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Quantum Pin Codes
Christophe Vuillot and Nikolas P. Breuckmann

Abstract—We introduce quantum pin codes: a class of quan-
tum CSS codes. Quantum pin codes are a generalization of
quantum color codes and Reed-Muller codes and share a lot of
their structure and properties. Pin codes have gauge operators,
an unfolding procedure and their stabilizers form so-called `-
orthogonal spaces meaning that the joint overlap between any
` stabilizer elements is always even. This last feature makes
them interesting for devising magic-state distillation protocols,
for instance by using puncturing techniques. We study examples
of these codes and their properties.

I. INTRODUCTION

THE REALIZATION of a fault-tolerant universal quantum
computer is a tremendous challenge. At each level of

the architecture, from the hardware implementation up to the
quantum software, there are difficult problems that need to be
overcome. Hovering in the middle of the stack, quantum error
correcting codes influence both hardware design and software
compilation. They play a major role not only in mitigating
noise and faulty operations but also in devising protocols to
distill the necessary resources that grant universality to an
error corrected quantum computer [1]. The study and design
of quantum error correcting codes is therefore one of the
major tasks to be undertaken on the way to universal quantum
computation.

A well-studied class of quantum error correcting codes are
Calderbank-Shor-Steane codes (CSS codes) [2], [3], which are
stabilizer quantum codes [4], [5]. The advantage of CSS codes
over general stabilizer codes is their close connection to linear
codes which have been studied in classical coding theory. A
CSS code can be constructed by combining two binary linear
codes. Roughly speaking, one code performs parity checks in
the Pauli X-basis and the other performs parity checks in the
Pauli Z-basis. Not any two binary linear codes can be used:
it is necessary that any two pairs of code words from each
code space have to have even overlap. Several families of CSS
codes have been devised based on geometrical, homological
or algebraic constructions [6]–[17], however, it is still open
which parameters can be achieved.

Besides being able to protect quantum information, quantum
error correcting codes must also allow for some mechanism to
process the encoded information without lifting the protection.
It is always possible to find some operations realizing a desired
action on the encoded information but these operations may
spread errors in the system. Therefore we shall only consider
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operations to be fault-tolerant if they do not spread errors.
For instance, if the operation acts separately on each qubit
of a code it cannot spread single qubit errors to multi-qubit
errors. This is called a transversal gate, but not any code
admits such gates. More generally, for many codes in the CSS
code family it is possible to fault-tolerantly implement Clifford
operations, which are all unitary operations preserving Pauli
operators under conjugation. Clifford operations by themselves
do not form a universal gate set. Several techniques to obtain
a universal gate set, by supplementing the non-Clifford T gate
to Cliffords for example, have been devised [18], [19], among
which magic state distillation is currently the most promising
candidate.

In this work we introduce a new class of CSS codes,
which we call quantum pin codes. They are inspired from D-
dimensional quantum color codes [20] which are known for
their transversal gates. Quantum pin codes form a large family
while at the same time have structured stabilizer generators.
Namely, they form `-orthogonal spaces, meaning that the
common overlap between any ` stabilizer elements is even.
This structure is necessary for codes to admit transversal
phase gates and it can be leveraged to obtain codes that
can be used within magic state distillation protocols. This
structure comes from an underlying multi-ary relation with
a single simple property and we show different ways of
constructing such relations. While the whole family is too large
to feature interesting transversal gates for all its members it
could lead to interesting subfamilies. Besides one can obtain
magic state distillation protocols from any relation defining a
quantum pin code by using puncturing techniques. Moreover,
using a slightly different code definition, one can obtain a
quantum code with transversal T gates realizing a logical
circuit of CCZ gates. Moreover the construction of pin codes
differs substantially from previous approaches making it an
interesting space to explore further.

In Section II, after introducing some notations and termi-
nology, we define quantum pin codes, explain their relation
to quantum color codes and give some concrete approaches
to construct them. In Section III, we discuss the conditions
for transversal implementation of phase gates on a CSS code
and magic state distillation. In Section IV, we investigate
the properties of pin codes. Finally, in Section V, we study
concrete examples of pin codes obtained from Coxeter groups
and chain complexes. We also discuss applications for magic
state distillation.

II. PIN CODES

A. Quantum stabilizer codes, CSS codes and subsystem codes

A quantum code can be defined by considering an Abelian
subgroup S of the Pauli group on n qubits such that −I 6∈ S.
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That is to say a commuting group generated by tensor product
of the single-qubit Pauli operators and identity:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, (1)

Z =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
. (2)

The quantum code associated with S is defined as the common
+1-eigenspace of all elements of S.

C = {|ψ〉 | ∀s ∈ S, s |ψ〉 = |ψ〉} . (3)

Quantum codes defined in this way are called stabilizer codes,
the generator elements of S are called stabilizer generators and
generic elements of S simply stabilizers. A generating set of
S defines stabilizer checks which can be measured in order to
infer information about the errors. The logical operators of a
stabilizer code are the Pauli operators which commute with all
stabilizers. That is to say they belong to the centralizer of the
stabilizer group. The fact that they commute with stabilizers
makes them preserve the code space. A logical operator which
also belongs to the stabilizer group is called trivial as it not
only preserve the code space but also each code state. Logical
operators outside of the stabilizer group are non-trivial as they
act non-trivially on the code states while preserving the codes
space. For more background on stabilizer codes see [4]. A
stabilizer code is called a Calderbank-Shor Steane (CSS) code
[2], [3] if there exists a set of stabilizer checks which only act
non-trivially as either Pauli-X or Pauli-Z on each qubit in their
support. In that case the code is most conveniently described
by two classical binary linear codes, CX ⊂ Fn2 and CZ ⊂ Fn2 ,
generating the X-type and Z-type stabilizers respectively. To
form a valid stabilizer code the X-type stabilizers and Z-type
stabilizer must commute which constraints CX and CZ to be
included in each others dual space: CX ⊂ C⊥Z , note that this
condition is symmetric. The logical operators of a CSS code
also split into X- and Z-type operators, they are given by C⊥Z
and C⊥X respectively. Code states of CSS codes are simply
expressed as equal superposition of computational basis states
over cosets:

|x〉 =
1√

2|CX |

∑
y∈CX

|y ⊕ x〉 , (4)

where x ∈ C⊥Z and x designate the coset of x in C⊥Z /CX .
Subsystem codes are a generalization of stabilizer codes.

A subsystem code is defined by any (non-Abelian) subgroup
of the Pauli group G which is called the gauge group. In
order to define the code we define the stabilizer subgroup S
of G to be the center of G, i.e. the largest Abelian subgroup
of G. The code is then defined as the stabilizer code of S.
The reason to define a code in this way is that a generating
set of G (called gauge checks) can be of lower weight than any
generating elements of S. This allows to infer the eigenvalues
of the stabilizer checks by measuring the lower-weight gauge
checks.

B. Terminology and formalism
Consider D+1 finite, disjoint sets, (L0, . . . , LD) which we

call levels. The elements in each of the levels are called pins.

If a pin p is contained in a set Lj then j is called the rank
of p. Since all the Lj are disjoint each pin has a unique rank.

Consider a (D + 1)-ary relation on the D + 1 levels
L0, . . . , LD, that is to say a subset of their Cartesian product
F ⊂ L0×· · ·×LD. The tuples in the relation F will be called
flags.

A subset of the ranks, T ⊂ {0, . . . , D}, is called a type.
We will consider tuples of pins coming from a subset of the
levels selected by a type T and call them collection of pins
of type T . A collection of pins of type T = {j1, . . . , jk}, is
therefore an element s ∈ Lj1 × · · · × Ljk . Note that we can
interchangeably view a collection of pins as a tuple or a set
as long as no two pins come from the same level in the set.

We now define specific subsets of flags, called pinned sets,
using projections.

Definition 1 (Projection of type T ). Given a set of flags F
and a type T = {j1, . . . , jk}, the projection, ΠT , is defined as
the natural Cartesian product projection acting on the flags

ΠT : F → Lj1 × · · · × Ljk
(p0, . . . , pD) 7→ (pj1 , . . . , pjk).

Note that the projection of empty type, Π∅, is also well
defined: for any f ∈ F we have Π∅(f) = ().

Definition 2 (Pinned set). Let F be a set of flags, s be a
collection of pins of type T and ΠT be the corresponding
projection as defined above. We define the pinned set of type T
and collection of pins s, PT (s), as the preimage of s under
the projection ΠT ,

PT (s) = Π−1
T (s) ⊂ F.

In words: a pinned set is the set of flags whose projection of
a given type T yields a given collection of pins, s. A definition
of a pinned set which is equivalent to the one given above is

PT (pj1 , . . . , pjk) =

F ∩ (L0 · · · × { pj1 } × · · · × { pjk } × · · ·LD) . (5)

Proving that these definitions are equivalent amounts to prov-
ing

Π−1
T (s) = F ∩ (L0 · · · × { pj1 } × · · · × { pjk } × · · ·LD) .

(6)
To prove the inclusion of the left-hand side in the right-
hand side we observe that an element in the set from
the left hand-side is in F by definition of ΠT and
in (L0 · · · × { pj1 } × · · · × { pjk } × · · ·LD) since s =
(pj1 , . . . , pjk). To prove the inclusion of the right-hand
side in the left-hand side one takes any element f ∈
F∩(L0 · · · × { pj1 } × · · · × { pjk } × · · ·LD) and notice that
ΠT (f) = s.

The pinned set with respect to the empty type is none
other than the full set of flags, F . For convenience, we will
refer to a pinned set defined by a collection with k pins as a
k-pinned set.

If one wants to form a mental image one can imagine a
pin-board with pins of different colors for each levels on it.
Then the flags can be represented by cords each attached to
one pin of each level, see Fig. 1 as an example.
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Fig. 1. Illustration of three levels (red, green and blue) each containing two
pins and a relation containing three flags (f0, f1 and f2) symbolized by cords
attached to the pins. The pinned set Pgreen(b) is composed of the flags f1
and f2. The pinned set P(red,blue)(1, α) only contains the flag f0.

The structure of pinned sets layed out above is such that
they intersect and decompose nicely. This is captured by the
following two propositions.

Proposition 1 (Intersection of pinned sets). Given F , a set of
flags, let s1 and s2 be two collections of pins of types T1 and
T2 respectively. Then the intersection of the two pinned sets
PT1

(s1) and PT2
(s2) is either empty or a pinned set of type

T1 ∪ T2 characterized by the collection of pins s1 ∪ s2,

PT1
(s1) ∩ PT2

(s2) ={
PT1∪T2

(s1 ∪ s2) if |s1 ∪ s2| = |T1 ∪ T2|
∅ otherwise.

Proof: We write s1 = (pi1 , . . . , pik1 ) and s2 =
(qj1 , . . . , qjk2 ). Consider the case where T1 ∩ T2 = ∅. Then it
is always the case that |s1 ∪ s2| = |T1 ∪ T2| since the levels
are disjoint. Using the alternative characterization of pinned
sets given in (5) the conclusion then straightforwardly follows.
Consider the case where T1∩T2 6= ∅. Either there exist a rank
j ∈ T1 ∩ T2 such that pj 6= qj then given f1 ∈ PT1

(s1) and
f2 ∈ PT2(s2) one has Πj(f1) = pj 6= qj = Πj(f2) hence
f1 6= f2 and so PT1(s1) ∩ PT2(s2) = ∅. In this case it also
holds that |s1 ∪ s2| > |T1 ∪T2| since for every shared rank in
j ∈ T1∩T2 for which pj 6= qj the difference |s1∪s2|−|T1∪T2|
is increased by one. In the other case for all j ∈ T1 ∩ T2 we
have pj = qj . Hence it holds that |s1 ∪ s2| = |T1 ∪ T2| and
PT1(s1) ∩ PT2(s2) = PT1∪T2(s1 ∪ s2) using (5) again.

Proposition 2 (Pinned set decomposition). Given F , a set of
flags, let s be a type T collection of pins and let T ′ be a type
containing T , i.e. T ′ ⊃ T . The pinned set PT (s) is partitioned
into some number, say m, of pinned sets, each characterized
by a type T ′ collections of pins containing s, i.e. s′j ⊃ s,

PT (s) =

m⊔
j=1

PT ′(s
′
j).

Proof: Let s be a type T collection of pins and let T ′ be a
type such that T ′ ⊃ T . Define the following set of collections
of pins

S = ΠT ′ (PT (s)) , (7)

then it is the case that

PT (s) =
⊔
s′∈S

PT ′(s
′). (8)

Indeed, since T ′ ⊃ T and ∀s′ ∈ S, s′ ⊃ s we have that
∀s′ ∈ S, PT ′(s′) ⊂ PT (s) showing the right to left inclusion.
The left to right inclusion follows from the definition of S.

Finally the fact that the union is disjoint follows from Prop. 1.

C. Definition of a (x, z)-pin code

Equipped with the notions layed out in the previous section,
we now construct quantum codes. They are defined by a choice
of flags F and two natural integers x and z which fulfill the
condition x + z ≤ D. The flags are identified with qubits,
so that n = |F |. The X-stabilizers generators are defined by
all the x-pinned sets and the Z-stabilizers generators by the
z-pinned sets in the following way. For each x-pinned set we
define the Pauli operator acting as the Pauli-X operator on
the qubits corresponding to the flags in the pinned set and
as the identity on the rest; we then add it to the generating
set of the X-stabilizers. We do similarly for the z-pinned sets
to form the generating set of the Z-stabilizers. In order to
ensure the correct commutation relations between the X- and
Z-stabilizers it is sufficient to enforce the following condition
on the relation F .

Definition 3 (Pin code relation). A (D+1)-ary relation, F , is
a pin code relation if all D-pinned sets have even cardinality.

This property is sufficient for the overlap between two
pinned sets to be even every time they are pinned by a small
enough number of pins. This is summarized in the following
proposition.

Proposition 3 (Even overlap). Let F be a (D + 1)-ary pin
code relation as per Definition 3. Let x and z be two natural
integers such that,

x+ z ≤ D.

Then, the intersection between any x-pinned set and any z-
pinned set has even cardinality.

Proof: By Proposition 1, the intersection of a x-pinned
set and a z-pinned set is either empty or a pinned set with at
most x+z ≤ D pins. In turn by Proposition 2, the intersection
can be partitionned into D-pinned sets which all have even
cardinality since the relation F is a pin code relation.

Using a pin code relation we can therefore define a CSS
code as follows.

Definition 4 ((x, z)-pin code). Given a pin code relation, F ,
on (D + 1) sets and two natural integers (x, z) ∈ N2, such
that x+ z ≤ D, we define the corresponding (x, z)-pin code
by associating the elements of F with qubits, all the x-pinned
sets with X-stabilizer generators and all the z-pinned sets with
Z-stabilizer generators. By Proposition 3 the defined code is
a valid CSS code.

A first remark is that the choice of x = 0 (or z = 0) is not
particularly interesting since in this case there is a single X-
stabilizer (or Z-stabilizer) acting on all the qubits. A second
remark is that in the strict case, where x+z < D, the code will
contain many low weight logical operators which are naturally
identified as gauge operators. This is explained in details in
Sec. IV-C.

Table I summaries the objects defined and their role to
define a quantum code. The main task is to construct a pin code
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relation which permits to define the rest. Before explaining
how to construct pin code relations we show that Reed-Muller
codes can be generated by pinned-sets of a specific relation,
and that quantum color codes are a subclass of pin codes.

TABLE I
SUMMARY OF THE OBJECTS DEFINING QUANTUM PIN CODES.

Objects Quantum code

Level: Lj −
Pin: p ∈ Lj −
Type: T ⊂ {0, . . . , D} −
Collection: s ∈ Lj1 × · · · × Ljk −
Relation: F ⊂ L0 × · · · × LD All qubits
Flag: f ∈ F Qubit
x-pinned set: PT (s) ⊂ F (|T | = x) X-stabilizer
z-pinned set: PT (s) ⊂ F (|T | = z) Z-stabilizer

D. Relation to Reed-Muller codes

Given integers r and m, the classical Reed-Muller code,
RM(r,m), is defined as the space generated by the vectors
of all evaluations of polynomials over m variables of degree
at most r:

RM(r,m) =
{

(p(x))x∈Fm2
: p ∈ F2[X0, . . . , Xm−1],

deg(p) ≤ r
}
. (9)

We now show that RM(r,m) is generated by the pinned
sets with r pins of a certain pin code relation F . Consider m
levels, each containing two pins,

∀j ∈ {0, . . . ,m− 1}, Lj = {0, 1}, (10)

and the complete m-ary relation,

FmRM = L0 × · · · × Lm−1, (11)

see also the left of Figure 10. Consider now a r-pinned set de-
fined, with type T = {j1, . . . , jr}, and pins b = (bj1 , . . . , bjr ).
One can check that a flag, f ∈ F = Fm2 , belongs to PT (b) if
and only if the following degree r polynomial, pT,b, evaluates
to 1,

pT,b =
∏
j∈T
bj=1

Xj

∏
k∈T
bk=0

(1−Xk) . (12)

So the pinned sets with r pins generate the following code,

P(r,m) =
〈

(pT,b(x))x∈Fm2
: T ⊂ {0, . . . ,m− 1},

|T | = r, b ∈ Fm2
〉
. (13)

Then we just have to check that these generate all polynomial
of degree at most r. By definition they generate polynomials
constituted of a product of r elements being either Xj or (1−
Xj). Let’s suppose, for some ` ≤ r, they can generate all such
product with only ` terms. Then we can contruct all product
with only `− 1 terms, q, as follows

q = q · (1−Xj) + q ·Xj , (14)

where Xj is a variable that does not appear in q. It follows by
induction that they generate all degree at most r polynomials
and so

RM(r,m) = P(r,m). (15)

Another way to see this is to use the decomposition
property of pinned sets (Proposition 2) and generate the lower
degree monomial directly with pinned sets with less pins and
decompose these pinned sets into disjoint union of r-pinned
sets.

Classical Reed-Muller codes have been used in several
different ways to define quantum codes. Some of their useful
properties include that the dual of RM(r,m) is RM(m −
1 − r,m) and that if r ≤ s then RM(r,m) ⊆ RM(s,m).
Some constructions use directly Reed-Muller codes to define
the X and Z stabilizers [21]–[23]. In [21] the X-stabilizers
are given by RM(r,m) and the Z-stabilizers are given by
RM(r − 1,m). In addition some of the generators for the
X-stabilizers can be modified to increase the distance of the
code by half while loosing the CSS property. Before this
modification this construction can be directly interpreted as
the quantum pin code defined by the relation FmRM from (11)
and by setting x = r and z = r − 1 with 2r − 1 ≤ m − 1
which ensures that x + z ≤ D = m − 1. In the papers [22],
[23], the X-stabilizers are given by RM(r − 1,m) and the
Z-stabilizers by RM(m − r − 1,m). This can be directly
interpreted as the quantum pin code defined by the relation
FmRM from (11) and by setting x = r− 1 and z = m− r− 1
(then automatically x+ z ≤ D = m− 1).

Several other works use the shortened versions of Reed-
Muller codes [18], [24]–[29]. The shortened version of the
Reed-Muller code consists in removing the constant 1 from the
polynomials and throwing away the evaluation bit p(0) (it is
now always 0). The idea is that if one where to takeRM(r,m)
and RM(m− r − 1,m) as X and Z stabilizers respectively,
one would get exactly 0 logical qubits since these two codes
are dual of one another. Taking the shortened versions one gets
a single logical qubit. This can be interpreted as a quantum
pin code defined by the relation FmRM from (11), by setting
x and z such that x+ z = D = m− 1, and declaring as free
pins the 1 in all levels Lj in (10), see Section IV-E.

E. Relation to quantum color codes

The formalism and definitions for quantum pin codes can
be viewed as a generalization of quantum color codes without
boundaries [11], [20], [30]. However it is also possible to
integrate the notion of boundaries into the general framework
of pin codes but we delay these considerations to Sec. IV-E. A
D-dimensional color code is defined by a homogeneous, D-
dimensional, simplicial complex, triangulating a D-manifold,
whose vertices are (D + 1)-colorable. A D-dimensional,
simplicial complex is called homogeneous if every simplex
of dimension less than D is a face of some D-simplex. The
(Poincaré) dual of a simplicial complex as defined above is
sometimes called a colex [20], it consists in a tessellation
where the vertices are (D + 1)-valent and the D-cells are
(D + 1)-colorable. In the original simplicial complex, the
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qubits are identified with the D-simplices and one chooses
two natural integers, (x̃, z̃) ∈ N2 with x̃ + z̃ ≤ D − 2, to
define the X- and Z-checks using the x̃- and z̃-simplices in the
following way. Each X-stabilizer generator is identified with a
x̃-simplex which acts as Pauli-X on all D-simplices in which
it is contained. Similarly, each Z-stabilizer generator operate
on all the D-simplices as Pauli-Z in which the corresponding
z̃-simplex is contained, respectively.

This definition can be restated in the language of pin codes:
the D+1 levels, L0, . . . , LD, are indexed by the D+1 colors
and each level contains the vertices of a given color. The flags,
F , are defined using the D-simplices (each containing D+ 1
vertices); this defines a relation, F ⊂ L0×· · ·×LD thanks to
the colorability condition as each D-simplex will not contain
two vertices of the same color. One can further check that the
relation F is a pin code relation as stated in Def. 3.

Proposition 4. (D-simplices form a pin code relation). Let T
be a homogeneous D-dimensional simplicial complex whose
vertices are (D + 1)-colorable, triangulating a D-manifold.
Given a (D + 1)-coloration with colors numbered from 0 to
D, define Lj as the set of vertices of color number j in T . The
relation F ⊂ L0×· · ·×LD representing the set of D-simplices
is a pin code relation.

Proof: D-pinned sets correspond to (D − 1)-simplices
which are contained in exactly two D-simplices since the
simplicial-complex triangulates a D-manifold without bound-
aries. This shows that it is a pin code relation.

Then subsets of the (D + 1) colors correspond to types
and any k-simplex corresponds directly to a collection of pins
of type given by the (k + 1) different colors of the (k + 1)
vertices of the k-simplex. The corresponding (k+1)-pinned set
contains all the D-simplices containing the original k-simplex.
As such all the non-empty (k + 1)-pinned sets are given by
all the collection of pins and type corresponding to all the
k-simplices. With these consideration, we see that choosing
x = x̃ + 1 and z = z̃ + 1, the corresponding (x, z)-pin code
is the same as the original color code.

Proposition 5. (Quantum color codes are quantum pin codes).
Let T be a homogeneous D-dimensional simplicial complex
whose vertices are (D + 1)-colorable, triangulating a D-
manifold. For integers x and z such that x + z ≤ D − 2,
the (x − 1, z − 1)-color code defined on T is equal to the
(x, z)-pin code defined by the relation on the colored vertices
given by the set of D-simplices.

Proof: By inspection, using Table II, one checks that the
qubits and stabilizers exactly coincide in the definition of the
(x− 1, z − 1)-color code and the (x, z)-pin code.

An example for D = 2, based on the hexagonal color code,
is shown in Figure 2a. To summarize: to go from color codes
to pin codes one just forgets the geometry, keeping only the
(D+1)-ary relation given by the (D+1)-colored D-simplices.

Importantly, pin codes are more general, as there are pin
code relations which are not derived from these specific
simplicial complexes. In the next section after recalling a
concrete color code construction we give two more general
constructions of pin code relations.

TABLE II
CORRESPONDENCE BETWEEN COLOR CODES AND QUANTUM PIN CODES.

Color code Quantum pin code

Set of vertices of color j Level: Lj

Vertex of color j Pin: p ∈ Lj

Set of D-simplices Relation: F ⊂ L0 × · · · × LD

A given D-simplex Flag: f ∈ F
A given k-simplex Collection: s ∈ Lj0 × · · · × Ljk

All D-simplices
containing a given

k-simplex

(k + 1)-pinned set: PT (s) ⊂ F

F. Constructing pin codes

(a) (b)

Fig. 2. (a) An example of flag set based on the triangular lattice: F =
{f0, . . . , f23} from D + 1 = 3 levels: L0 =

{
p00, . . . , p

3
0

}
in red, L1 ={

p01, . . . , p
3
1

}
in blue, L2 =

{
p02, . . . , p

3
2

}
in green. The figure wraps around

on itself according to the arrows so that there are no boundaries, and the
surface obtained is a torus. (b) Schematic representation of the flags of the
square lattice and the corresponding pins. Each triple of incident vertex (green
pin), edge (red pin) and face (blue pin) is a flag. They are symbolized in the
picture as actual flags put closest to the elements in the triple (vertex, edge,
face) they stand for. The corresponding color code is the well known 4.8.8
color code: there are eight flags around each vertex, four around each edge
and eight around each face.

1) Color codes from tilings: In [20], the authors explain
how to obtain a colex from any tiled D-manifold. The idea
is to successively inflate the (D − 1)-cells, (D − 2)-cells,
. . . , 0-cells into D-cells. The dual of the tiling obtained is
then a (D+ 1)-colorable triangulation of the D-manifold, see
Appendix A of [20]. This can also be understood directly,
without inflating the cells, as follows: Separate all the cells
into (D+ 1) sets, L0, . . . , LD, according to their dimensions,
i.e. Lj contains all the j-cells. We can now define a (D+ 1)-
ary relation on the cells via the incidence relation. Two cells
of different dimension are incident if and only if one is a sub-
cell of the other. An element of this relation, i.e. a (D + 1)-
tuple containing a 0-cell (a vertex), a 1-cell (an edge), etc. . . up
to a D-cell, is called a flag. See for example Fig. 2b for
a representation of the flags of the square lattice. The flag
relation obtained this way is the same as the one after going
through the inflating procedure and it is a pin code relation.

A similar way to construct (D + 1)-colorable tessellations
in D dimensions directly is to use the Wythoff construc-
tion [31]. The construction is quite general, but for simplicity,
let us start on the 2D euclidean plane. Consider a right-angled

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3170846

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



6

(a) (b) (c)

Fig. 3. (a) The fundamental triangle of the Wythoff construction. A vertex
(white cirlce) is placed in the middle and three edges are drawn to the
boundary. The three regions are colored red, green and blue. (b) Reflecting
the fundamental triangle along its sides creates a three colored lattice. In this
case the 4.6.12 lattice. Note that we can obtain the red/blue/green shrunk
lattice by moving the vertex into the red/blue/green corner, see Sec. IV-B.
(c). The Wythoff construction can be generalized to higher dimensions as
well. This example shows the vertex put into the middle of a 3D simplex, a
tetrahedron, and one of the four corner cells colored in red (see main text for
more information).

triangle and draw a point into its interior. From this point we
draw three lines, each intersecting a boundary edge in a right
angle (see Fig. 3a). This creates three regions in the triangle
which we assign three different colors. We can now reflect the
triangle along its boundary edges. The internal points of the
original and the reflected triangles become the vertices of a
uniform tiling. The faces of the tiling are colored by the three
colors and by construction no two faces of the same color are
adjacent (see Fig. 3b). If the angles of the triangle are 2π/r,
2π/s and 2π/l then the result will be a r.s.l-tiling, meaning
that the three faces around a vertex will have r, s and l number
of sides.

This idea readily generalizes to higher dimensions by plac-
ing a vertex into a D-dimensional simplex and drawing lines
to the mid-point of the D−1-dimensional faces of the simplex
(see Fig. 3c for the case D = 3). The faces of the simplex
are simplices themselves, so this process can be iterated until
D = 2. Reflecting along the faces of the D-simplex gives
rise to a uniform tiling of the D-dimensional space with D-
cells being colored by D + 1 colors and no two cells of the
same color sharing a D− 1-dimensional face. The number of
vertices of the D-cells is then determined by the orbit of the
reflections along all but one of the sides.

The color codes from regular tilings can be obtained this
way, for example, in 2D Euclidean space, the hexagonal, 4.8.8.
or 4.6.12. color codes or more generally both Euclidean and
hyperbolic tilings in any dimension.

In order to obtain a finite code from the infinite tessellation
we can either introduce boundaries or by introducing periodic
boundary conditions. The details will depend on the individual
lattice.

2) Coxeter group approach: The Wythoff construction of
the previous section can be generalized in the language of
group theory. The reflections used to tile the space form
groups called Coxeter groups. The fundamental triangles can
be seen as group elements and reflections about their sides
are generators of the group. In this section we will explain
the more general approach based on these groups or more
generally on finite groups which are generated by elements

with even order. A Coxeter group is a finitely presented group
with reflections as generators, denoted as

G = 〈a0, . . . , aD|a2
0 = · · · = a2

D = (aiaj)
kij = rk = · · · = 1〉,

(16)
where the kij are integers defining relations between the
generators, rk are additional relations between generators
and 1 is the trivial element [32], [33]. Define the subgroups,
Hj for j ∈ {0, . . . , D}, as

Hj =
〈
{a0, . . . , aD} \ {aj}

〉
. (17)

Define the levels, Lj , as the sets of left cosets for each Hj ,
i.e.

Lj = {gHj | g ∈ G} . (18)

The cosets of a subgroup always form a partition of the
full group. So for every j ∈ {0, . . . , D}, a group element
g ∈ G uniquely defines a coset pj ∈ Lj such that g ∈ pj .
Hence, each group element defines a (D+ 1)-tuple of cosets,
(p0, . . . , pD) ∈ L0×· · ·×LD. Taking the set of all such tuples
defines a (D+1)-ary relation on the cosets, F ⊂ L0×· · ·×LD,
which is a pin code relation. The fact that this F is a pin code
relation can be verified by the following argument. A k-pinned
set here correspond to the intersection of k different cosets
with respect to k different subgroups Hj . It always holds that
the intersection of several cosets is either empty or is a coset
with respect to the intersection of the subgroups of the original
cosets. Hence non-empty k-pinned sets are cosets with respect
to a subgroup, Hj1,...,jk ,

Hj1,...,jk =

k⋂
i=1

Hji . (19)

Each subgroup Hji is generated by all generators of G except
one, this means that Hj1,...,jk contains at least a subgroup
generated by D − k + 1 of the generators,

Hj1,...,jk ⊇
〈
{a0, . . . , aD} \ {aj1 , . . . , ajk}

〉
. (20)

In particular, the D-pinned sets are cosets with respect to a
subgroup that contains 〈aj〉 for some j. We note that 〈aj〉 has
order two, since aj is a reflection, and thus all D-pinned sets
have even order. In well behaved cases the containment in (20)
will actually be an equality, but this is not guaranteed due to
relations between generators that may exist.

In the case where the Coxeter group describes the sym-
metries of a tiling this construction is equivalent to the
Wythoff construction described above. But one also obtains
more general pin codes when considering Coxeter groups not
defining tilings or more general finite groups with generators
of even order.

Note that it is generally not possible to directly obtain the
properties of the quantum pin code derived from a Coxeter
group from the group’s representation and the choice of
subgroups Hi.

In Sec. V-A we explore in more details the construction of
pin codes from 3D hyperbolic Coxeter groups and give some
explicit examples.
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TABLE III
CORRESPONDENCE BETWEEN COXETER GROUPS AND QUANTUM PIN

CODES.

Coxeter group Quantum pin code

All left cosets of Hj =〈
{a0, . . . , aD} \ {aj}

〉 Level: Lj

A given left coset gHj Pin: p ∈ Lj

All group elements G Relation: F ⊂ L0 × · · · × LD

A group element g ∈ G Flag: f ∈ F
k + 1 left cosets

(g0Hj0 , . . . , gkHjk )
Collection: s ∈ Lj0 × · · · × Ljk

Elements of a left coset
gHj0,...,jk

(k + 1)-pinned set: PT (s) ⊂ F

3) Chain complex approach: An other way of obtaining
a pin code relation is from F2 chain complexes of length
D+1. For our purposes, these algebraic objects are composed
of (D + 1) finite-dimensional vector spaces over F2, say
C0, . . . , CD, together with D linear maps called boundary
maps, ∂j : Cj → Cj−1, which are such that

∀j ∈ {0, . . . , D − 1}, ∂j ◦ ∂j+1 = 0. (21)

For example the tiling of a D-manifold can be seen as a chain
complex, taking the j-cells as a basis for the Cj vector space
and the natural boundary map. We have shown how to get a
pin code relation from such a tiling by taking its flags, but it
can as well be obtained from any F2 chain complex. For more
background see [34].

The construction works as follows: choose a basis set Lj
for each vector space Cj . The Lj basis sets are the levels
and the basis elements the pins. Then use the boundary
map, ∂, to define binary relations, Rj,j+1 ⊂ Lj × Lj+1,
where (pj , pj+1) ∈ Rj,j+1 if pj appears in the decompo-
sition of ∂ (pj+1) over the basis set Lj . Then the relation
F ⊂ L0 × · · · × LD is defined as follows

F = {(p0, . . . , pD) | ∀j, (pj , pj+1) ∈ Rj,j+1} . (22)

The relation F obtained like this is almost a pin code relation.
All the pinned sets of type t = {0, . . . , D}\{j} with 0 < j <
D have even cardinality since their size is given by the number
of paths between the pin pj+1 and the pin pj−1 which has to be
even by the property of the boundary map ∂ given in (21). For
pinned sets of type T = {1, . . . , D} or T = {0, . . . , D − 1}
it is not generally the case that they have even cardinality.
Although this can be easily fixed by adding at most two pins:
the idea is then to add one rank-0 pin, b0, in the level L0 and
add all pairs (b0, c

?) such that

|{p0 | (p0, c
?) ∈ R0,1}| = 1 (mod 2), (23)

to the new relation R0,1. Then do the same for the level D,
adding bD in LD. After this modification the resulting flag
relation F is a pin code relation.

Note that this way of obtaining a quantum code from any
F2 chain complex is fundamentally different from the usual
homological code construction. In the homological code con-
struction one chooses one of the levels, say Lj , and identifies
its elements with qubits. Then the Z-stabilizer generators

TABLE IV
CORRESPONDENCE BETWEEN CHAIN COMPLEXES AND QUANTUM PIN

CODES.

Chain Complex Quantum pin code

Basis set of Cj Level: Lj

A basis element
pj ∈ Cj

Pin: p ∈ Lj

All basis elements
(p0, . . . , pD) such that

pj ∈ ∂pj+1

Relation: F ⊂ L0 × · · · × LD

A tuple (p0, . . . , pD)
such that pj ∈ ∂pj+1

Flag: f ∈ F

k + 1 basis elements
from different levels(

pj0 , . . . , pjk
) Collection: s ∈ Lj0 × · · · × Ljk

All tuples
(q0, . . . , qD) ∈ F such
that

(
qj0 , . . . , qjk

)
=(

pj0 , . . . , pjk
)

(k + 1)-pinned set: PT (s) ⊂ F

are given by the boundary of the elements in Lj+1 and the
X-stabilizer generators by the coboundary of the elements
in Lj−1. These are different from the flags and pinned sets
used to define a pin code.

In Sec. V-B we give some explicit pin codes constructed
from chain complexes.

G. Remarks

While some flag relations F obtained from Coxeter groups
can be equivalently viewed as coming from some F2 chain
complex, the converse does not necessarily hold. Indeed not
every multi-ary relation can be decomposed into a sequence of
binary relations, the hexagonal lattice depicted in Fig. 2a is an
example of such a relation which cannot be decomposed this
way. The other way around, not all flag relations obtained from
a F2 chain complex can be seen as coming from a Coxeter
groups as in general they would lack the regular structure
required.

Depending on the pin code relation, F , it can happen that
some pinned sets can in fact be safely split when defining the
stabilizers. That is to say, one can separate them into several
disjoint sets of flags defining each an independent stabilizer
still commuting with the rest of the stabilizers. For example
this is the case for Coxeter groups for which (20) is strict, i.e.〈

{ ai1 , . . . , ais }
〉
∩
〈
{ aj1 , . . . , ajt }

〉
)〈

{ ai1 , . . . , ais } ∩ { aj1 , . . . , ajt }
〉
. (24)

In this case the cosets with respect to the first group can
be further split into cosets with respect to the second one
without harming the commutation relations. Groups generated
by reflections for which (20) is always an equality are called
C-groups [35]. If the stabilizers are still defined as whole
pinned sets, in cases where they could be split, then these
smaller sets of qubits would be logical operators which would
be detrimental to the overall distance of the code.
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III. TRANSVERSAL GATES AND MAGIC STATE
DISTILLATION

In this section we present independently of pin codes what
structure is desirable for CSS codes to admit transversal
phase gates of different levels of the Clifford hierarchy. The
presentation here is close in spirit to that of [36], [37]. It is
included here to fix terminology and to be self-contained.

Given ` binary row vectors, v1, . . . ,v` ∈ Fn2 , we denote
their element-wise product as, v1 ∧ · · · ∧ v`, its jth entry is
given by[ ∧̀

m=1

vm

]
j

=
[
v1 ∧ v2 ∧ · · · ∧ v`

]
j

= v1
j v

2
j · · · v

p
j . (25)

The Hamming weight of a binary vector v is denoted as |v|,
it is given by the sum of its entries. We also define the notions
of multi-even and multi-orthogonal spaces:

Definition 5 (Multi-even space). Given an integer, ` ∈ N, a
subspace C ⊂ Fn2 , is called `-even if all vectors in C have
Hamming weight divisible by 2`:

∀v ∈ C, |v| = 0 (mod 2`).

Proposition 6 (Characterization of multi-even spaces). Given
` ∈ N, a subspace C ⊂ Fn2 is `-even if and only if
for any integer s ∈ {1, . . . , `} and any s-tuple of vectors,
(v1, . . . ,vs) ∈ Cs, it holds that∣∣v1 ∧ · · · ∧ vs

∣∣ = 0 (mod 2`−s+1). (26)

The proof is deferred to Appendix A, it makes use of the
following convenient lemma for converting binary addition to
regular integer addition.

Lemma 1 (Binary addition and integer addition). Denote
binary addition with ⊕ and integer addition with + or

∑
.

Given r binary vectors w1, . . . ,wr ∈ Fn2 it holds that
r⊕

m=1

wm =

r∑
s=1

(−2)s−1
∑

1≤m1<···<ms≤r

s∧
i=1

wmi . (27)

Similarly for their Hamming weights∣∣∣∣∣
r⊕

m=1

wm

∣∣∣∣∣ =

r∑
s=1

(−2)s−1
∑

1≤m1<···<ms≤r

∣∣∣∣∣
s∧
i=1

wmi

∣∣∣∣∣ . (28)

The proof of this lemma is deferred to Appendix A where
we also give an illustrative example. The alternative character-
ization given in Prop. 6 for a multi-even space, as per Def. 5,
shows that some strong divisibility conditions on the overlap
between vectors of the space have to be imposed.

It is possible to relax these conditions and define what is
called a multi-orthogonal space.

Definition 6 (Multi-orthogonal space). Given an integer, ` ∈
N, a subspace C ⊂ Fn2 , is called `-orthogonal if for any `-tuple
of vectors,

(
v1, . . . ,v`

)
∈ C`,∣∣v1 ∧ · · · ∧ v`

∣∣ = 0 (mod 2). (29)

These two characterizations, Prop. 6 and Def. 6, are ex-
pressed as conditions on any tuple of vectors from the space.

Although it is strong enough to verify the conditions only on
a basis of the space, which is proven in Appendix A.

Proposition 7 (multi-even/orthogonal space verification on a
basis). It is necessary and sufficient to verify (26) or (29) on a
basis to ensure that a space is multi-even or multi-orthogonal
respectively.

The single-qubit phase gates are denoted as

R` =

(
1 0
0 ω`

)
, ω` = ei

2π

2` . (30)

For instance R1 = Z, R2 = S and R3 = T in the usual
notations.

A. Weighted polynomials and transversal gates

Given k qubits and some integer `, we consider quantum
gates, UF` , acting diagonally on the computational basis, such
that for x ∈ Fk2 ,

UF` |x〉 = ω
F`(x)
` |x〉 , (31)

where F` is a so-called weighted polynomial of the form

F`(x) =
∑̀
s=1

2s−1
∑

1≤m1<···<ms≤`

αm1...ms · xm1 · · ·xms ,

(32)

with coefficients αm1...ms in F2` . Any such gate UF` belongs
to the `th level of the Clifford hierarchy [38]. Examples, and
generating set for ` = 3, are given in Table V.

TABLE V
WEIGHTED POLYNOMIALS CORRESPONDING TO SOME WELL KNOWN

GATE, FOR ` = 3, ARRANGED ACCORDING NUMBER OF QUBITS INVOLVED
AND LEVEL OF THE CLIFFORD HIERARCHY.

UF3 ↔ F3(x) 1st level 2nd level 3rd level

1 qubit Z ⊗ 1⊗ 1↔ 4x1 S ⊗ 1⊗ 1↔ 2x1 T ⊗ 1⊗ 1↔ x1

2 qubits - CZ ⊗ 1↔ 4x1x2 CS ⊗ 1↔ 2x1x2

3 qubits - - CCZ ↔ 4x1x2x3

The goal is to implement such a gate on the logical level of
a quantum error correcting code by the transversal application
of some phase gates. A transversal application of the single-
qubit phase gate R` means that each qubit is acted on with
R`, which amounts to applying the tensor product R⊗n` =
R`⊗ · · · ⊗R` on the full system. Given an Jn, k, dK quantum
CSS code, define G as the r× n matrix whose rows describe
a generating set of the X-stabilizers of the code, and define
L as the k×n matrix whose rows describe a basis for the X-
logical operators. The code state in this basis corresponding
to x ∈ Fk2 can then be expressed as

|x〉 =
1√
2r

∑
y∈Fr2

|xL⊕ yG〉 . (33)

Applying transversally the gate R` on this code state, |x〉,
yields

R⊗n` |x〉 =
1√
2r

∑
y∈Fr2

ω
|xL⊕yG|
` |xL⊕ yG〉 . (34)
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Using (27), the power of ω` above can be rewritten in three
parts as

|xL⊕ yG| = F`(x) + F ′`(y) + F ′′` (x,y), (35)

where we defined

F`(x) = |xL| (36)
F ′`(y) = |yG| (37)

F ′′` (x,y) = −2 |xL ∧ yG| (38)

Using again (27), one can express these three parts as
weighted polynomials whose coefficients are given by the dif-
ferent overlap between X-logical operator generators, between
X-stabilizer generators or between both, see Appendix B.

Provided that it is possible to cancel the action of F ′`(y) and
F ′′` (x,y) then the resulting operation would correspond to the
gate UF` on the logical qubits of the code. The following two
properties of CSS codes are designed to get rid of these two
unwanted parts.

Proposition 8 (Exact transversality). Let C be a CSS code,
given an integer `, the code C allows for the transversal
application of R` if the following conditions hold:

(i) The X-stabilizers form an `-even space.
(ii) Element-wise products of a X-logical operator and a X-

stabilizer always have Hamming weight divisible by 2`−1.
The gate performed at the logical level is then given by the
weighted polynomial in (36).

Indeed the two conditions above exactly give

F ′`(y) = F ′′` (x,y) = 0 (mod 2`), (39)

which precisely enforce that the actions of F ′`(y) and
F ′′` (x,y) are trivial. We can also settle for a weaker condition
under which the unwanted part is not trivial but belong to the
(`− 1)th level of the Clifford hierarchy.

Proposition 9 (Quasi-transversality). Let C be a Jn, k, dK CSS
code, with r×n generating matrix, G, for its X-stabilizers and
k×n generating matrix, L, for its X-logical operators. Given
an integer `, the code C allows for the transversal application
of R` up to a (`−1)th-level Clifford correction if the following
conditions hold:

(i) The X-stabilizers form an `-orthogonal space.
(ii) For any choice of s ≥ 1 X-logical operators and t ≥ 1

X-stabilizers with s+ t ≤ `∣∣∣∣∣∣
s∧
i=1

Lmi
t∧

j=1

Gnj

∣∣∣∣∣∣ = 0 (mod 2).

The gate performed at the logical level after correction is then
given by the weighted polynomial in (36).

Indeed, under this condition it follows that, see Appendix B

ω
F ′`(y)+F ′′` (x,y)
` = ω

2F̃`−1(x,y)
` = ω

F̃`−1(x,y)
`−1 , (40)

where F̃`−1 is a properly weighted polynomial which defines
a (` − 1)th-level Clifford correction to be applied. The exact
correction is given by the conjugation of UF̃`−1

by a decoding

circuit for C, see [36]. Note that we can also define interme-
diate conditions so that the correction belongs to the (`− q)th
level of the Clifford hierarchy for some 1 ≤ q ≤ `. Here
we have just defined the two extreme ones, for which the
correction belongs either to the 0th level or the (`−1)th level
of the Clifford hierarchy. Propositions 8 and 9 where stated in
slightly different form in [36].

B. Magic-state distillation

Given a code which exhibits exact transversality or quasi-
transversality it is possible to devise magic-state distillation
protocols. We describe briefly a variant here, see also [18],
[26], [36], [37], [39]–[41].

A magic state enables the implementation of some gate on
another state. The most common example is the state |A〉 =
T |+〉 which can be used to implement a T gate using only
a CNOT gate, a measurement and possibly a S correction
(see for example Figure 2 of [1]). If one uses a CSS code
to encode information then the CNOT gate on the encoded
level can be done transversally between two encoded blocks.
The main difficulty lies in obtaining an encoded magic state
of good quality.

The usual starting point is one logical qubit being encoded
in a base code chosen to protect them from noise and with
access to fault-tolerant implementations of all Clifford gates.
Then a common protocol consists in concatenating the base
code with a distillation code, say of parameters Jn, k, dK,
which admits the implementation of logical T gates on the
encoded level by applying T gates to the physical qubits. Then
using n possibly low fidelity magic states encoded in the base
code, one applies a transversal T gate on |+〉 states at the
level of the distillation code using the circuit described in the
previous paragraph. Measuring the checks of the distillation
code conditioning on seeing a trivial syndrome and decoding
to the base code one obtains k magic states encoded in the
base code of better quality.

Provided that the quality of the initial magic states is not too
low, repeating the protocol sufficiently many times will reach
any desired accuracy. Then the amount of resources spent
will directly depend on the parameters of the distillation code
Jn, k, dK. The efficiency of the protocol is often summarized
in just one quantity:

γ =
log(n/k)

log(d)
, (41)

since the average number of output distilled magic states at
a desired accuracy, εout, per initial noisy magic state is given
by 1/O

(
log(ε−1

out

)γ
). Hence, the smaller γ the more efficient

the distillation protocol. Previously it was conjectured that γ
has to be at least 1. However, it has recently been shown that
γ < 1 is achievable [41].

C. Puncturing techniques

As explained above, most magic state distillation procedures
rely on a distillation code which is a CSS code for which the
T gate is transversal and correspond to a transversal T gate
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on the logical level of the code. These codes are called tri-
orthogonal codes [18], [26], and rely on 3-orthogonal or 3-even
spaces.

In more details and stated in general for the R` gate, this
Jn, k, dK distillation code, Cdistill., has to fulfill the conditions
of exact transversality as per Prop. 8 as well as having

|xL| =
k∑
j=1

xj (mod 2`), (42)

where L is a k×n generating matrix for the X-logical opera-
tors of Cdistill.. Fulfilling the exact transversality conditions of
Prop. 8 ensures that one can transversally apply the R` gate on
the code and (42) ensures that the resulting operation on the
logical level is the transversal R` gate. If one has easy access to
operations in the (`−1)th level of the Clifford hierarchy (as is
usual in the case ` = 3) then the following weaker conditions
are enough. The code Cdistill. has to fulfill the conditions of
quasi-transversality as per Prop. 9 as well as having

|xL| =
k∑
j=1

xj (mod 2). (43)

Starting from an `-even, `-orthogonal space respectively,
it is simple to obtain such codes by puncturing them [37],
[41], [42]. We describe this technique here and will apply it
to some `-orthogonal spaces obtained from pin code relations
in Section V-C. The idea goes as follows: consider an `-even
subspace of Fn2 of dimension m and take a m× n generating
matrix, G ∈ Fm×n2 . Using Gaussian elimination it is always
possible to change the basis and put the matrix G in the
following form:

G =

(← k → ← n→
k l 1 G1

r l 0 G0

)
, (44)

where k is some chosen integer such that 1 ≤ k ≤ m and r =
m− k. To obtain this form one just performs row operations.
This corresponds to puncturing the first k positions of the
space but note that one can perform some permutation of the
columns before the Gaussian elimination which would yield
some different G0 and G1 and corresponds to puncturing some
other k positions. The rows of G are a basis of the space and
hence, by Prop. 7, they verify (26). We can deduce that the
CSS code defined by G0 as the generating matrix for the X-
stabilizers and G1 as the generating matrix for the X-logical
operators verify the exact transversality conditions in Prop. 8.
The Z-stabilizers of this code are given by the space dual to
the space generated by the rows of both G0 and G1. Moreover
one can readily compute that

|xL| =
(
2` − 1

) k∑
j=1

xj (mod 2`). (45)

Note that we did not obtain a transversal R` on the logical
level but rather R−1

` . The difference is R2
` which is in the

(`− 1)th level of the Clifford hierarchy.
Starting from a `-orthogonal space instead and going

through the same procedure it is straightforward to see that

one obtains a CSS code for which R` is quasi-transversal as
per Prop. 9 and that the logical operation is also the transversal
R` up to a (`− 1)th level correction.

These type of codes when used in a distillation procedure
distill n magic states into k ones of better quality which
depends on the distance of the code that has to be computed
independently.

IV. PROPERTIES OF QUANTUM PIN CODES

In this section we examine the properties of pin codes. Since
their definition is fairly general, their properties depend on the
precise choice of pin code relations F . We stay as general as
possible and state precisely when the pin code relations need
to be restricted.

A. Code parameters and basic properties

First we investigate the LDPC (Low Density Parity Check)
property. A code family is LDPC if it has stabilizer checks
of constant weight and each of its qubits are acted upon
by a constant number of checks. LDPC codes were first
considered by Gallager in the classical setting [43]. For pin
codes, both properties depend on the relation F , but it is
fairly easy to construct LDPC families. For instance, pin
codes based on Coxeter groups with fixed relations between
generators and one growing compactifying relation can be
LDPC, see Sec. V-A. As another example, pin codes from
chain complexes with fixed length D + 1, sparse boundary
map and growing dimension of the levels are LDPC as well.

Let us examine a simple example: choose some D ∈ N, a
set, C, of size 2m for some m ∈ N and the complete relation
on D+ 1 copies of C: F = CD+1. One can easily verify that
the relation F is a pin code relation as C has even cardinality.
The number of flags is nq = |F | = (2m)D+1 and the number
of x- and z-pinned sets are nx =

(
D+1
x

)
× (2m)x and nz =(

D+1
z

)
× (2m)z . If one considers growing m then, the code

would not be LDPC, but more strikingly the ratio of number of
stabilizer checks to number of qubits would go to zero. This
illustrates that for a fixed D the complete relation leads to
very high rate and very low distance. To get interesting codes,
one either needs to vary D, or find some other relations with a
number of flags growing significantly slower than the complete
relation.

Concerning logical operators, we first note that they have
even weight.

Proposition 10 (Logical operators have even weight). Let F
be a pin code relation on D+1 sets and let C be the associated
(x, z)-pin code for (x, z) ∈ {1, . . . , D}2 with x+z ≤ D. Then
the X- and Z-logical operators of C have even weight.

Proof: Let the set L ⊂ F represent a X-logical operator,
and let T be a type of size z. Consider the set, S, of collections
of pins given by the projection of type T of the set L,

S = ΠT (L). (46)

For every s ∈ S, the pinned set PT (s) correspond to a Z-
stabilizer and therefore has an even intersection with L. Pinned
sets of the same type but defined by two different collections of
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pins are disjoint. Hence, every element in L appear in exactly
one of the pinned sets PT (s) for some s ∈ S and so the
cardinal of L is even. The proof for Z-logical operators is the
same.

One can also prove the following general lower bound on
the distance of pin codes.

Proposition 11 (Distance at least 2min(x,z)+1). Let F be a
pin code relation on D + 1 sets and let C be the associated
(x, z)-pin code for (x, z) ∈ {1, . . . , D}2 with x + z ≤ D.
Then the minimum distance of C is at least 2min(x,z)+1.

Proof: Without loss of generality we can assume x ≤ z.
Take any set Sx ⊂ F containing less than 2x+1 distinct flags:

|Sx| < 2x+1. (47)

Our goal is to show that this cannot represent a logical Pauli
operator. To do so we will exhibit a sequence of pins, each
pin in this sequence will successively allow us to eliminate
half or more of the remaining flags by pinning. All the pins
of the sequence will define a pinned set corresponding to a
stabilizer with overlap on exactly one flag with Sx showing
that Sx cannot be a logical Pauli operator.

Since all the flags in Sx are distinct, there necessarily exists
a rank jx such that

∣∣Π{jx}(Sx)
∣∣ > 1, that is to say there exists

a level on which they go through at least two different pins.
We can use the pins in Π{jx}(Sx) to partition Sx:

Sx =
⊔

p∈Π{jx}(Sx)

(
P{jx}(p) ∩ Sx

)
. (48)

Since this is a partition, one of these subsets necessarily
contains half or less of Sx. That is to say there exists a pin
px ∈ Ljx such that

0 <
∣∣P{jx}(px) ∩ Sx

∣∣ < 2x. (49)

We define a new set, subset of Sx:

Sx−1 = P{jx}(px) ∩ Sx, (50)

which is such that

0 < |Sx−1| < 2x. (51)

There are then two cases: either |Sx−1| = 1 in which case we
stop. Otherwise we iterate the process on Sx−1. This gives
a sequence of ranks (jx, jx−1, . . .) and pins of corresponding
ranks (px, px−1, . . .) and a sequence of sets of flags Sx )
Sx−1 ) · · · which are such that

Sx−m = P{jx−m+1}(px−m+1) ∩ Sx−m+1, (52)

0 < |Sx−m| < 2x−m+1. (53)

Note that a rank chosen at some step cannot be cho-
sen again at a subsequent step. Indeed by construction∣∣Π{jx−k}(Sx−k−1)

∣∣ = |{px−k}| = 1 and since for m ≥ k
we have Sx−k−1 ) Sx−m−1 then

∣∣Π{jx−k}(Sx−m−1)
∣∣ =

|{px−k}| = 1. From (53) we can infer that we necessarily find
a set with only one remaining flag, say f , i.e. Sx−k = {f},

and this in at most x steps, hence we have k ≤ x. For this set
we have

{f} = Sx−k = P{jx−k+1}(px−k+1) ∩ Sx−k+1

= P{jx−k+1}(px−k+1) ∩ P{jx−k+2}(px−k+2) ∩ Sx−k+2

...

=

k−1⋂
m=0

P{jx−m}(px−m) ∩ Sx

{f} = P{jx,jx−1,...jx−k+1}(px, px−1, . . . , px−k+1) ∩ Sx,
(54)

where we used the intersection property, Prop. 1, for
the last equality. Since k ≤ x ≤ z and using
the decomposition proposition Prop. 2, the k-pinned set
P{jx,jx−1,...jx−k+1}(px, px−1, . . . , px−k+1) can represent both
a X- and a Z-stabilizer and its intersection with Sx is on
only one flag, hence Sx cannot represent a X- nor Z-logical
operator. This concludes the proof that the distance of the code
is at least 2x+1.

In order to get odd weight logical operators, one has to
introduce free pins, see Sec. IV-E. Note that in the presence
of free pins, the proof above does not hold anymore.

Making precise statements about the dimension of pin codes
is difficult in general. To get closer to be able to do this we
need to study the structure of the logical operators.

B. Colored logical operators and unfolding

The structure of the logical operators of color codes is un-
derstood as colored string-nets or membrane nets [20] and this
structure is directly linked to an unfolding procedure existing
for color codes [44]–[46]. This structure mostly remains for
all pin codes which means that we can map a given quantum
pin code (seen as a chain complex) to several smaller chain
complexes whose homological representatives can be lifted to
logical operators of the original quantum pin code. In the case
of color codes these mappings fully characterize all logical
operators. While this is not true for a general quantum pin
code it can bring insight into the structure of some of its logical
operators.

The general idea is to group qubits into sets with even
overlap with all except one sort of stabilizer which will
correspond to all stabilizers defined by pinned sets of a given
type. Logical operators build out of these sets then only
depend on the structure of the one type of stabilizer selected.
Repeating this for different choices of type of stabilizer fully
covers all logical operators in the case of color codes.

Consider a pin code relation, F ⊂ L0 × · · · × LD, and the
associated (x, z)-pin code. Define the complement of a type,
T , denoted as T :

T = {0, . . . , D} \ T. (55)

The intersection between a pinned set of type T and a pinned
set of type T is either empty or it contains exactly one flag.
Furthermore for any another type with the same number of
pins as T , the corresponding pinned sets have necessarily
even overlap with pinned sets of type T , see Figs. 4a and

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3170846

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



12

(a) (b) (c)

Fig. 4. (a) Schematic representation of the different types for the X- and Z-stabilizers in the case of D = 3. Each line represents a level. Types are
represented by columns of dots where a dot is present if the level is in the type. The different types are classified according to their possible intersection with
the complementary type to t0. For some, the intersection, if not empty, is a unique flag, they are labeled by the symbol “!”. For the others, the intersection,
if not empty, is the full pinned set of type t0, they are labeled by the symbol “∀”. (b) The chain complex corresponding to the pin code, highlighting the
intersections between the different sorts of X- and Z-stabilizers and pinned sets of type t0. (c) The t0-shrunk chain complex derived from the pin code (see
main text).

(a) (b) (c)

Fig. 5. (a) Schematic representation of the different types classified according to their possible intersection with the complementary type to t01. Each line
represents a level. Types are represented by columns of dots where a dot is present if the level is in the type. The ones with unique intersection are labeled with
“!”, the ones with even intersection with “E” and the one with full containment with “∀”. (b) The chain complex corresponding to the pin code, highlighting
the intersections between the different sorts of X- and Z-stabilizers and pinned sets of type t01. (c) The t01-shrunk (co)chain complex derived from the pin
code (see main text).

5a for visual representations of this. This means that grouping
flags according to pinned set of the complementary type T can
single out logical operators only having to ensure commutation
with pinned sets of type T . For our code, X-stabilizers are
generated by x-pin sets, which come in

(
D+1
x

)
different types.

Take one such type, Tx, and group the qubits according to
pinned sets of type Tx. Now the Z-stabilizers are generated
by z-pinned sets, which come in

(
D+1
z

)
different types. Some

of these types, we denote them as T inc.
z , are fully included in

T , which means that pinned sets of such type fully contain
any group of qubits they intersect. The other types only
partially intersect with the groups of qubits. The situation is
schematized in Fig. 4b for D = 3, x = 1 and z = 2. From
these considerations, one can construct a chain complex for
which the homology gives candidate Z-logical operators. Take
the pinned sets of type Tx, for the level 0, the pinned sets of
type Tx for the level 1, and the pinned sets of types T inc.

z for
level 2 and the boundary map is given by the overlaps of these
sets. This is represented in Fig. 4c, we call it the Tx-shrunk
chain complex. Then one can check that an element of the

homology of this chain complex can be lifted to a potential
Z-logical operator for the pin code. Indeed it would commute
with all the X-stabilizer, by homology for the stabilizers of
type Tx and by construction for the other X-stabilizers. It
would also not be simply generated by Z-stabilizers of type
T inc.
z by homology, and one would have to check for the other
Z types. So it is a valid (potentially trivial) Z-logical operator.

The same procedure can be done for each of the X types.
Symmetrically, the same can be done for the X-logical with
the Z types, and this is represented in Fig. 5 in the case D = 3,
x = 1 and z = 2.

Given a type T , the chain complexes constructed like this
are called T -shrunk lattices in the case of color codes [20]. For
color codes obtained from the Wythoff construction described
in Sec. II-F1, the construction of the T -shrunk lattice is fairly
direct. First move the vertex from the middle of the funda-
mental simplex to the corner corresponding to the first rank
in the type T , then focus on the opposite face: a simplex of
dimension one less which now looks exactly like the beginning
of the procedure but in a lower dimension. Recursively exhaust
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all the ranks of T in this way by each time adding a vertex
in the middle of the current simplex and moving it to the
corresponding corner.

These shrunk lattices are the basis for the unfolding pro-
cedure proved for color codes in all dimensions in [44],
[46]. This procedure establishes a local unitary equivalence
between a color codes and the reunion of the homological
codes on the shrunk lattices corresponding to all the different
types for X-stabilizers except one. The local unitary acts
separately on groups of qubits defined by the X-stabilizer
generators of the type that is not used to produce one of
the shrunk lattices. The proof of the existence of the local
unitary relies on the analysis of the so called overlap groups
of stabilizers restricted to the support of the X-stabilizer
generators aforementioned and the corresponding groups of
qubits in the shrunk lattices. The global structure is still present
for general pin codes, but for the proof to hold we need
to require that the linear dependency between the generators
within the overlap groups in the pin code is such that the
number of independent generators agrees with the number of
independent generators in the corresponding shrunk lattices as
an additional assumption.

These shrunk lattices are also the basis for some color
code decoders [46]–[49] but these decoders rely on a lifting
procedure from the shrunk lattices to the color code lattice
which seems intrinsically geometric as it consists in finding a
surface filling inside a boundary. So it is at this point unclear
how to leverage this structure in order to decode general pin
codes.

C. Gauge pin codes

In this section we define gauge pin codes from a pin
code relation. Gauge pin codes can also be viewed as a
generalization of gauge color codes [19].

A gauge code, or subsystem code, is a code defined by a so
called gauge group instead of a stabilizer group [10], [50]. For
stabilizer codes, the code states are eponymously stabilized by
the stabilizer group which is an abelian subgroup of the group
of Pauli operators. For gauge codes, the gauge group is not
abelian and hence all gauge operators cannot share a common
+1-eigenspace. In this case the code states are stabilized by
the center of the gauge group. Gauge operators not in the
center of the gauge group would qualify as logical operators
in the case of a stabilizer code but are not used to encode
information.

Take a pin code relation F and two positive integers x and z
such that x + z < D. The associated pin code has its X-
stabilizer generators defined by all the x-pinned sets and its
Z-stabilizers generators defined by all the z-pinned sets. Since
the relation F is a pin code relation, by Prop. 3 any (D−x)-
pinned set has an even intersection with any x-pinned set.
So all the (D − x)-pinned sets correspond to some Z-logical
operators. On top of that, they generate all the Z-stabilizers.
Indeed using Prop. 2 and the fact that D−x > z one shows that
the z-pinned sets decompose into disjoint (D−x)-pinned sets.
As such (D−x)-pinned set define naturally Z-gauge operators
which can be measured individually and whose outcomes can

be recombined to reconstruct the value of the Z-stabilizers
defined by z-pinned sets. Symmetrically, the same happens for
(D − z)-pinned sets which have even overlap with z-pinned
sets and generate x-pinned sets and therefore can be viewed
as X-gauge operators.

Proposition 12 (Gauge pin code). Given a pin code relation
F and two natural integers x and z such that x+ z < D, one
can define a gauge pin code by choosing X-gauge operators
to be the (D − z)-pinned sets and Z-gauge operators to be
the (D − x)-pinned sets. The corresponding stabilizer group
for this gauge code contains the x-pinned sets as X-stabilizer
generators and z-pinned sets as Z-stabilizer generators. The
number of logical qubits is at most the number of logical
qubits of the (x,D − x)-pin code or of the (D − z, z)-pin
code obtained from the same relation F .

Proof: Let us first prove that (D − z)-pinned sets and
(D−x)-pinned sets indeed define gauge operators that do not
necessarily commute. For this, take any qubit in F , say f ∈ F ,
and any two types Tx and Tz of size |Tx| = D−z and |Tz| =
D − x, respectively. Define the two collections sx = ΠTx(f)
and sz = ΠTz (f), and the two (D − z)- and (D − x)-pinned
sets, PTx(sx) and PTz (sz). One straightforwardly verifies that
these pinned sets are constructed such that their intersection
is a singleton, more precisely

PTx(sx) ∩ PTz (sz) = {f}, (56)

and they define a X-gauge operator and a Z-gauge opera-
tor, respectively, which therefore do not commute with one
another.

Let us prove now that the center of the gauge group, i.e.
the stabilizer group, contains the x-pinned sets as X-stabilizers
and z-pinned sets as Z-stabilizers. We have that x < D − z,
hence by the decomposition property, Prop. 2, x-pinned sets
as X operators are generated by D− z-pinned sets which are
X gauge operators. Similarly, z < D − x and z-pinned sets
as Z operators are generated by D− x-pinned sets which are
Z gauge operators. Moreover,

x+ (D − x) = z + (D − z) = D, (57)

and so by Proposition 3, the x-pinned sets as X operators and
z-pinned sets as Z operators commute with all gauge operators
and belong to the center of the gauge group.

Note that the stabilizer group can be larger than the group
generated by x-pinned sets as X stabilizers and z-pinned sets
as Z stabilizers. That is why in turn it can happen that the
number of logical qubits is strictly smaller than that of the
(x,D − x)-pin code or of the (D − z, z)-pin code from the
same relation F .

The error correction procedure for a gauge code with only
fully X-type or fully Z-type gauge operators is conveniently
performed in two parts. In one part, one measures the X-gauge
operators, reconstructs the syndrome for the X-stabilizers and
uses it to correct Z-errors. In the other part, one measures
the Z-gauge operators, reconstructs the syndrome for the Z-
stabilizers and uses it to correct X-errors.

The advantages of this procedure in the case of gauge pin
codes are two-fold. First, the weight of the gauge generators,
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i.e. the number of qubits involved in each generator, is reduced
compared to the weight of the stabilizer generators making
their measurement easier and less error prone. Second, the
record of gauge operator measurements contains the infor-
mation of the stabilizer measurements with redundancy. To
understand this redundancy consider a x-pinned set and define
k = (D − z) − x. This is the number of additional levels
to pin in order to decompose the x-pinned set into (D − z)-
pinned sets. There are

(
D+1−x

k

)
different ways to choose these

additional levels to pin and therefore that many different ways
to reconstruct the x-pinned set. This redundancy permits a
more robust syndrome extraction procedure which can even
become in some cases single-shot, meaning that the syndrome
measurements do not have to be repeated to reliably decode
[51]. Meaning that even when the measurements are noisy one
can measure the gauge operators only once and process the
obtained information to reduce the noise enough and proceed
with the computation.

D. Transversality

We examine here pin codes in regards of Prop. 8 and
Prop. 9. Nicely, x-pinned sets always have some multi-
orthogonality property.

Proposition 13 (Multi-orthogonality of pinned sets). Let F
be a (D + 1)-ary pin code relation. For any x ∈ {1, . . . , D},
the x-pinned sets seen as binary vectors in FF2 generate a
bD/xc-orthogonal space.

Proof: Given x ∈ {1, . . . , D}, we have that x · bD/xc ≤
D. Hence by Prop. 1, the intersection of bD/xc (or less)
x-pinned sets is either empty or a pinned sets with at most
D pins. This pinned set with at most D pins can always be
decomposed by Prop. 2 into a disjoint union of D-pinned sets
and hence has even weight as F is a pin code relation as per
Def. 3.

Interestingly it is also not too difficult to find pin code
relations for which the 1-pin sets are D-even. For example,
using a chain complex whose boundary map have even row
and column weights and is regular enough will typically
suffice.

One could also hope for the second part of Proposition 9 to
always holds. Unfortunately it holds only partially in general.

Proposition 14 (X-logical intersection with X-stabilizers).
Let F be a (D + 1)-ary pin code relation, and consider the
associated (x, z)-pin code for x ∈ {1, . . . , D} and z = D−x.
Then for any one X-logical operator, L, and k X-stabilizer
generators, Gj , with k ≤ bD/xc − 1,∣∣∣L ∧G1 ∧ · · · ∧Gk

∣∣∣ = 0 (mod 2).

Proof: Indeed, using Prop. 1, the overlap between
bD/xc− 1 (or less) different x-pinned sets is either empty or
a pinned set with at most D−x = z pins. Hence by Prop. 2, it
can be decomposed into z-pinned sets, i.e. Z-stabilizers which
have even overlap with X-logical operators by definition.

Overlaps involving more than one X-logical operator do not
have such guarantees in general.

Focusing on the case ` = 3, given the two propositions
above the only problematic conditions are the ones of type∣∣∣Lj ∧Lk ∧G`

∣∣∣ = 0 (mod 2). (58)

In order for these terms to hold, one has to have that the
intersection of two X-logical operators is always a Z-logical
operator. This is the case for example for euclidean color
codes.

In Sections V-C and V-D we show how to use the multi-
orthogonality properties of pinned-sets to get quantum codes
with interesting transversal gates from any pin code relation.
Another approach would be to restrict the pin code relations
in order to devise subfamilies of quantum pin codes for which
the condition (58) is fulfilled.

E. Boundaries and free pins

The geometrical notion of colored boundaries existing for
color codes can also be generalized to pin codes. The way to
do this is to introduce a specific type of pins which will be
called free pins.

Consider the chain complex approach to building pin code
relations presented in Sec. II-F3. In this construction, it is
sometimes necessary to add a rank-0 pin b0 (in the level L0)
or a rank-D pin bD (in the level LD) in order to ensure that
the relation F is a pin code relation. The new pin b0 is linked
to all the rank-1 pins which previously where linked to an odd
number of rank-0 pins. So even if the initial boundary relation
is sparse, the number of connections to b0 may be large. As
such the 1-pinned set pinned by this new pin b0 potentially
contains a large number of flags. To keep the size of the 1-
pinned sets under control it is then preferable to not allow to
pin b0 alone. That is why we then call b0 a free pin. Any
of the D + 1 levels can contain free pins, the chain complex
construction potentially put one in L0 and one in LD. The
rule for a larger collection of pins is that if it contains at least
one non-free pin then it can define a valid pinned set, but if
it is composed of only free pins then it is disregarded. Finally
consider when a flag is only composed of free pins, in that case
this flag will not enter any valid pinned sets. Hence such flags
must also be discarded. This is summarized in the following
definition.

Definition 7 (Pin code with free pins). Let F be a pin code
relation defined on D+ 1 levels of pins. Let some of the pins
be labeled as free pins. Let x and z be two natural integers
such that x+z ≤ D. The associated (x, z)-pin code is defined
as follows: The elements of F containing at least one non-free
pin are associated with qubits. All the x-pinned sets defined
by a collection of pins containing at least one non-free pin are
associated with X-stabilizer generators. All the z-pinned sets
defined by a collection of pins containing at least one non-free
pin are associated with Z-stabilizer generators.

As examples we give a representation of Steane’s J7, 1, 3K
code and the J4, 2, 2K code as a (1, 1)-pin codes with free pins
in Figure 6.

One idea to introduce free pins in every level could be
to consider boundary map matrices which are almost sparse
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Fig. 6. (Left) Representation of Steane’s J7, 1, 3K code as a (1, 1)-pin code
from a chain complex with free pins. There are three levels represented by the
colors red green and blue. The free pins are represented between parenthesis.
There are 8 flags (all the paths going down from top to bottom) but one
is composed only of free pins hence only 7 qubits. There are three non-
free pins defining three 1-pinned sets for both X- and Z-stabilizers. (Right)
Representation of the J4, 2, 2K code as a (1, 1)-pin code with free pins. There
are four flags (all the paths going down from top to bottom), and a single
non-free pin defining the X- and Z-stabilizer both containing the four flags.
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Fig. 7. (a)J8, 2, 2K color code on the projective plane based on octahedral
symmetry. The octahedron is topologically a sphere which can be turned into
a projective plane by identifying opposite sides. (b) J60, 2, 6K color code on
the projective plane based dodecahedral symmetry. (c) 3-colored hyperbolic
tiling with edges and vertices forming a 3-valent graph.

except for a small number of row or columns which could be
dense. The basis element corresponding to these would then
be labeled as free pins in the construction of the pin code
relation.

Note that in the presence of free pins, the proof of Prop. 10
can only be reproduced when at least one level selected by the
chosen type T does not contain any free pin. So as long as
at least one level does not contain any free pin, it still holds
that all logical operators have even weight. When all levels
contain at least one free pin then the code may contain odd
weight logical operators.

The notion of free pins carries over straightforwardly to
gauge pin codes.

V. EXAMPLES AND APPLICATIONS

A. Coxeter groups, hyperbolic color codes

In Section II-F1 we discussed the construction of pin codes
from tilings and Coxeter groups. Well-known examples of such
code families are color codes on euclidean tilings such as the
hexagonal tiling in 2D and the bitruncated cubic honeycomb
in 3D. Using the Wythoff construction we can construct tilings
which fulfill right pin code condition and therefore have the
correct colorability for defining a color code.

Besides the known euclidean examples we can consider
tilings of more exotic spaces. For the projective plane (cf. [7])
there exist two tilings based on the Wythoff construction: The
first is based on the symmetry group of an octahedron. It
is an J8, 2, 2K -code where the check generators correspond

to one octagon, two red squares and two green squares, see
Figure 7a. Note that this code does not quite fit the pin code
definition because it contains distinct qubits which would be
described by the same flag, for example (d, c, a) on edge 1.
This degeneracy explains why it escapes Prop. 11. The second
is based on the icosahedral symmetry group, which gives a
a J60, 2, 6K -code with checks given by 6 decagons (blue),
10 hexagons (green) and 15 squares (red), see Figure 7b.

Color codes based on two-dimensional hyperbolic tilings
were first considered in [52] were 3-colorability and 3-valence
was postulated (see Figure 7c for an example). The Wythoff
construction of Section II-F1 allows us to obtain color codes
from arbitrary regular tilings of closed hyperbolic surfaces.
To define a family of closed surfaces one needs to com-
pactify the infinite lattice as explained in [53]. There are
infinitely many regular tilings of 2D hyperbolic space. The
lowest weight achievable with our construction is 4.8.10,
meaning that checks are squares, octagons and dodecagons.
The smallest code in this family is J120, 10, 6K based on a non-
orientable hyperbolic surface (cf. Table 3.1 in [54]). Another
small example is a J160, 20, 8K code with stabilizer checks of
weight 4 and 10 based on a 4.10.10 tiling of an orientable
hyperbolic surface of genus 10.

Using the construction outlined in Section II-F1 we can
consider any D-dimensional hyperbolic reflection group and
obtain a tiling which is D + 1-colorable and which has a
D+ 1-valent graph. In particular, we can consider hyperbolic
tilings in 3D which are 4-colorable. There exist four regular
hyperbolic tilings in 3D of which two are self-dual tilings
and two related by duality. The self-dual ones are a tiling
by dodecahedra, denoted {5, 3, 5}, and one by icosahedra,
denoted {3, 5, 3}. The other are a tiling by cubes {4, 3, 5}
and its dual {5, 3, 4}. All of these give rise to codes with
maximum stabilizer weight 120. Here we will focus on the
{5, 3, 5}-tiling, which is the unique self-dual tiling of space
by dodecahedra where five dodecahedra are placed around an
edge. Performing the Wythoff construction on a family of
closed manifolds, all equipped with a {5, 3, 5}-tiling yields
a code family where checks are of weight 20 and 120.
The weight of the stabilizer is given by the order of the
subgroup of the full reflection group which is generated by
all except for one of the generators. The smallest example is
a J7200, 5526, 4K code.

B. Pin codes from chain complexes

In Sec. II-F3 we showed how from any F2 chain complex
one can construct a pin code relation. In this section we
explore some specific examples of chain complexes and the
corresponding pin codes.

One way to obtain arbitrary length chain complexes is to use
repeatedly the hypergraph product with a classical code. The
hypergraph product was introduced in [15] as a way to turn any
two classical codes into a quantum code. This product can be
viewed as the tensor product of chain complexes, which takes
two length-2 chain complexes to a length-3 chain complex.
More generally the product of a length-k1 and length-k2 chain
complexes yields a length-(k1 + k2 − 1) chain complex. This
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generalization and its characteristics has been studied in the
context of homological codes [16], [55], [56]. We consider
here the approach of [56] but look at the resulting chain
complexes from the point of view of pin codes.

The idea goes as follows: consider A, a F2 chain complex
of length k, characterized by F2-vector spaces (Aj)0≤j≤k−1

and (k − 1) boundary maps ∂Aj : Aj → Aj−1, obeying (21).
We now take the product with a chain complex of length 2.
Note that any two vector spaces, B1 and B0 and any linear
map between them ∂B : B1 → B0 defines a length-2 chain
complex. The product, C = A ⊗ B, is defined by (k + 1)
vector spaces Cj for 0 ≤ j ≤ k,

Cj = (B1 ⊗Aj−1)⊕ (B0 ⊗Aj), (59)

with the convention that A−1 and Ak are both the zero vector
spaces. And the k boundary maps, ∂Cj : Cj → Cj−1, are defined
as

∀u = v ⊕ w ∈ (B1 ⊗Aj−1)⊕ (B0 ⊗Aj)
∂Cj (u) = (1B1

⊗ ∂Aj−1 + ∂B ⊗ 1Aj−1
)(v) + (1B0

⊗ ∂Aj )(w).
(60)

One straightforwardly checks that the ∂Cj are valid boundary
maps, i.e. obeying (21).

Repeatedly taking the product with a length-2 chain com-
plex therefore increase the length of the resulting chain com-
plex each time by one. Moreover any binary matrix defines a
valid F2 chain complex of length 2 so this approach allows to
explore numerically many pin codes.
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Fig. 8. Plot of the Jn, k, dK parameters of pin codes from chain complexes
described in this section. One application of the hypergraph product on 3×4
binary matrices yields the D = 2 pin codes represented by ‘×’ and two
applications the D = 3 pin codes represented by ‘+’. The D = 6 pin codes
described in Table. VI are represented by stars. The colors indicate the distance
of the codes. The dashed and dotted lines represent the rates k/n = 1/2 and
k/n = 1/8, respectively.

We have looked at small binary matrices, up to 3× 4, and
their self product to form pin code relations with D = 2
and D = 3. We plot in Fig. 8 the code parameters obtained
Jn, k, dK. The distance is upper-bounded by numerically find-
ing instances of low-weight logical operators. Strinkingly these
codes seem to show a general trend of high encoding rate k/n
for a small distance. Indeed most of them are around 1/2 rate
but just distance 4 which is the lower bound guaranteed by
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Fig. 9. Plot of the maximum X-stabilizer weight of the pin codes from chain
complexes described in this section.

Prop. 11. A few of them seem to reach distance 6 or 8 but
for significantly smaller rates. The codes yielding no logical
qubits are not displayed in this plot. Note that this procedure
is far from generating all chain complex of a given length.

As a comparison note that in [57] one can find codes
with parameters such as J104, 52, 10K, J104, 26, 15K or
J104, 13, 19K. This is to illustrate that even at these high rates
(1/2, 1/4 and 1/8) the distance can be higher. Although these
codes have larger stabilizer weights.

We have also looked at a few pin code relations for D = 6
using small even size levels and the complete relation for F .
Three notable examples are presented in Table. VI. When
writing 2×6 × 4 we mean that 6 of the levels contain each 2
pins and the last one contains 4. Since we use the complete
relation, the number of flags and the size of the pinned sets are
easily computed as a product of the size of some levels. The
number of logical qubits is computed numerically and for the
distance we numerically found low-weight logical operators
matching the lower bound of Prop. 11. All these examples
give a good indication that the lower bound on the distance is
tight.

TABLE VI
PARAMETERS OF SOME D = 6 PIN CODES USING THE COMPLETE
RELATION DESCRIBED BY THE SIZE OF THE D + 1 = 7 LEVELS.

(x, z) 2×6 × 4 2×5 × 4×2 2×4 × 4×3

(2, 4) J256, 30, 8K J512, 120, 8K J1024, 358, 8K
(3, 3) J256, 40, 16K J512, 160, 16K J1024, 472, 16K

We also represent the maximum weight of the X-stabilizers
for these codes in Fig. 9. When checking for transversal phase
gates for ` = 3, most of the codes examined above do not
satisfy (58).

C. Puncturing triply-even spaces

If pin codes in general are not guaranteed to fulfill all the
requirements of Prop. 8 or Prop. 9, their stabilizers always
form multi-orthogonal spaces, see Prop. 13. This is directly
useful as multi-orthogonal spaces together with puncturing
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Fig. 10. Some possible variations on Reed-Muller codes seen as pin codes
on a chain complexes, by modifying the ends of the chain complex, the left
most chain complex is used to define Reed-Muller codes. Each row of dots
represent a level and the relation F is given by all paths going down from
top to bottom. Example of dimension 6 are shown here, making variations on
RM(2, 7). The number of flags is written above each chain complex and an
identification number is given below.

techniques can be used to construct codes fulfilling Prop. 9
(or Prop. 8 if the space is multi-even), see Section III-C.
We focus here on 3-even spaces (Def. 5) and 3-orthogonal
spaces (Def. 6) also referred to as triply-even spaces and tri-
orthogonal spaces respectively.

In [37], the authors use Reed-Muller codes, RM(r,m), to
obtain initial tri-orthogonal spaces (also triply-even). Viewed
as generated by pinned-set, RM(r,m) comes from a simple
chain complex, represented on the left of Figure 10, see
also Section II-D. This chain complex can be modified in
several ways to obtain different pin codes. We tried different
modifications in the case D = 6, they are represented in
Figure 10. For all of them the 2-pinned sets generate a triply-
even space.

We tried to randomly puncture the pin codes obtained from
these chain complexes; similarly to [37] but without deploying
the more advanced techniques. We were able to find a few
interesting codes this way, see Table VII, which can be used
to distill T magic states. The obtained parameters γ, see (41),
are similar but do not improve on the small examples found
in [37].

TABLE VII
SOME TRI-ORTHOGONAL CODES FOUND BY RANDOMLY PUNCTURING THE

PIN CODES REPRESENTED IN FIGURE 10.

code # initial n punctured code: Jn, k, dK γ =
ln(n/k)

ln d

0 128 J116, 12, 4K 1.64

1 192 J175, 17, 4K 1.68

2 256 J236, 20, 4K 1.78

3 288 J261, 27, 4K 1.64

4 512 J466, 46, 4K 1.67

TABLE VIII
ALTERNATIVE CONSTRUCTION OF CSS CODES WITH TRANSVERSAL T

IMPLEMENTING SOME CIRCUIT OF CCZ GATES ON THE LOGICAL LEVEL.

D = 5, x = 2 D = 8, x = 3

J64, 15, 4K J512, 84, 8K
J96, 23, 4K J768, 126, 8K
J128, 31, 4K J1024, 168, 8K
J144, 35, 4K J1152, 188, 8K
J256, 63, 4K J2048, 332, 8K

D. Logical circuits of CCZs

It is also possible to use the property of multi-orthogonality
of pinned sets on a given pin code relation in a slightly
different way. The construction proposed for Reed-Muller
codes in [23] can be directly adapted to general pin code
relations.

Proposition 15. Let ` > 1 and x > 1 be two integers and F
be a pin code relation on x` sets (D = x`−1). The CSS code
defined by (x− 1)-pinned sets as X-stabilizer generators and
x-pinned sets as X-logical operators satisfies Proposition 9.

Proof: We need for the condition (i) to verify first that
the (x− 1)-pinned sets form a `-orthogonal space. According
to Proposition 13, they form a

⌊
D
x−1

⌋
-orthogonal space and

we can compute⌊
D

x− 1

⌋
=

⌊
x`− 1

x− 1

⌋
=

⌊
`+

`− 1

x− 1

⌋
≥ `. (61)

Hence (i) is satisfied. For the condition (ii) we use the
intersection property (Prop. 1): Taking two integers s and t
such that s ≥ 1, t ≥ 1 and s + t ≤ `, the intersection of s
x-pinned sets with t (x − 1)-pinned sets, gives a pinned sets
with at most (` − 1)x + (x − 1) = x` − 1 = D pins. Since
F is a pin code relation D-pinned sets are always even. This
proves (ii).

Note that the parameters D and x where chosen not only to
obtain a code guaranteed to satisfy Prop. 9 but also where the
logical operation realized belongs strictly to the level ` of the
Clifford hierarchy because some intersections of ` X-logical
operators will be exactly one. Indeed X-logical operators are
x-pinned sets so intersecting ` of them can give (among other
things) any pinned set with x` = D+ 1 pins which are either
empty or singletons of one flag.

We can for example adapt the pin code relations presented
in Fig. 10 to have the correct dimension D by inserting or
removing levels of size 2 in the middle of the chain complexes
and look at what code parameters they give. These parameters
are compiled in Table. VIII, for D = 5 we remove the middle
level and for D = 8 we add two levels of size 2 compared to
Fig. 10. All these codes support the transversal T and up to a
Clifford correction the logical operation implemented is some
circuit of CCZs characterized by which triple of X-logical
operators have an odd overlap.

VI. DISCUSSION

Quantum pin codes form a large family of CSS codes which
we have just begun to explore. These codes can be viewed as
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a vast generalization of quantum color codes and the notions
of boundaries, colored logical operators and shrunk lattices
all generalize to pin codes. Pin codes also have a gauge code
version with potentially similar advantage as the gauge color
codes. The main property of pin codes is that their X- and Z-
stabilizers form multi-orthogonal spaces. We have presented
two concrete ways of constructing pin codes and numerically
explored some examples. Several aspects of pin codes merit
further studying.

First is finding restricted families with good parameters and
LDPC property. Exploring other finite groups with even order
generators, other families of sparse chain complexes or finding
other constructions of pin code relations altogether would help
figuring out the achievable parameters for pin codes.

Second one concerns logical operators. Understanding if
some conditions on the pin code relation F can make the
logical operators fulfill the second condition of Prop. 8 or
Prop. 9 would help in the design of codes with transversal
gates. Also, logical operators and boundaries of 2D color codes
have a richer structure than the colored logical operators and
boundaries that we have explored, it would be interesting to
generalize to pin codes with D = 2 all the ones presented
in [58], as well as for larger D. Moreover, the structure
of colored logical operators plays a key role in decoding
color codes [46]–[49]. Understanding if it can help in finding
efficient decoders for more general pin codes is a natural
question.

Finally more extensively exploring tri-orthogonal spaces
obtained from pin code relations and puncturing them to obtain
good T distillation protocols as well as using them as the
basis for T -to-CCZ or other protocols seems promising, as
distilling magic state will constitute a sizable fraction of any
fault-tolerant quantum computation.

APPENDIX A
PROOFS OF SECTION III

This Appendix contains examples and proofs omitted in
Section III.

We first restate and prove Lemma 1:

Lemma 1 (Binary addition and integer addition). Denote
binary addition with ⊕ and integer addition with + or

∑
.

Given r binary vectors w1, . . . ,wr ∈ Fn2 it holds that
r⊕

m=1

wm =

r∑
s=1

(−2)s−1
∑

1≤m1<···<ms≤r

s∧
i=1

wmi . (62)

Similarly for their Hamming weights∣∣∣∣∣
r⊕

m=1

wm

∣∣∣∣∣ =

r∑
s=1

(−2)s−1
∑

1≤m1<···<ms≤r

∣∣∣∣∣
s∧
i=1

wmi

∣∣∣∣∣ . (63)

It can be useful to work out an example for (62) and (63),
here is one with r = 3 and n = 4

0
0
0
1

⊕


0
0
1
1

⊕


0
1
1
1

 =


0
1
0
1

 , (64)

which can also be computed in the following way


0
0
0
1

+


0
0
1
1

+


0
1
1
1


 (65)

−2




0
0
0
1

+


0
0
0
1

+


0
0
1
1


 (66)

+4


0
0
0
1

 =


0
1
0
1

 . (67)

Proof: Since the Hamming weight of a binary vector is
simply the integer sum of its components we immediately have
that (62) ⇒ (63). Moreover since the operations in (62) are
component-wise operations it is sufficient to prove it for r
binary numbers w1, . . . , wr ∈ F2. One directly checks that
for r = 2

w1 ⊕ w2 = w1 + w2 − 2w1 ∧ w2. (68)

By induction suppose that (62) holds for some r ≥ 2, then we
have

r+1⊕
m=1

wm =

(
r⊕

m=1

wm

)
⊕ wr+1

=

(
r⊕

m=1

wm

)
+ wr+1 − 2

(
r⊕

m=1

wm

)
∧ wr+1

=

r∑
s=1

(−2)s−1
∑

1≤m1<···<ms≤r

s∧
i=1

wmi + wr+1

− 2

 r∑
s=1

(−2)s−1
∑

1≤m1<···<ms≤r

s∧
i=1

wmi

 ∧ wr+1

=

r+1∑
s=1

(−2)s−1
∑

1≤m1<···<ms≤r+1

s∧
i=1

wmi , (69)

where we first used (68) then the induction hypothesis then
the distributivity of ∧.

We can now restate and prove Proposition 6:

Proposition 6 (Characterization of multi-even spaces). Given
` ∈ N, a subspace C ⊂ Fn2 is `-even if and only if
for any integer s ∈ {1, . . . , `} and any s-tuple of vectors,
(v1, . . . ,vs) ∈ Cs, it holds that∣∣v1 ∧ · · · ∧ vs

∣∣ = 0 (mod 2`−s+1). (70)

Proof: The characterization given in Proposition 6 implies
the one given in Definition 5, hence it suffice to prove the
converse. The case s = 1 is trivially verified, now suppose that
for some 1 ≤ s < ` one has for all t ≤ s and all (v1, . . . ,vt) ∈
Ct ∣∣v1 ∧ · · · ∧ vt

∣∣ = 0 (mod 2`−t+1). (71)
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Take s + 1 vectors (v1, . . . ,vs+1) ∈ Cs+1, using (63) from
Lemma 1 we can write

(−2)s
∣∣v1 ∧ · · · ∧ vs+1

∣∣ =

∣∣∣∣∣
s+1⊕
m=1

wm

∣∣∣∣∣
−

s∑
u=1

(−2)u−1
∑

1≤m1<···<mu≤s+1

∣∣∣∣∣
u∧
i=1

wmi

∣∣∣∣∣
=0− 0 (mod 2`), (72)

using (71) to verify the divisibility by 2` of the second part.
Hence we have∣∣v1 ∧ · · · ∧ vs+1

∣∣ = 0 (mod 2`−s). (73)

Finally we restate and prove Proposition 7:

Proposition 7 (multi-even/orthogonal space verification on a
basis). It is necessary and sufficient to verify (26) or (29) on a
basis to ensure that a space is multi-even or multi-orthogonal
respectively.

Proof: As basis vectors belong to the space it is im-
mediate to check that they necessarily verify (26) or (29)
respectively, if the space is multi-even or multi-orthogonal
respectively. The sufficient proof for both the multi-even and
multi-orthogonal cases relies on decomposing vectors over the
basis B =

{
b1, . . . , bm

}
which verifies the property (either

(26) or (29)) and using (28) several times. Pick s ∈ {1, . . . , `}
and s vectors

(
v1, . . . ,vs

)
∈ Cs. Each of the vectors vj can

be decomposed over B:

vj =

pj⊕
i=1

bk
j
i , (74)

where pj is the number of basis elements in the decomposition
of vj over B and the kji their indices. We can now rewrite the
Hamming weight of the element-wise product by using the
decomposition of the vj and (28) one after the other. This is
done in (78).

Considering expression (78), the case of the multi-
orthogonal property is the most straightforward. In this case we
assume that (29) holds for the elements of B and choose s = `.
Elements of the sum in (78) with ` basis vector in the element-
wise product will be even by (29) and the other elements
have a prefactor of two. This proves that

∣∣v1 ∧ · · · ∧ v`
∣∣ = 0

(mod 2) and that the space is `-orthogonal.
For the case of the multi-even property, we assume that

(26) holds for the elements of B. Elements of the sum in (78)
where

∑
qj ≤ ` have a Hamming weight for the element-wise

product which is zero modulo 2`−
∑
qj+1 by (26). Moreover

they are multiplied by 2
∑
qj−s and hence are zero modulo

2`−s+1. The other terms have a prefactor of 2`−s+1. Hence∣∣v1 ∧ · · · ∧ vs
∣∣ = 0 (mod 2`−s+1) and the space is `-even.

APPENDIX B
QUASI-TRANSVERSALITY

In this appendix we detail the three weighted polynomial in
(36), (37) and eq:Flxy which determine the transversal action

of R` on code states. Using identity (27) and denoting Lm as
the mth row of matrix L and Gn as the nth row of matrix G
we can write

F`(x) = |xL|

=
∑̀
s=1

(−2)s−1
∑

1≤mi≤k

∣∣∣∣∣
s∧
i=1

Lmi

∣∣∣∣∣
s∏
i=1

xmi , (75)

F ′`(y) = |yG|

=
∑̀
t=1

(−2)t−1
∑

1≤nj≤r

∣∣∣∣∣∣
t∧

j=1

Gnj

∣∣∣∣∣∣
t∏

j=1

ynj , (76)

F ′′` (x,y) = −2 |xL ∧ yG| =∑̀
s+t=2
s≥1, t≥1

(−2)s+t−1
∑

1≤mi≤k
1≤nj≤r

∣∣∣∣∣∣
s∧
i=1

Lmi
t∧

j=1

Gnj

∣∣∣∣∣∣
s∏
i=1

xmi

t∏
j=1

ynj .

(77)

One can readily see that these are all correctly weighted
polynomial, i.e. with a prefactor of 2s−1 in front of monomials
of degree s, and their coefficients are given by the size of the
overlaps between rows of the matrices L or G.

We can check that (40) follows from Proposition 9. Indeed,
assuming Prop. 9 holds, then (i) enforces that all coefficients∣∣∣∧tj=1 G

nj
∣∣∣ are divisible by 2 and (ii) that all coefficients∣∣∣∧si=1 L

mi
∧t
j=1 G

nj
∣∣∣ also are divisible by 2. Hence we can

pull out a factor 2 in front of everything while keeping the
correct prefactor in front of each monomial.
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