error correcting codes is therefore one of the
major tasks to be undertaken on the way to universal quantum
computation.

A well-studied class of quantum error correcting codes are
Calderbank-Shor-Steane codes (CSS codes) [2], [3], which are
a kind of stabilizer quantum codes [4], [5]. The advantage of
CSS codes is their close connection to linear codes which
have been studied in classical coding theory. A CSS code can
be constructed by combining two binary linear codes. Roughly
speaking, one code performs parity checks in the Pauli X-basis
and the other performs parity checks in the Pauli Z-basis. Not
any two binary linear codes can be used: it is necessary that
any two pairs of code words from each code space have to have
even overlap. Common classical linear code constructions, e.g.
random constructions, do not sit well with this restriction and
can therefore not be applied to construct CSS codes. Several
families of CSS codes have been devised based on geometrical,
homological or algebraic constructions [6]–[17], however, it is
still open which parameters can be achieved.

Besides being able to protect quantum information, quantum
error correcting codes must also allow for some mechanism to
process the encoded information without lifting the protection.
It is always possible to find some operations realizing a desired
action on the encoded information but these operations may
spread errors in the system. One should restrict themselves
to fault-tolerant operations which do not spread errors. For
instance, acting separately on each qubit of a code cannot
spread single qubit errors to multi-qubit errors. This is called
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a transversal gate, but not any code admits such gates. More
generally, for many codes in the CSS code family it is possi-
ble to fault-tolerantly implement Clifford operations, which
are all unitary operations preserving Pauli operators under
conjugation. Clifford operations by themselves do not form
a universal gate set. Several techniques to obtain a universal
gate set, by supplementing the non-Clifford T gate to Cliffords
for example, have been devised [18], [19], among which magic
state distillation is currently the most promising candidate.

In this work we introduce a new class of CSS codes, which
we call quantum pin codes. These codes form a large family
while at the same time have structured stabilizer generators,
namely they form multi-orthogonal spaces. This structure is
necessary for codes to admit transversal phase gates and it can
be leveraged to obtain codes that can be used within magic
state distillation protocols. Moreover the construction of pin
codes differs substantially from previous approaches making
it an interesting space to explore further.

In section II, after introducing some notations and termi-
nology, we define quantum pin codes, explain their relation
to quantum color codes and give some concrete approaches
to construct them. In section III, we discuss the conditions
for transversal implementation of phase gates on a CSS code
and magic state distillation. In section IV, we investigate the
properties of pin codes. Finally in section V, we study concrete
examples of pin codes obtained from Coxeter groups and chain
complexes as well as applications for magic state distillation.

II. PIN CODES

A. Terminology and formalism

Consider D+1 finite, disjoint sets, (C0, . . . , CD) which we
call levels. The elements in each of the levels are called pins.
If a pin c is contained in a set Cj then j is called the rank
of c. Since all the Cj are disjoint each pin has a unique rank.

Consider a (D + 1)-ary relation on the D + 1 levels
C0, . . . , CD, that is to say a subset of their Cartesian product
F ⊂ C0×· · ·×CD. The tuples in the relation F will be called
flags.

A subset of the ranks, t ⊂ {0, . . . , D}, is called a type. We
will consider tuples of pins coming from a subset of the levels
selected by a type t and call them collection of pins of type t.
A collection of pins of type t = {j1, . . . , jk}, is therefore an
element s ∈ Cj1×· · ·×Cjk . Note that we can interchangeably
view a collection of pins as a tuple or a set as long as no two
pins come from the same level in the set.

We now define specific subsets of flags, called pinned sets,
using projections.
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Definition 1 (Projection of type t). Given a set of flags F and
a type t = {j1, . . . , jk}, the projection, Πt, is defined as the
natural Cartesian product projection acting on the flags, F

Πt : F → Cj1 × · · · × Cjk
(c0, . . . , cD) 7→ (cj1 , . . . , cjk).

Note that the projection of empty type, Π∅, is also well
defined: for any f ∈ F we have Π∅(f) = ().

Definition 2 (Pinned set). Let F be a set of flags, s be
a collection of pins of type t and Πt be the corresponding
projection as defined above. We define the pinned set of type t
and collection of pins s, Pt(s), as the preimage of s under the
projection Πt,

Pt(s) = Π−1t (s) ⊂ F.

In words: a pinned set is the set of flags whose projection of
a given type t yields a given collection of pins, s. A definition
of a pinned set which is equivalent to the one given above is

Pt(cj1 , . . . , cjk) = F ∩C0 · · ·×{ cj1 }×· · ·×{ cjk }×· · ·CD.
(1)

The pinned set with respect to the empty type is none other
than the full set of flags, F . For convenience, we will refer
to a pinned set defined by a collection with k pins as a
k-pinned set.

If one wants to form a mental image one can imagine a
pin-board with pins of different colors for each levels on it.
Then the flags can be represented by cords each attached to
one pin of each level, see Fig. 1 as an example.

Fig. 1. Illustration of three levels (red, green and blue) each containing two
pins and a relation containing three flags (f0, f1 and f2) symbolized by cords
attached to the pins. The pinned set Pgreen(b) is composed of the flags f1
and f2. The pinned set P(red,blue)(1, α) only contains the flag f0.

The structure of pinned sets layed out above is such that
they intersect and decompose nicely. This is captured by the
following two propositions.

Proposition 1 (Intersection of pinned sets). Let s1 and s2 be
two collections of pins of types t1 and t2 respectively. Then
the intersection of the two pinned sets Pt1(s1) and Pt2(s2) is
either empty or a pinned set of type t1 ∪ t2 characterized by
the collection of pins s1 ∪ s2,

Pt1(s1)∩Pt2(s2) =

{
Pt1∪t2(s1 ∪ s2) if |s1 ∪ s2| = |t1 ∪ t2|
∅ otherwise.

Proof. The proof follows directly from the alternative charac-
terization of pinned sets given in Eq. (1).

Proposition 2 (Pinned set decomposition). Let s be a type t
collection of pins and let t′ be a type containing t, i.e. t′ ⊃ t.
The pinned set Pt(s) is partitioned into some number, say m,
of pinned sets, each characterized by a type t′ collections of
pins containing s, i.e. s′j ⊃ s,

Pt(s) =

m⊔
j=1

Pt′(s
′
j).

Proof. Let s be a type t collection of pins and let t′ be a type
such that t′ ⊃ t. Define the following set of collections of pins

S = Πt′ (Pt(s)) ,

then it is the case that

Pt(s) =
⊔
s′∈S

Pt′(s
′).

Indeed, since t′ ⊃ t and ∀s′ ∈ S, s′ ⊃ s we have that ∀s′ ∈
S, Pt′(s

′) ⊂ Pt(s) showing the right to left inclusion. The left
to right inclusion follows from the definition of S. Finally the
fact that the union is disjoint follows from Prop. 1.

B. Definition of a (x, z)-pin code

Equipped with the notions layed out in the previous section,
we now construct quantum codes. They are defined by a choice
of flags F and two natural integers x and z which fulfill the
condition x + z ≤ D. The flags are identified with qubits,
so that n = |F |. The X-stabilizers generators are defined by
all the x-pinned sets and the Z-stabilizers generators by the
z-pinned sets in the following way. For each x-pinned set we
define the Pauli operator acting as the Pauli-X operator on
the qubits corresponding to the flags in the pinned set and
as the identity on the rest; we then add it to the generating
set of the X-stabilizers. We do similarly for the z-pinned sets
to form the generating set of the Z-stabilizers. In order to
ensure the correct commutation relations between the X- and
Z-stabilizers it is sufficient to enforce the following condition
on the relation F .

Definition 3 (Pin code relation). A (D+1)-ary relation, F , is
a pin code relation if all D-pinned sets have even cardinality.

This property is sufficient for the overlap between two
pinned sets to be even every time they are pinned by a small
enough number of pins. This is summarized in the following
proposition.

Proposition 3 (Even overlap). Let F be a (D + 1)-ary pin
code relation as per Definition 3. Let x and z be two natural
integers such that,

x+ z ≤ D.

Then, the intersection between any x-pinned set and any z-
pinned set has even cardinality.

Proof. By Proposition 1, the intersection of a x-pinned set and
a z-pinned set is either empty or a pinned set with at most
x + z ≤ D pins. In turn by Proposition 2, the intersection
can be partitionned into D-pinned sets which all have even
cardinality since the relation F is a pin code relation.
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Using a pin code relation we can therefore define a CSS
code as follows.

Definition 4 ((x, z)-pin code). Given a pin code relation, F ,
on (D + 1) sets and two natural integers (x, z) ∈ N2, such
that x+ z ≤ D, we define the corresponding (x, z)-pin code
by associating the elements of F with qubits, all the x-pinned
sets with X-stabilizer generators and all the z-pinned sets
with Z-stabilizer generators. The defined code is a valid CSS
code.

A first remark is that the choice of x = 0 (or z = 0) is
not particularly interesting since in this case there is a single
X-stabilizer (or Z-stabilizer) acting on all the qubits.

A second remark is that in the strict case, where x+z < D,
the code will contain many small logical operators which are
naturally identified as gauge operators. This is explained in
details in Sec. IV-C.

Before explaining how to construct pin code relations we
show that quantum color codes are a subclass of pin codes.

C. Relation to quantum color codes

The formalism and definitions above can be viewed as
a generalization of quantum color codes without boundaries
[11], [20], [21]. However it is also possible to integrate
the notion of boundaries into the general framework of pin
codes but we delay these considerations to Sec. IV-E. A D-
dimensional color code is defined by a homogeneous, D-
dimensional, simplicial complex, triangulating a D-manifold,
whose vertices are (D + 1)-colorable. A D-dimensional,
simplicial complex is called homogeneous if every simplex
of dimension less than D is a face of some D-simplex. The
(Poincaré) dual of a simplicial complex as defined above is
sometimes called a colex [20], it consists in a tessellation
where the vertices are (D + 1)-valent and the D-cells are
(D + 1)-colorable. In the original simplicial complex, the
qubits are identified with the D-simplices and one chooses
two natural integers, (x̃, z̃) ∈ N2 with x̃ + z̃ ≤ D − 2, to
define the X- and Z-checks using the x̃- and z̃-simplices in the
following way. Each X-stabilizer generator is identified with a
x̃-simplex which acts as Pauli-X on all D-simplices in which
it is contained. Similarly, each Z-stabilizer generator operate
on all the D-simplices as Pauli-Z in which the corresponding
z̃-simplex is contained, respectively.

This definition can be restated in the language of pin codes:
the D+1 levels, C0, . . . , CD, are indexed by the D+1 colors
and each level contains the vertices of a given color. The
flags, F , are defined using the D-simplices (each containing
D + 1 vertices); this defines a relation, F ⊂ C0 × · · · × CD
thanks to the colorability condition as each D-simplex will not
contain two vertices of the same color. One can further check
that the relation F is a pin code relation as stated in Def. 3.
Indeed, D-pinned sets correspond to (D−1)-simplices which
are contained in exactly two D-simplices since the simplicial-
complex triangulates a D-manifold without boundaries. This
shows that it is a pin code relation. Then subsets of the (D+1)
colors correspond to types and any k-simplex corresponds
directly to a collection of pins of type given by the (k + 1)

different colors of the (k + 1) vertices of the k-simplex. The
corresponding (k+ 1)-pinned set contains all the D-simplices
containing the original k-simplex. As such all the non-empty
(k + 1)-pinned sets are given by all the collection of pins
and type corresponding to all the k-simplices. With these
consideration, we see that choosing x = x̃+ 1 and z = z̃+ 1,
the corresponding (x, z)-pin code is the same as the original
color code.

An example for D = 2, based on the hexagonal color code,
is shown in figure 2a. To summarize: to go from color codes
to pin codes one just forgets the geometry, keeping only the
(D+1)-ary relation given by the (D+1)-colored D-simplices.

Importantly, pin codes are more general, as there are pin
code relations which are not derived from these specific
simplicial complexes. In the next section after recalling a
concrete color code construction we give two more general
constructions of pin code relations.

D. Constructing pin codes

(a) (b)

Fig. 2. (a) An example of flag set based on the triangular lattice: F =
{f0, . . . , f23} from D + 1 = 3 levels: C0 =

{
c00, . . . , c

3
0

}
in red, C1 ={

c01, . . . , c
3
1

}
in blue, C2 =

{
c02, . . . , c

3
2

}
in green. The figure wraps around

on itself according to the arrows so that there are no boundaries, and the
surface obtained is a torus. (b) Schematic representation of the flags of the
square lattice and the corresponding pins. Each triple of incident vertex (green
pin), edge (red pin) and face (blue pin) is a flag. They are symbolized in the
picture as actual flags put closest to the elements in the triple (vertex, edge,
face) they stand for. The corresponding color code is the well known 4.8.8
color code: there are eight flags around each vertex, four around each edge
and eight around each face.

1) Color codes from tilings: In [20], the authors explain
how to obtain a colex from any tiled D-manifold. The idea
is to successively inflate the (D − 1)-cells, (D − 2)-cells,
. . . , 0-cells into D-cells. The dual of the tiling obtained is
then a (D+ 1)-colorable triangulation of the D-manifold, see
Appendix A of [20]. This can also be understood directly,
without inflating the cells, as follows: Separate all the cells
into (D+ 1) sets, C0, . . . , CD, according to their dimensions,
i.e. Cj contains all the j-cells. We can now define a (D+ 1)-
ary relation on the cells via the incidence relation. Two cells
of different dimension are incident if and only if one is a sub-
cell of the other. An element of this relation, i.e. a (D + 1)-
tuple containing a 0-cell (a vertex), a 1-cell (an edge), etc. . . up
to a D-cell, is called a flag. See for example Fig. 2b for
a representation of the flags of the square lattice. The flag
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(a) (b) (c)

Fig. 3. (a) The fundamental triangle of the Wythoff construction. A vertex
(white cirlce) is placed in the middle and three edges are drawn to the
boundary. The three regions are colored red, green and blue. (b) Reflecting
the fundamental triangle along its sides creates a three colored lattice. In this
case the 4.6.12 lattice. Note that we can obtain the red/blue/green shrunk
lattice by moving the vertex into the red/blue/green corner, see Sec. IV-B.
(c). The Wythoff construction can be generalized to higher dimensions as
well. This example shows the vertex put into the middle of a 3D simplex, a
tetrahedron, and one of the four corner cells colored in red (see main text for
more information).

relation obtained this way is the same as the one after going
through the inflating procedure and it is a pin code relation.

A similar way to construct (D+1)-colorable tessellations in
D dimensions directly is to use the Wythoff construction. The
construction is quite general, but for simplicity, let us start on
the 2D euclidean plane. Consider a right-angled triangle and
draw a point into its interior. From this point we draw three
lines, each intersecting a boundary edge in a right angle (see
Fig. 3a). This creates three regions in the triangle which we
assign three different colors. We can now reflect the triangle
along its boundary edges. The internal points of the original
and the reflected triangles become the vertices of a uniform
tiling. The faces of the tiling are colored by the three colors
and by construction no two faces of the same color are adjacent
(see Fig. 3b). If the angles of the triangle are 2π/r, 2π/s and
2π/l then the result will be a r.s.l-tiling, meaning that the
three faces around a vertex will have r, s and l number of
sides.

This idea readily generalizes to higher dimensions by plac-
ing a vertex into a D-dimensional simplex and drawing lines
to the mid-point of the D−1-dimensional faces of the simplex
(see Fig. 3c for the case D = 3). The faces of the simplex
are simplices themselves, so this process can be iterated until
D = 2. Reflecting along the faces of the D-simplex gives
rise to a uniform tiling of the D-dimensional space with D-
cells being colored by D + 1 colors and no two cells of the
same color sharing a D− 1-dimensional face. The number of
vertices of the D-cells is then determined by the orbit of the
reflections along all but one of the sides.

The color codes from regular tilings can be obtained this
way, for example, in 2D Euclidean space, the hexagonal, 4.8.8.
or 4.6.12. color codes or more generally both Euclidean and
hyperbolic tilings in any dimension.

The classification of what initial simplex can be used, also
called fundamental domain, in order to tile the spherical,
Euclidean or hyperbolic spaces amounts to studying the
groups of symmetries of the tilings. These groups of
symmetries are also called Coxeter groups.

2) Coxeter group approach: In this section we present how
to obtain pin code relations directly from Coxeter groups [22],
[23], or more generally from finite groups which are generated
by elements with even order. A Coxeter group is a finitely
presented group with reflections as generators, denoted as

G = 〈a0, . . . , aD|a20 = · · · = a2D = (aiaj)
kij = rk = · · · = 1〉,

where rk are additional relations between generators and 1
is the trivial element. Define the subgroups, Hj for
j ∈ {0, . . . , D}, as

Hj =
〈
{a0, . . . , aD} \ {aj}

〉
.

Define the levels, Cj , as the sets of left cosets for each Hj ,
i.e.

Cj = {gHj | g ∈ G} .

The cosets of a subgroup always form a partition of the full
group. So for every j ∈ {0, . . . , D}, a group element g ∈ G
uniquely defines a coset cj ∈ Cj such that g ∈ cj . Hence, each
group element defines a (D+1)-tuple of cosets, (c0, . . . , cD) ∈
C0 × · · · × CD. Taking the set of all such tuples defines a
(D + 1)-ary relation on the cosets, F ⊂ C0 × · · · × CD,
which is a pin code relation. The fact that this F is a pin
code relation can be verified by the following argument. A
k-pinned set here correspond to the intersection of k different
cosets with respect to k different subgroups Hj . It always
holds that the intersection of several cosets is either empty or
is a coset with respect to the intersection of the subgroups of
the original cosets. Hence non-empty k-pinned sets are cosets
with respect to a subgroup, Hj1,...,jk ,

Hj1,...,jk =

k⋂
i=1

Hji .

Each subgroup Hji is generated by all generators of G except
one, this means that Hj1,...,jk contains at least a subgroup
generated by D − k + 1 of the generators,

Hj1,...,jt ⊇
〈
{a0, . . . , aD} \ {aj1 , . . . , ajt}

〉
. (2)

In particular the D-pinned sets are cosets with respect to a
subgroup which contains 〈aj〉 for some j, which has even or-
der since aj is a reflection. Therefore D-pinned sets have even
order. In well behaved cases the containment in Eq. (2) will
actually be an equality but this is not guaranteed depending
on the relations between generators.

In the case where the Coxeter group describes the symme-
tries of a tiling this is equivalent to the Wythoff construction
described above. But one also obtains more general pin codes
when considering Coxeter groups not defining tilings or more
general finite groups with generators of even order.

In Sec. V-A we explore in more details the construction of
pin codes from 3D hyperbolic Coxeter groups and give some
explicit examples.
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3) Chain complex approach: An other way of obtaining a
pin code relation is from F2 chain complexes of length D+1.
These algebraic objects are composed of (D+1) vector spaces
over F2, say C0, . . . , CD, together with D linear maps called
boundary maps, ∂j : Cj → Cj−1, which are such that

∀j ∈ {0, . . . , D − 1}, ∂j ◦ ∂j+1 = 0. (3)

For example the tiling of a D-manifold can be seen as a chain
complex, taking the j-cells as a basis for the Cj vector space
and the natural boundary map. We have shown how to get a
pin code relation from such a tiling by taking its flags, but it
can as well be obtained from any F2 chain complex.

The construction works as follows: choose a basis set Cj
for each vector space Cj . The Cj basis sets are the levels
and the basis elements the pins. Then use the boundary map,
∂, to define binary relations, Rj,j+1 ⊂ Cj × Cj+1, where
(cj , cj+1) ∈ Rj,j+1 if cj appears in the decomposition of
∂ (cj+1) over the basis set Cj . Then the relation F ⊂ C0 ×
· · · × CD is defined as follows

F = {(c0, . . . , cD) | ∀j, (cj , cj+1) ∈ Rj,j+1} .

The relation F obtained like this is almost a pin code relation.
All the pinned sets of type t = {0, . . . , D}\{j} with 0 < j <
D have even cardinality since their size is given by the number
of paths between the pin cj+1 and the pin cj−1 which has to be
even by the property of the boundary map ∂ given in Eq. (3).
For pinned sets of type t = {1, . . . , D} or t = {0, . . . , D−1}
it is not generally the case that they have even cardinality.
Although this can be easily fixed by adding at most two pins:
the idea is then to add one rank-0 pin, b0, in the level C0 and
add all pairs (b0, c

?) such that

|{c0 | (c0, c?) ∈ R0,1}| = 1 (mod 2),

to the new relation R0,1. Then do the same for the level D,
adding bD in CD. After this modification the resulting flag
relation F is a pin code relation.

Note that this way of obtaining a quantum code from
any F2 chain complex is fundamentally different from the
usual homological code construction. In the homological code
construction one chooses one of the levels, say Cj , and identify
its elements with qubits. Then the Z-stabilizer generators are
given by the boundary of the elements in Cj+1 and the X-
stabilizer generators by the coboundary of the elements in
Cj−1. These are different from the flags and pinned sets used
to define a pin code.

In Sec. V-B we give some explicit pin codes constructed
from chain complexes.

E. Remarks

While some flag relations F obtained from Coxeter groups
can be equivalently viewed as coming from some F2 chain
complex, the converse does not necessarily hold. Indeed not
every multi-ary relation can be decomposed into a sequence of
binary relations, the hexagonal lattice depicted in Fig. 2a is an
example of such a relation which cannot be decomposed this
way. The other way around, not all flag relations obtained from
a F2 chain complex can be seen as coming from a Coxeter

groups as in general they would lack the regular structure
required.

Depending on the pin code relation, F , it can happen that
some pinned sets can in fact be safely split when defining the
stabilizers. That is to say, one can separate them into several
disjoint sets of flags defining each an independent stabilizer
still commuting with the rest of the stabilizers. For example
this is the case for Coxeter groups for which (2) is strict, i.e.〈

{ ai1 , . . . , ais }
〉
∩
〈
{ aj1 , . . . , ajt }

〉
)〈

{ ai1 , . . . , ais } ∩ { aj1 , . . . , ajt }
〉
. (4)

In this case the cosets with respect to the first group can
be further split into cosets with respect to the second one
without harming the commutation relations. Groups generated
by reflections for which (2) is always an equality are called C-
groups [24]. If the stabilizers are still defined as whole pinned
sets, in cases where they could be split, then these smaller
sets of qubits would be logical operators which would be
detrimental to the overall distance of the code.

An other remark is that Reed-Muller codes can be simply
expressed using specific pin code relations. This fact is detailed
in Appendix A.

III. TRANSVERSAL GATES AND MAGIC STATE
DISTILLATION

In this section we present independently of pin codes what
structure is desirable for CSS codes to admit transversal
phase gates of different levels of the Clifford hierarchy. The
presentation here is close in spirit to that of [25], [26]. It
is included here to set terminology and for self containment
purposes.

Given ` binary row vectors, v1, . . . ,v` ∈ Fn2 , we denote
their element-wise product as, v1 ∧ · · · ∧ v`, its jth entry is
given by[ ∧̀

m=1

vm

]
j

=
[
v1 ∧ v2 ∧ · · · ∧ v`

]
j

= v1j v
2
j · · · v`j .

The hamming weight of a binary vector v is denoted as |v|, it
is given by the sum of its entries. We also define the notions
of multi-even and multi-orthogonal spaces:

Definition 5 (Multi-even space). Given an integer, ` ∈ N, a
subspace C ⊂ Fn2 , is called `-even if all vectors in C have
hamming weight divisible by 2`:

∀v ∈ C, |v| = 0 (mod 2`).

An equivalent characterization is that for any integer s ∈
{1, . . . , `} and any s-tuple of vectors, (v1, . . . ,vs) ∈ Cs, it
holds that ∣∣v1 ∧ · · · ∧ vs

∣∣ = 0 (mod 2`−s+1).

Definition 6 (Multi-orthogonal space). Given an integer, ` ∈
N, a subspace C ⊂ Fn2 , is called `-orthogonal if for any `-tuple
of vectors,

(
v1, . . . ,v`

)
∈ C`,∣∣v1 ∧ · · · ∧ v`

∣∣ = 0 (mod 2).
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Binary addition is denoted by ⊕, and the following identity
can be used to convert binary addition to regular integer
addition

r⊕
m=1

wm =

r∑
s=1

(−2)s−1
∑

1≤m1<···<ms≤r

s∧
i=1

wmi . (5)

Using this identity one can show the equivalence of the two
characterizations of an `-even space given in Def. 5, and that
it is enough to verify the second one on a generating set.
Similarly it is enough to verify that a space is `-orthogonal on
a generating set.

The single-qubit phase gates are denoted as

R` =

(
1 0
0 ω`

)
, ω` = ei

2π

2` ,

where ω` is the 2`th root of unity. For instance R1 = Z,
R2 = S and R3 = T in the usual notations.

A. Weighted polynomials and transversal gates

Given k qubits and some integer `, we consider quantum
gates, UF` , acting diagonally on the computational basis, such
that for x ∈ Fk2 ,

UF` |x〉 = ω
F`(x)
` |x〉 ,

where F` is a so-called weighted polynomial of the form

F`(x) =
∑̀
s=1

2s−1
∑

m1<···<ms

αm1...ms · xm1
· · ·xms , (6)

with coefficients αm1...ms in F2` . Any such gate UF` belongs
to the `th level of the Clifford hierarchy [27]. Examples, and
generating set for ` = 3, are given in Table I.

TABLE I
WEIGHTED POLYNOMIALS CORRESPONDING TO SOME WELL KNOWN

GATE, FOR ` = 3, ARRANGED ACCORDING NUMBER OF QUBITS INVOLVED
AND LEVEL OF THE CLIFFORD HIERARCHY.

UF3 ↔ F3(x) 1st level 2nd level 3rd level

1 qubit Z ↔ 4x1 S ↔ 2x1 T ↔ x1

2 qubits - CZ ↔ 4x1x2 CS ↔ 2x1x2

3 qubits - - CCZ ↔ 4x1x2x3

The goal is to implement such a gate on the logical level of
a quantum error correcting code by the transversal application
of some phase gates. Given an [[n, k, d]] quantum CSS code,
define G as the r×n matrix whose rows describe a generating
set of the X-stabilizers of the code, and define L as the
k × n matrix whose rows describe a basis for the X-logical
operators. The code state in this basis corresponding to x ∈ Fk2
can then be expressed as

|x〉 =
1√
2r

∑
y∈Fr2

|xL⊕ yG〉 .

Applying transversally the gate R` on this code state, |x〉,
yields

R⊗n` |x〉 =
1√
2r

∑
y∈Fr2

ω
|xL⊕yG|
` |xL⊕ yG〉 . (7)

Using Eq. (5), the power of ω` above can be rewritten in three
parts as

|xL⊕ yG| = F`(x) + F ′`(y) + F ′′` (x,y), (8)

where we defined

F`(x) = |xL| (9)
F ′`(y) = |yG| (10)

F ′′` (x,y) = −2 |xL ∧ yG| (11)

Using again Eq. (5), one can express these three parts as
weighted polynomials whose coefficients are given by the dif-
ferent overlap between X-logical operator generators, between
X-stabilizer generators or between both, see Appendix B.

Provided that it is possible to cancel the action of F ′`(y) and
F ′′` (x,y) then the resulting operation would correspond to the
gate UF` on the logical qubits of the code. The following two
properties of CSS codes are designed to get rid of these two
unwanted parts.

Proposition 4 (Exact transversality). Let C be a CSS code,
given an integer `, the code C allows for the transversal
application of R` if the following conditions hold:

(i) The X-stabilizers form an `-even space.
(ii) Element-wise products of a X-logical operator and a X-

stabilizer always have hamming weight divisible by 2`−1.
The gate performed at the logical level is then given by the
weighted polynomial in Eq. (9).

Indeed the two conditions above exactly give

F ′`(y) = F ′′` (x,y) = 0 (mod 2`),

which precisely enforce that the actions of F ′`(y) and
F ′′` (x,y) are trivial. We can also settle for a weaker condition
under which the unwanted part is not trivial but belong to the
(`− 1)th level of the Clifford hierarchy.

Proposition 5 (Quasi-transversality). Let C be a [[n, k, d]] CSS
code, with r×n generating matrix, G, for its X-stabilizers and
k×n generating matrix, L, for its X-logical operators. Given
an integer `, the code C allows for the transversal application
of R` up to a (`−1)th-level Clifford correction if the following
conditions hold:

(i) The X-stabilizers form an `-orthogonal space.
(ii) For any choice of s ≥ 1 X-logical operators and t ≥ 1

X-stabilizers with s+ t ≤ `∣∣∣∣∣∣
s∧
i=1

Lmi
t∧

j=1

Gnj

∣∣∣∣∣∣ = 0 (mod 2).

The gate performed at the logical level after correction is then
given by the weighted polynomial in Eq. (9).

Indeed, under this condition it follows that, see Appendix B

ω
F ′`(y)+F

′′
` (x,y)

` = ω
2F̃`−1(x,y)
` = ω

F̃`−1(x,y)
`−1 , (12)

where F̃`−1 is a properly weighted polynomial which defines
a (` − 1)th-level Clifford correction to be applied. The exact
correction is given by the conjugation of UF̃`−1

by a decoding
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circuit for C, see [25]. Note that we can also define interme-
diate conditions so that the correction belongs to the (`− q)th
level of the Clifford hierarchy for some 1 ≤ q ≤ `. Here
we have just defined the two extreme ones, for which the
correction belongs either to the 0th level or the (`−1)th level
of the Clifford hierarchy.

B. Magic-state distillation

Given a code which exhibits exact transversality or quasi-
transversality it is possible to devise magic-state distillation
protocols. We describe briefly a variant here, see also [18],
[25], [26], [28]–[31].

A magic state is roughly speaking a state which enables the
implementation of some gate on an other unknown state. The
most common example is the state |A〉 = T |+〉 which can be
used to implement a T gate on an unknown qubit state using
only a CNOT gate, a measurement and possibly a S correction
(see for example Figure 2 of [1]). If one uses a CSS code to
encode information then the CNOT gate on the encoded level
can be done transversally between two encoded blocks. The
main difficulty lies in obtaining an encoded magic state of
good quality.

A common protocol consists in concatenating the base code
with a distillation code, say of parameters [[n, k, d]], which
admits transversal T gates which also correspond to logical
T gates on the encoded level. Then using n possibly low
fidelity magic states encoded in the base code, one applies a
transversal T gate on |+〉 states at the level of the distillation
code. Then measuring the checks of the distillation code
conditioning on seeing a trivial syndrome and decoding to
the base code one obtains k magic states encoded in the base
code of better quality.

Provided that the quality of the initial magic states is not too
low, repeating sufficiently many times the protocol will reach
any desired accuracy. Then the amount of resources spent
will directly depend on the parameters of the distillation code
[[n, k, d]]. The efficiency of the protocol is often summarized
in just one quantity:

γ =
log(n/k)

log(d)
, (13)

since the average number of output distilled magic states at
a desired accuracy, εout, per initial noisy magic state is given
by 1/O

(
log(ε−1out

)γ
). So the smaller γ is, the more efficient

the protocol is. Previously conjectured to be at least 1, it has
recently been shown that γ < 1 is achievable [31].

IV. PROPERTIES OF QUANTUM PIN CODES

In this section we examine the properties of pin codes. Since
their definition is fairly general, their properties depend on the
precise choice of pin code relations F . We stay as general as
possible and state precisely when the pin code relations need
to be restricted.

A. Code parameters and basic properties

First we investigate the LDPC (Low Density Parity Check)
property. A code family is LDPC if it has stabilizer checks

of constant weight and each of its qubits are acted upon by a
constant number of checks. For pin codes, both properties de-
pend on the relation F , but it is fairly easy to construct LDPC
families. For instance, pin codes based on Coxeter groups
with fixed relations between generators and one growing
compactifying relation are LDPC, see Sec. V-A. As another
example, pin codes from chain complexes with fixed length
D + 1, sparse boundary map and growing dimension of the
levels are LDPC as well.

Let us examine a simple example: choose some D ∈ N, a
set, C, of size 2m for some m ∈ N and the complete relation
on D+ 1 copies of C: F = CD+1. One can easily verify that
the relation F is a pin code relation as C has even cardinality.
The number of flags is nq = |F | = (2m)D+1 and the number
of x- and z-pinned sets are nx =

(
D+1
x

)
× (2m)x and nz =(

D+1
z

)
× (2m)z . If one considers growing m then, the code

would not be LDPC, but more strikingly the ratio of number
of stabilizer checks to number of qubits would go to zero. This
illustrates that for a fixed D the complete relation is a poor
choice, leading to very high rate and very low distance. To get
interesting codes, one either needs to vary D, or find some
other relations with a number of flags growing significantly
slower than the complete relation.

Concerning logical operators, we first note that they have
even weight.

Proposition 6 (Logical operators have even weight). Let F be
a pin code relation on D+ 1 sets and let C be the associated
(x, z)-pin code for (x, z) ∈ {1, . . . , D}2 with x + z ≤ D.
Then the X- and Z-logical operators of C have even weight.

Proof. Let the set L ⊂ F represent a X-logical operator, and
let t be a type of size z. Consider the set, S, of collections of
pins given by the projection of type t of the set L,

S = Πt(L).

For every s ∈ S, the pinned set Pt(s) correspond to a Z-
stabilizer and therefore has an even intersection with L. Pinned
sets of the same type but defined by two different collections of
pins are disjoint. Hence, every element in L appear in exactly
one of the pinned sets Pt(s) for some s ∈ S and so the
cardinal of L is even. The proof for Z-logical operators is the
same.

One can also prove the following general lower bound on
the distance of pin codes.

Proposition 7 (Distance at least 4). Let F be a pin code
relation on D + 1 sets and let C be the associated (x, z)-pin
code for (x, z) ∈ {1, . . . , D}2 with x + z ≤ D. Then the
distance of C is at least 4.

Proof. Using the fact that the distance has to be even from
Prop. 6, we just need to verify that it cannot be 2. Let f1
and f2 be any two flags in F , they must differ on at least one
level j ∈ {0, . . . , D}. Pick a type tx of size x containing j and
define the collection of pins sx = Πtx(f1) of type tx. Then
the pinned set Ptx(sx), defining a X-stabilizer, contains f1
but not f2, hence {f1, f2} cannot define a Z-logical operator.
Similarly by defining the type tz of size z containing j and
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(a) (b) (c)

Fig. 4. (a) Schematic representation of the different types for the X- and Z-stabilizers in the case of D = 3. The different types are classified according to
their possible intersection with the complementary type to t0. For some, the intersection, if not empty, is a unique flag, they are labeled by the symbol “!”.
For the others, the intersection, if not empty, is the full pinned set of type t0, they are labeled by the symbol “∀”. (b) The chain complex corresponding to
the pin code, highlighting the intersections between the different sorts of X- and Z-stabilizers and pinned sets of type t0. (c) The t0-shrunk chain complex
derived from the pin code (see main text).

the collection of pins sz = Πtz (f1), the pinned set Ptz (sz) is
a witness that {f1, f2} cannot be a X-logical operator.

We conjecture that better lower bounds can be obtained
when taking into account the exact size of the type for the
stabilizers as larger types can differentiate more flags. The
proof above is optimal only for x = z = 1. In order to get
odd weight logical operators, one has to introduce free pins,
see Sec. IV-E. Note that in the presence of free pins, the proof
above does not hold anymore.

Making precise statements about the dimension and distance
of pin codes is difficult in general. To get closer to be able to
do this we need to study the structure of the logical operators.

B. Colored logicals and unfolding

The structure of the logical operators of color codes is
understood as colored string-nets or membrane nets [20] and
this structure is directly linked to an unfolding procedure
existing for color codes [32], [33]. This structure mostly
remains for all pin codes, we recast it here.

The general idea is to group qubits into sets with even
overlap with all except one sort of stabilizer which will
correspond to all stabilizers defined by pinned sets of a given
type. Logical operators build out of these sets then only
depend on the structure of the one type of stabilizer selected.
Repeating this for different choices of type of stabilizer fully
covers all logical operators in the case of color codes.

Consider a pin code relation, F ⊂ C0 × · · · × CD, and the
associated (x, z)-pin code. Define the complement of a type,
t, denoted as t:

t = {0, . . . , D} \ t.

The intersection between a pinned set of type t and a pinned
set of type t is either empty or it contains exactly one flag.
Furthermore for any another type with the same number of
pins as t, the corresponding pinned sets have necessarily even
overlap with pinned sets of type t, see Figs. 4a and 5a for
visual representations of this. This means that grouping flags
according to pinned set of the complementary type t can single

out logical operators only having to ensure commutation with
pinned sets of type t. For our code, X-stabilizers are generated
by x-pin sets, which come in

(
D+1
x

)
different types. Take one

such type, tx, and group the qubits according to pinned sets of
type tx. Now the Z-stabilizers are generated by z-pinned sets,
which come in

(
D+1
z

)
different types. Some of these types,

we denote them as tinc.z , are fully included in t, which means
that pinned sets of such type fully contain any group of qubits
they intersect. The other types only partially intersect with
the groups of qubits. The situation is schematized in Fig. 4b
for D = 3, x = 1 and z = 2. From these considerations,
one can construct a chain complex for which the homology
gives candidate Z-logical operators. Take the pinned sets of
type tx, for the level 0, the pinned sets of type tx for the
level 1, and the pinned sets of types tinc.z for level 2 and the
boundary map is given by the overlaps of these sets. This is
represented in Fig. 4c, we call it the tx-shrunk chain complex.
Then one can check that an element of the homology of this
chain complex can be lifted to a potential Z-logical operator
for the pin code. Indeed it would commute with all the X-
stabilizer, by homology for the stabilizers of type tx and by
construction for the other X-stabilizers. It would also not be
simply generated by Z-stabilizers of type tinc.z by homology,
and one would have to check for the other Z types. So it is a
valid (potentially trivial) Z-logical operator.

The same procedure can be done for each of the X types.
Symmetrically, the same can be done for the X-logical with
the Z types, and this is represented in Fig. 5 in the case D = 3,
x = 1 and z = 2.

Given a type t, the chain complexes constructed like this
are called t-shrunk lattices in the case of color codes [20]. For
color codes obtained from the Wythoff construction described
in Sec. II-D1, the construction of the t-shrunk lattice is
fairly direct. First move the vertex from the middle of the
fundamental simplex to the corner corresponding to the first
rank in the type t, then focus on the opposite face: a simplex of
dimension one less which now looks exactly like the beginning
of the procedure but in a lower dimension. Recursively exhaust
all the ranks of t in this way by each time adding a vertex
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(a) (b) (c)

Fig. 5. (a) Schematic representation of the different types classified according to their possible intersection with the complementary type to t01. The ones
with unique intersection are labeled with “!”, the ones with even intersection with “E” and the one with full containement with “∀”. (b) The chain complex
corresponding to the pin code, highlighting the intersections between the different sorts of X- and Z-stabilizers and pinned sets of type t01. (c) The t01-shrunk
(co)chain complex derived from the pin code (see main text).

in the middle of the current simplex and moving it to the
corresponding corner.

These shrunk lattices are the basis for the unfolding pro-
cedure proved for color codes in all dimensions in [32]. This
procedure establishes a local unitary equivalence between a
color codes and the reunion of the homological codes on the
shrunk lattices corresponding to all the different types for X-
stabilizers except one. The local unitary acts separately on
groups of qubits defined by the X-stabilizer generators of the
type that is not used to produce one of the shrunk lattices.
The proof of the existence of the local unitary relies on the
analysis of the so called overlap groups of stabilizers restricted
to the support of the X-stabilizer generators aforementioned
and the corresponding groups of qubits in the shrunk lattices.
The global structure is still present for general pin codes,
but for the proof to hold we need to require that the linear
dependency between the generators within the overlap groups
in the pin code is such that the number of independent gener-
ators agrees with the number of independent generators in the
corresponding shrunk lattices as an additional assumption.

These shrunk lattices are also the basis for some color
code decoders [34]–[37] but these decoders rely on a lifting
procedure from the shrunk lattices to the color code lattice
which seems intrinsically geometric as it consists in finding a
surface filling inside a boundary. So it is at this point unclear
how to leverage this structure in order to decode general pin
codes.

C. Gauge pin codes

In this section we define gauge pin codes from a pin
code relation. Gauge pin codes can also be viewed as a
generalization of gauge color codes [19].

A gauge code, or subsystem code, is a code defined by a so
called gauge group instead of a stabilizer group [10], [38]. For
stabilizer codes, the code states are eponymously stabilized by
the stabilizer group which is an abelian subgroup of the group
of Pauli operators. For gauge codes, the gauge group is not
abelian and hence all gauge operators cannot share a common
+1-eigenspace. In this case the code states are stabilized by

the center of the gauge group. Besides gauge operators not in
the center of the gauge group commute with its center and
as such would qualify as logical operators in the case of a
stabilizer code but are not used to encode information in the
case of a gauge code.

Take a pin code relation F and two positive integers x and z
such that x + z < D. The associated pin code has its X-
stabilizer generators defined by all the x-pinned sets and its
Z-stabilizers generators defined by all the z-pinned sets. Since
the relation F is a pin code relation, by Prop. 3 any (D−x)-
pinned set has an even intersection with any x-pinned set.
So all the (D − x)-pinned sets correspond to some Z-logical
operators. On top of that, they generate all the Z-stabilizers.
Indeed using Prop. 2 and the fact that D−x > z one shows that
the z-pinned sets decompose into disjoint (D−x)-pinned sets.
As such (D−x)-pinned set define naturally Z-gauge operators
which can be measured individually and whose outcomes can
be recombined to reconstruct the value of the Z-stabilizers
defined by z-pinned sets. Symmetrically, the same happens for
(D − z)-pinned sets which have even overlap with z-pinned
sets and generate x-pinned sets and therefore can be viewed
as X-gauge operators.

In conclusion, given a pin code relation F and two natural
integers x and z such that x + z < D; one defines the
corresponding gauge pin code with X-gauge operators defined
by the (D − z)-pinned sets and Z-gauge operators by the
(D − x)-pinned sets. One can check that these operators do
not all commute since (D − x) + (D − z) > D. The center
of this gauge group, i.e. the stabilizer group, is defined by
the x-pinned sets as X-stabilizer generators and z-pinned sets
as Z-stabilizer generators. Note that it is not guaranteed that
the number of logical qubits in a (x, z)-gauge pin code is the
same as the number of logical qubits in the (x,D − x)-pin
code obtained from the same relation F .

The error correction procedure for a gauge code with only
fully X-type or fully Z-type gauge operators is conveniently
performed in two parts. In one part, one measures the X-gauge
operators, reconstructs the syndrome for the X-stabilizers and
uses it to correct Z-errors. In the other part, one measures
the Z-gauge operators, reconstructs the syndrome for the Z-
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stabilizers and uses it to correct X-errors.
The advantages of this procedure in the case of gauge pin

codes are two-fold. First, the weight of the gauge generators,
i.e. the number of qubits involved in each generator, is reduced
compared to the weight of the stabilizer generators making
their measurement easier and less error prone. Second, the
record of gauge operator measurements contains the infor-
mation of the stabilizer measurements with redundancy. To
understand this redundancy consider a x-pinned set and define
k = (D − z) − x. This is the number of additional levels
to pin in order to decompose the x-pinned set into (D − z)-
pinned sets. There are

(
D+1−x

k

)
different ways to choose these

additional levels to pin and therefore that many different ways
to reconstruct the x-pinned set. This redundancy permits a
more robust syndrome extraction procedure which can even
become in some cases single-shot, meaning that the syndrome
measurements do not have to be repeated to reliably decode
[39]. Meaning that even when the measurements are noisy one
can measure the gauge operators only once and process the
obtained information to reduce the noise enough and proceed
with the computation.

D. Transversality

We examine here pin codes in regards of Prop. 4 and
Prop. 5. Nicely, x-pinned sets always have some multi-
orthogonality property.

Proposition 8 (Multi-orthogonality of pinned sets). Let F be
a (D + 1)-ary pin code relation. For any x ∈ {1, . . . , D},
the x-pinned sets seen as binary vectors in FF2 generate a
bD/xc-orthogonal space.

Proof. Given x ∈ {1, . . . , D}, by Prop. 1, the intersection of
bD/xc (or less) x-pinned sets is either empty or a pinned sets
with at most D pins, hence it has even weight for a pin code
relation.

Interestingly it is also not too difficult to find pin code
relations for which the 1-pin sets are D-even. For example,
using a chain complex whose boundary map have even row
and column weights and is regular enough will typically
suffice.

One could also hope for the second part of proposition 5 to
always holds. Unfortunately it holds only partially in general.

Proposition 9 (X-logical intersection with X-stabilizers). Let
F be a (D + 1)-ary pin code relation, and consider the
associated (x, z)-pin code for x ∈ {1, . . . , D} and z = D−x.
Then for any one X-logical operator, L, and k X-stabilizer
generators, Gj , with k ≤ bD/xc − 1,∣∣∣L ∧G1 ∧ · · · ∧Gk

∣∣∣ = 0 (mod 2).

Proof. Indeed, using Prop. 1, the overlap between bD/xc− 1
(or less) different x-pinned sets is either empty or a pinned
set with at most D− x = z pins. Hence by Prop. 2, it can be
decomposed into z-pinned sets, i.e. Z-stabilizers which have
even overlap with X-logicals by definition.

Overlaps involving more than one X-logical operator do not
have such guarantees in general.

Focusing on the case ` = 3, given the two propositions
above the only problematic conditions are the ones of type∣∣∣Lj ∧Lk ∧G`

∣∣∣ = 0 (mod 2). (14)

In order for these terms to hold, one has to have that the
intersection of two X-logical operators is always a Z-logical
operator. This is the case for example for euclidean color
codes.

E. Boundaries and free pins

The geometrical notion of colored boundaries existing for
color codes can also be generalized to pin codes. The way to
do this is to introduce a specific type of pins which will be
called free pins.

Consider the chain complex approach to building pin code
relations presented in Sec. II-D3. In this construction, it is
sometimes necessary to add a rank-0 pin b0 (in the level C0)
or a rank-D pin bD (in the level CD) in order to ensure that
the relation F is a pin code relation. The new pin b0 is linked
to all the rank-1 pins which previously where linked to an odd
number of rank-0 pins. So even if the initial boundary relation
is sparse, the number of connections to b0 may be large. As
such the 1-pinned set pinned by this new pin b0 potentially
contains a large number of flags. To keep the size of the 1-
pinned sets under control it is then preferable to not allow to
pin b0 alone. That is why we then call b0 a free pin. Any
of the D + 1 levels can contain free pins, the chain complex
construction potentially put one in C0 and one in CD. The
rule for a larger collection of pins is that if it contains at least
one non-free pin then it can define a valid pinned set, but if
it is composed of only free pins then it is disregarded. Finally
consider when a flag is only composed of free pins, in that case
this flag will not enter any valid pinned sets. Hence such flags
must also be discarded. This is summarized in the following
definition.

Definition 7 (Pin code with free pins). Let F be a pin code
relation defined on D+ 1 levels of pins. Let some of the pins
be labeled as free pins. Let x and z be two natural integers
such that x+z ≤ D. The associated (x, z)-pin code is defined
as follows: The elements of F containing at least one non-free
pin are associated with qubits. All the x-pinned sets defined
by a collection of pins containing at least one non-free pin are
associated with X-stabilizer generators. All the z-pinned sets
defined by a collection of pins containing at least one non-free
pin are associated with Z-stabilizer generators.

As examples we give a representation of Steane’s [[7, 1, 3]]
code and the [[4, 2, 2]] code as a (1, 1)-pin codes with free
pins in Figure 6.

One idea to introduce free pins in every level could be
to consider boundary map matrices which are almost sparse
except for a small number of row or columns which could be
dense. The basis element corresponding to these would then
be labeled as free pins in the construction of the pin code
relation.

Note that in the presence of free pins, the proof of Prop. 6
can only be reproduced when at least one level selected by
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Fig. 6. (Left) Representation of Steane’s [[7, 1, 3]] code as a (1, 1)-pin code
from a chain complex with free pins. There are three levels represented by the
colors red green and blue. The free pins are represented between parenthesis.
There are 8 flags but one is composed only of free pins hence only 7 qubits.
There are three non-free pins defining three 1-pinned sets for both X- and Z-
stabilizers. (Right) Representation of the [[4, 2, 2]] code as a (1, 1)-pin code
with free pins. There are four flags, and a single non-free pin defining the X-
and Z-stabilizer both containing the four flags.
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Fig. 7. (a) [[8,2,2]] color code on the projective plane based on octahedral
symmetry. The octahedron is topologically a sphere which can be turned into
a projective plane by identifying opposite sides. (b) [[60,2,6]] color code on
the projective plane based dodecahedral symmetry. (c) 3-colored hyperbolic
tiling with edges and vertices forming a 3-valent graph.

the chosen type t does not contain any free pin. So as long as
at least one level does not contain any free pin, it still holds
that all logical operators have even weight. When all levels
contain at least one free pin then the code may contain odd
weight logical operators.

The notion of free pins carries over straightforwardly to
gauge pin codes.

V. EXAMPLES AND APPLICATIONS

A. Coxeter groups, hyperbolic color codes

In Section II-D1 we discussed the construction of pin codes
from tilings and Coxeter groups. Well-known examples of such
code families are color codes on euclidean tilings such as the
hexagonal tiling in 2D and the bitruncated cubic honeycomb
in 3D. Using the Wythoff construction we can construct tilings
which fulfill right pin code condition and therefore have the
correct colorability for defining a color code.

Besides the known euclidean examples we can consider
tilings of more exotic spaces. For the projective plane (cf. [7])
there exist two tilings based on the Wythoff construction: The
first is based on the symmetry group of an octahedron. It
is an [[8,2,2]]-code where the check generators correspond
to one octagon, two red squares and two green squares, see
Figure 7a. Note that this code does not quite fit the pin code
definition because it contains distinct qubits which would be
described by the same flag, for example (d, c, a) on edge 1.
This degeneracy explains why it escapes Prop. 7. The second
is based on the icosahedral symmetry group, which gives a

a [[60,2,6]]-code with checks given by 6 decagons (blue),
10 hexagons (green) and 15 squares (red), see Figure 7b.

Color codes based on two-dimensional hyperbolic tilings
were first considered in [40] were 3-colorability and 3-
valence was postulated (see Figure 7c for an example). The
Wythoff construction of Section II-D1 allows us to obtain
color codes from arbitrary regular tilings of closed hyperbolic
surfaces. To define a family of closed surfaces one needs
to compactify the infinite lattice as explained in [41]. There
are infinitely many regular tilings of 2D hyperbolic space.
The lowest weight achievable with our construction is 4.8.10,
meaning that checks are squares, octagons and dodecagons.
The smallest code in this family is [[120,10,6]] based on a non-
orientable hyperbolic surface (cf. Table 3.1 in [42]). Another
small example is a [[160,20,8]] code with stabilizer checks of
weight 4 and 10 based on a 4.10.10 tiling of an orientable
hyperbolic surface of genus 10.

Using the construction outlined in Section II-D1 we can
consider any D-dimensional hyperbolic reflection group and
obtain a tiling which is D + 1-colorable and which has a
D+ 1-valent graph. In particular, we can consider hyperbolic
tilings in 3D which are 4-colorable. There exist four regular
hyperbolic tilings in 3D of which two are self-dual tilings
and two related by duality. The self-dual ones are a tiling
by dodecahedra, denoted {5, 3, 5}, and one by icosahedra,
denoted {3, 5, 3}. The other are a tiling by cubes {4, 3, 5}
and its dual {5, 3, 4}. All of these give rise to codes with
maximum stabilizer weight 120. Here we will focus on the
{5, 3, 5}-tiling, which is the unique self-dual tiling of space
by dodecahedra where five dodecahedra are placed around an
edge. Performing the Wythoff construction on a family of
closed manifolds, all equipped with a {5, 3, 5}-tiling yields
a code family where checks are of weight 20 and 120.
The weight of the stabilizer is given by the order of the
subgroup of the full reflection group which is generated by
all except for one of the generators. The smallest example is
a [[7200, 5526, 4]] code.

B. Pin codes from chain complexes

In Sec. II-D3 we showed how from any F2 chain complex
one can construct a pin code relation. In this section we
explore some specific examples of chain complexes and the
corresponding pin codes.

One way to obtain arbitrary length chain complexes is to use
repeatedly the hypergraph product with a classical code. The
hypergraph product was introduced in [15] as a way to turn any
two classical codes into a quantum code. This product can be
viewed as the tensor product of chain complexes, which takes
two length-2 chain complexes to a length-3 chain complex.
More generally the product of a length-k1 and length-k2 chain
complexes yields a length-(k1 + k2 − 1) chain complex. This
generalization and its characteristics has been studied in the
context of homological codes [16], [43], [44]. We consider
here the approach of [44] but look at the resulting chain
complexes from the point of view of pin codes.

The idea goes as follows: consider A, a F2 chain complex
of length k, characterized by F2-vector spaces (Aj)0≤j≤k−1
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and (k−1) boundary maps ∂Aj : Aj → Aj−1, obeying Eq. (3).
We now take the product with a chain complex of length 2.
Note that any two vector spaces, B1 and B0 and any linear
map between them ∂B : B1 → B0 defines a length-2 chain
complex. The product, C = A ⊗ B, is defined by (k + 1)
vector spaces Cj for 0 ≤ j ≤ k,

Cj = (B1 ⊗Aj−1)⊕ (B0 ⊗Aj),

with the convention that A−1 and Ak are both the zero vector
spaces. And the k boundary maps, ∂Cj : Cj → Cj−1, are defined
as

∀u = v ⊕ w ∈ (B1 ⊗Aj−1)⊕ (B0 ⊗Aj)
∂Cj (u) = (1B1

⊗ ∂Aj−1 + ∂B ⊗ 1Aj−1
)(v) + (1B0

⊗ ∂Aj )(w).

One straightforwardly checks that the ∂Cj are valid boundary
maps, i.e. obeying Eq. (3).

Repeatedly taking the product with a length-2 chain com-
plex therefore increase the length of the resulting chain com-
plex each time by one. Moreover any binary matrix defines a
valid F2 chain complex of length 2 so this approach allows to
explore numerically many pin codes.
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Fig. 8. Plot of the [[n, k, d]] parameters of pin codes from chain complexes
described in this section. One application of the hypergraph product on 3×4
binary matrices yields the D = 2 pin codes represented by ‘×’ and two
applications the D = 3 pin codes represented by ‘+’. The D = 6 pin codes
described in Table. II are represented by stars. The colors indicate the distance
of the codes. The dashed and dotted lines represent the rates k/n = 1/2 and
k/n = 1/8, respectively.

We have looked at small binary matrices, up to 3× 4, and
their self product to form pin code relations with D = 2
and D = 3. We plot in Fig. 8 the code parameters obtained
[[n, k, d]]. Strinkingly these codes seem to show a general trend
of high encoding rate k/n for a small distance. Indeed most of
them are around 1/2 rate but just distance 4 which is the lower
bound guaranteed by Prop. 7. A few of them reach distance
6 or 8 but for significantly smaller rates. The codes yielding
no logical qubits are not displayed in this plot. Note that this
procedure is far from generating all chain complex of a given
length.

We have also looked at a few pin code relations for D = 6
using small even size levels and the complete relation for F .
Three notable examples are presented in Table. II. When
writing 2×6 × 4 we mean that 6 of the levels contain each 2
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Fig. 9. Plot of the maximum X-stabilizer weight of the pin codes from chain
complexes described in this section.

pins and the last one contains 4. Since we use the complete
relation, the number of flags and the size of the pinned sets
are easily computed as a product of the size of some levels.
The number of logical qubits is computed numerically and the
distance is upper bounded and we believe is tight.

TABLE II
PARAMETERS OF SOME D = 6 PIN CODES USING THE COMPLETE
RELATION DESCRIBED BY THE SIZE OF THE D + 1 = 7 LEVELS.

(x, z) 2×6 × 4 2×5 × 4×2 2×4 × 4×3

(2, 4) [[256, 30, 8]] [[512, 120, 8]] [[1024, 358, 8]]

(3, 3) [[256, 40, 16]] [[512, 160, 16]] [[1024, 472, 16]]

We also represent the maximum weight of the X-stabilizers
for these codes in Fig. 9. When checking for transversal phase
gates for ` = 3, most of the codes examined above do not
satisfy (14).

C. Puncturing triply-even spaces

If pin codes in general are not guaranteed to fulfill all the
requirements of Prop. 4 or Prop. 5, their stabilizers always
form multi-orthogonal spaces, see Prop. 8. This is directly
useful as multi-orthogonal spaces together with puncturing
techniques can be used to construct codes fulfilling Prop. 5 (or
Prop. 4 if the space is multi-even), as explained for example
in [26]. We focus here on triply-even spaces and tri-orthogonal
spaces. The idea goes as follows: take a binary matrix, G,
whose rows generate a tri-orthogonal space, using Gaussian
elimination it is always possible to put the matrix in the
following form:

G =

(← k → ← n→
k l 1 G1

r l 0 G0

)
. (15)

To obtain this form one just performs row operations as well as
column permutations and different column permutations will
yield different G0 and G1. Then choosing the rows of G0

as X-stabilizer generators and the rows of G1 as X-logical
operators (this fully specifies the Z-stabilizers and Z-logicals)
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Fig. 10. Some possible variations on Reed-Muller codes seen as pin codes on
a chain complexes, by modifying the ends of the chain complex, the left most
chain complex is used to define Reed-Muller codes. Example of dimension
6 are shown here, making variations on RM(2, 7). The number of flags
is written above each chain complex and an identification number is given
below.

yields a code fulfilling Prop. 5. Moreover the logical gate
obtained is the transversal T † so directly usable in a T -gate
distillation protocol. It distills n magic states into k ones of
better quality which depends on the distance of the code that
has to be computed independently.

In [26], the authors use Reed-Muller codes, RM(r,m), to
obtain initial tri-orthogonal spaces (even triply-even). Viewed
as a pin code, RM(r,m) is a very simple chain complex,
represented on the left of figure 10, see also appendix A.
This chain complex can be modified in several ways to obtain
different pin codes. We tried different modifications in the case
D = 6, they are represented in figure 10. For all of them the
2-pinned sets generate a triply-even space.

We tried to randomly puncture the pin codes obtained from
these chain complexes; similarly to [26] but without deploying
the more advanced techniques. We were able to find a few
interesting codes this way, see Table III, which can be used to
distill T magic states. The obtained parameters γ, see Eq. (13),
are similar but do not improve on the small examples found
in [26].

TABLE III
SOME TRIORTHOGONAL CODES FOUND BY RANDOMLY PUNCTURING THE

PIN CODES REPRESENTED IN FIGURE 10.

code # initial n punctured code: [[n, k, d]] γ =
ln(n/k)

ln d

0 128 [[116, 12, 4]] 1.64

1 192 [[175, 17, 4]] 1.68

2 256 [[236, 20, 4]] 1.78

3 288 [[261, 27, 4]] 1.64

4 512 [[466, 46, 4]] 1.67

D. Logical circuits of CCZs

It is also possible to use the property of multi-orthogonality
of pinned sets on a given pin code relation in a slightly

TABLE IV
ALTERNATIVE CONSTRUCTION OF CSS CODES WITH TRANSVERSAL T

IMPLEMENTING SOME CIRCUIT OF CCZ GATES ON THE LOGICAL LEVEL.

D = 5, x = 2 D = 8, x = 3

[[64, 15, 4]] [[512, 84, 8]]

[[96, 23, 4]] [[768, 126, 8]]

[[128, 31, 4]] [[1024, 168, 8]]

[[144, 35, 4]] [[1152, 188, 8]]

[[256, 63, 4]] [[2048, 332, 8]]

different way. The construction proposed for Reed-Muller
codes in [45] can be directly adapted to general pin code
relations. This construction is the following: given a pin code
relation on D + 1 sets and a positive integer x, choose the
(x− 1)-pinned sets as X-stabilizer generators and impose the
x-pinned sets to be the X-logical operators. This is enough
to completely characterize a CSS code. Then by choosing
carefully the parameters D and x, one can obtain a code
guaranteed to satisfy Prop. 5 where the logical operation
realized belongs to some level ` of the Clifford hierarchy.
Roughly x has to be small enough so that the conditions
in Prop. 5 hold but large enough for the logical operation
described by the weighted polynomial in Eq. (9) to be in the
`th level of the Clifford hierarchy. When taken together these
constraints become

x =
D + 1

`
. (16)

We can for example adapt the pin code relations presented
in Fig. 10 to have the correct dimension D by inserting or
removing levels of size 2 in the middle of the chain complexes
and look at what code parameters they give. These parameters
are compiled in Table. IV, for D = 5 we remove the middle
level and for D = 8 we add two levels of size 2 compared to
Fig. 10. All these codes support the transversal T and up to a
Clifford correction the logical operation implemented is some
circuit of CCZs characterized by which triple of X-logical
operators have an odd overlap.

VI. DISCUSSION

Quantum pin codes form a large family of CSS codes which
we have just begun to explore. These codes can be viewed as
a vast generalization of quantum color codes and the notions
of boundaries, colored logical operators and shrunk lattices
all generalize to pin codes. Pin codes also have a gauge code
version with potentially similar advantage as the gauge color
codes. The main property of pin codes is that their X- and Z-
stabilizers form multi-orthogonal spaces. We have presented
two concrete ways of constructing pin codes and numerically
explored some examples. Several aspects of pin codes merit
further studying.

First is finding restricted families with good parameters and
LDPC property. Exploring other finite groups with even order
generators, other families of sparse chain complexes or finding
other constructions of pin code relations altogether would help
figuring out the achievable parameters for pin codes.

Second one concerns logical operators. Understanding if
some conditions on the pin code relation F can make the
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logical operators fulfill the second condition of Prop. 4 or
Prop. 5 would help in the design of codes with transversal
gates. Also, logical operators and boundaries of 2D color codes
have a richer structure than the colored logicals and boundaries
that we have explored, it would be interesting to generalize to
pin codes with D = 2 all the ones presented in [46], as well as
for larger D. Moreover, the structure of colored logicals plays
a key role in decoding color codes [34]–[37]. Understanding
if it can help in finding efficient decoders for more general
pin codes is a natural question.

Finally more extensively exploring tri-orthogonal spaces
obtained from pin code relations and puncturing them to obtain
good T distillation protocols as well as using them as the
basis for T -to-CCZ or other protocols seems worth trying as
distilling magic state will constitute a sizable fraction of any
fault-tolerant quantum computation.

APPENDIX A
REED-MULLER CODE-WORDS AS PINNED SETS

One can define the Reed-Muller code, RM(r,m) ⊂ Fm2 ,
as follows. Define

k =

r∑
j=0

(
m

j

)
,

and given coefficients, c ∈ Fk2 , define the multivariate polyno-
mial pc ∈ F2 [X1, . . . , Xm]

pc =
∑

S⊂{1,...,m}
|S|≤r

cS
∏
j∈S

Xj .

Then the code RM(r,m) is defined as

RM(r,m) =
{

(pc(x))x∈Fm2
: c ∈ Fk2

}
.

We now show that RM(r,m) is generated by the pinned
sets with r pins of a certain pin code relation F . Consider m
levels, each containing two pins,

∀j ∈ {0, . . . ,m− 1}, Cj = {0, 1},

and the complete m-ary relation, F = C0 × · · · × Cm−1, see
also the left of figure 10. Consider now a r-pinned set defined,
with type t = {j1, . . . , jr}, and pins b = (bj1 , . . . , bjr ). One
can check that a flag, f ∈ F = Fm2 , belongs to Pt(b) if and
only if the following degree r polynomial, pt,b, evaluates to
1,

pt,b =
∏
j∈t
bj=1

Xj

∏
k∈t
bk=0

(1−Xk) .

So the pinned sets with r pins generate the following code,

P(r,m) =〈
(pt,b(x))x∈Fm2 : t ⊂ {0, . . . ,m− 1}, |t| = r, b ∈ Fm2

〉
.

Then we just have to check that these generate all polynomial
of degree at most r. By definition they generate polynomials
constituted of a product of r elements being either Xj or (1−
Xj). Let’s suppose, for some ` ≤ r, they can generate all such

product with only ` terms. Then we can contruct all product
with only `− 1 terms, q, as follows

q = q · (1−Xj) + q ·Xj ,

where Xj is a variable that does not appear in q. It follows by
induction that they generate all degree at most r polynomials
and so

RM(r,m) = P(r,m).

Another way to see this is to use the decomposition property
of pinned sets (proposition 2) and generate the lower degree
monomial directly with pinned sets with less pins and decom-
pose these pinned sets into disjoint union of r-pinned sets.

APPENDIX B
QUASI-TRANSVERSALITY

In this appendix we detail the three weighted polynomial in
Eqs. (9), (10) and (11) which determine the transversal action
of R` on code states. Using identity (5) and denoting Lm as
the mth row of matrix L and Gn as the nth row of matrix G
we can write

F`(x) = |xL|

=
∑̀
s=1

(−2)s−1
∑

1≤mi≤k

∣∣∣∣∣
s∧
i=1

Lmi

∣∣∣∣∣
s∏
i=1

xmi , (17)

F ′`(y) = |yG|

=
∑̀
t=1

(−2)t−1
∑

1≤nj≤r

∣∣∣∣∣∣
t∧

j=1

Gnj

∣∣∣∣∣∣
t∏

j=1

ynj , (18)

F ′′` (x,y) = −2 |xL ∧ yG| =∑̀
s+t=2
s≥1, t≥1

(−2)s+t−1
∑

1≤mi≤k
1≤nj≤r

∣∣∣∣∣∣
s∧
i=1

Lmi
t∧

j=1

Gnj

∣∣∣∣∣∣
s∏
i=1

xmi

t∏
j=1

ynj .

(19)

One can readily see that these are all correctly weighted
polynomial, i.e. with a prefactor of 2s−1 in front of monomials
of degree s, and their coefficients are given by the size of the
overlaps between rows of the matrices L or G.

We can check that Eq. (12) follows from Proposition 5.
Indeed, assuming Prop. 5 holds, then (i) enforces that all
coefficients

∣∣∣∧tj=1 G
nj
∣∣∣ are divisible by 2 and (ii) that all

coefficients
∣∣∣∧si=1 L

mi
∧t
j=1 G

nj
∣∣∣ also are divisible by 2.

Hence we can pull out a factor 2 in front of everything while
keeping the correct prefactor in front of each monomial.
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