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The objective of the work described in this paper is to set up and validate an adjoint based method
for blade shape optimisation aiming at propeller noise reduction. As a first step toward a comprehen-
sive propeller noise optimisation, the present study focuses on the loading noise of a single propeller
isolated and without incidence. In this respect, an acoustic objective function is derived, based on the
Hanson-Léwy steady loading noise formulation. After defining this function, the first step is to derive
its sensitivities to mesh and aerodynamic field parameters. Once implemented in the ONERA adjoint
based optimisation procedure, the acoustic function predictions are compared to a classical Ffowcs
Williams and Hawkings approach, and the sensitivities are validated by comparison with the finite
differences method.
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1. Introduction and motivation

Once the blade shape of a propeller has been designed to comply with targeted aerodynamic perfor-
mances, reducing its noise generally requires parameter modifications which are antagonistic with the
aforementioned performances. For instance, reducing the diameter or the regime mitigates the emitted
noise thanks to the tip Mach number reduction, but requires an adaptation of the blades pitch angle to
maintain sufficient thrust. Thus, the acoustic mitigation is constrained by the aerodynamic performances.
In addition, the acoustic and aerodynamic impacts of local blade shape modifications are difficult to fore-
see, and a trial-and-error approach based on Computational Fluid Dynamics (CFD) and Computational
Aero-Acoustics (CAA) simulations is time consuming. Therefore, blade shape optimisation based on
aero-acoustic criteria appears as an alternative approach to this engineer-made design, since modern op-
timisation techniques may quickly lead to non-contemplated solutions. This is why in this paper we focus
on a gradient optimisation with adjoint method applied to propeller noise reduction.

More exactly, this work deals with the case of an isolated single propeller without incidence, since it
provides an appropriate framework to validate the method. Indeed, the steady behavior of the flow in the
rotating blade frame allows first to rely on steady CFD and adjoint strategies, and then to compute the
radiated tonal noise with a frequency domain approach. In this respect, we define an acoustic objective
function based on the Hanson-Léwy steady loading noise formulation. Thus, the objective of the present
work is to set up and validate this method, based on the RANS adjoint solver of ONERA CFD code elsA
[1, 2].
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The first part of this paper addresses the theoretical aspects of the work, first briefly presenting the
adjoint method, and then detailing the formulation of the acoustic objective function and how its sen-
sitivities to the mesh and flow field are obtained. The second part introduces the propeller application
case and its numerical set up, and the third section demonstrates the method validity, checking first the
acoustic function reliability, and then its sensitivities evaluation.

2. Aeroacoustic adjoint for propeller noise

2.1 The discrete adjoint method

Aerodynamic shape optimisation consists in looking for a set of shape parameters α = (α1, ..., αnf
)

that minimizes a given objective function J under nc constraint functions Gk, with k ∈ [1, nc]. These
objective and constraints functions depend on the geometry and the aerodynamic flow. The latter is de-
scribed by the discretized equations of fluid mechanics, of residual R(W,X) = 0, where W represents
the aerodynamic state variables, and X the mesh of the computational domain. Gradient-based optimi-
sation methods consist in iteratively compute the flow W for a given shape α, evaluate the functions and
their gradients with respect to this shape dJ/dα and dGk/dα, define a new shape parameter vector by
applying a descent algorithm, and finally mesh a new shape and a new computational domain. There are
several methods to compute the above gradients, the discrete adjoint being one of them. It relies on the
linearised equation:

dJ

dα
=
∂J

∂X

dX

dα
+ λT

(
∂R

∂X

dX

dα

)
(1)

with the adjoint vector λ such that λT = − ∂J
∂W

(
∂R
∂W

)−1, i.e. solution of the discrete adjoint equation:

∂J

∂W
+ λT

∂R

∂W
= 0 (2)

The evaluation of the gradient, based on Eqs. (1) and (2), requires the knowledge of the terms ∂J
∂X

and ∂J
∂W

, the function sensitivities to the mesh and flow respectively. They can be explicitly linearised, as
is done for the aeroacoustic function in Section 2.2.3. The mesh sensitivity to the shape parameters ∂X

∂α

may be obtained either numerically or with finite differences, depending on the meshing tools used. An
extensive description of the discrete adjoint approach can be found in [3].

2.2 The propeller noise function

Aerodynamic sound origins are usually splitted in three terms: thickness noise, related to the volume
displacement of moving solid boundaries, loading noise, due to the forces exerted by solid surfaces on
the fluid, and quadripolar noise, generated by sources in the flow. In the case of an isolated subsonic
propeller, noise is mainly tonal (in opposition to broadband noise) and due to both thickness and loading
noise. In the present work, as a first step toward an exhaustive propeller acoustic optimisation, it has been
chosen to focus only on the latter noise component. This choice is maintained by the fact that on modern
designs, and in most operating conditions, loading noise is the dominant source. Moreover, the linear
nature of the three type of sources (see [4], Eq. (3.6) for instance) allows to consider the other terms in
future works.

2.2.1 Steady loading noise formulation

Let us consider an orthonormal frame Oxyz in translation at uniform velocity U = c∞M along the
x axis, c∞ being the speed of sound and M the Mach number. According to [5], the loading noise sound
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pressure at a point −→x (x1, x2, x3) at time t is the following:

p(−→x , t) =

∫
S

∫
τ

Fi
∂G

∂yi
dτdS (3)

where S is the propeller blades surface, τ the emission time, Fi (i = 1,2,3) the components of the force
per surface element exerted on the fluid, −→y (y1, y2, y3) the location of the sources, and G(−→y , τ ;−→x , t) the
Green function in uniform velocity field. This equation may be solved either in the time domain, as in
[5], or in the frequency domain. The latter is selected for this study since it allows to relate the loading
noise to quantities such as thrust and torque, which have been previously linearised and implemented in
the ONERA optimisation chain [6, 7]. Integration of Eq. (3) in the frequency domain has been performed
by Hanson [8] and Léwy [9, 10], which only differ by their choice of reference frame. In the following
we take the Léwy approach, solving the equation in the frame translating with the propeller, though we
refer to the Hanson-Léwy formulation.

For a B blades propeller, rotating at the angular velocity Ω = 2πN in the yOz plane, the Fourier
transform of Eq. (3) leads to the pressure at the harmonic frequencies of the rotation mB, i.e. multiples
of order m of the Blade Passing Frequency (BPF). With a far field assumption, i.e. the observation
distance is large compared to the source dimensions and the emitted wavelength, it is shown in [9] that
the loading noise can be written:

P (mB,−→x ) =
ikB

4πS2
e−ikσ

+∞∑
s=−∞

e−i(mB+s)(φ−π/2).∫
S

[(
MS + x1

β2

)
f
(s)
1 + x2f

(s)
2 + x3f

(s)
3

]
.ei(kA1−mBψc)JmB+s(kA) dS (4)

In this expression the cylindrical coordinates of −→x and −→y are respectivley (d, φ, x1) and (r, ψ, y1), in-
tegration is now over the surface S of a single blade, k = 2πmBN

c∞
is the wavenumber, β =

√
1−M2,

S =
√
x21 + β2 (x22 + x23), σ = Mx1+S

β2 , A = rd
S

, A1 = y1
β2

(
M + x1

S

)
, ψc expresses the chord non-

compactness through the relation ψ = 2πNτ + ψc, Jn is the first kind Bessel function of order n, and
f
(s)
i are the forces harmonics of order s from the Fourier series decomposition of Fi. As stated in the

previous paragraph, it is interesting to replace the latter by introducing the thrust T and torque Q per
surface element. In the blade frame, the force locally exerted by the blade on the fluid is decomposed
into an axial force along the propeller axis, the thrust, a tangential component equal to Q/r and a radial
one. Thus, by decomposing the Fi components in the blade frame and neglecting the radial force, one
can show that the bracketed term in Eq. (4) becomes:

F (s) = −T (s)MS + x1
β2

+Q(s)mBS

kr2
(5)

The Sound Pressure Level (SPL) associated to each tone is then Lp(mB,−→x ) = 10.log
(
prms

2

pr2

)
, with

pr = 2.10−5 Pa the reference pressure and prms =
√

2|P (mB,−→x )| the Root Mean Square amplitude of
the tone.

2.2.2 The acoustic objective function

In order to define the acoustic objective function for the optimisation problem, simplifications are
made thanks to the fact that the propeller is isolated and without incidence. First, as the blade loads
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are steady, the Fourier decomposition of F (s) is limited to the mean term F (0) and the summation over
s can be removed from Eq. (4). Second, knowing that the steady loading noise of a propeller radiates
its maximum noise in the propeller plane, it is chosen to focus the objective function on an observation
point in this plane, i.e. for which x1 = 0. Moreover, this radiation is axisymmetrical, therefore we chose
φ = π/2 for the sake of simplifications. As a result, x2 = 0 and x3 = d. Then, we chose to focus the
objective function on one tone only, the fundamental m = 1 being the best candidate for noise reduction
since in the case of single isolated propeller it dominates the spectrum. However, the index m is kept in
the equations so the optimisation may be tested on the harmonics. Finally, one may notice that once the
observation point and the BPF of interest are fixed, the factors in front of the integration term of Eq. (4)
are constant, so they will not be taken into account in the objective function.

The integration over the blade surface S is obtained from its discretization by the CFD mesh, by sum-
ming the contributions of all the surface cells Si. Thus, taking into account the previous simplifications
leads to an expression proportional to the acoustic pressure of Eq. (4):

Ps(mB,
−→x ) =

∑
Si

ei
ky1M

β2
−mBψc


.JmB(kA)dFi

 (6)

where dFi is the elementary steady loading force, related to the elementary steady thrust dTi and torque
dQi by the relation:

dFi = dTi
MS

β2
− dQi

mBS

kr2
(7)

The definitions of dTi and dQi rely on the axial component of the pressure and friction forces exerted on
the blade surface element and are detailed in [6].

Finally, the goal of the optimisation being to reduce the SPL of the propeller, the acoustic objective
function J is defined in ratio of the square of the tone RMS J = |Ps(mB,−→x )|2, that we prefer to express
with Ps the conjugate of Ps:

J = Ps(mB,
−→x ).Ps(mB,

−→x ) (8)

2.2.3 Mesh and flow sensitivities

As explained in Section 2.1, the adjoint method requires to calculate the objective function sensitivi-
ties with respect to the meshX and flowW . It depends naturally on the analytical expression of J(W,X),
but also on the data format used by the adjoint solver. In the case of elsA, the flow is represented by the
conservative variables (ρ, ρu, ρv, ρw, ρE) at the center of the cells and at the center of surface boundary
cells. Thus, these latter points correspond to the acoustic source locations −→y . Based on the definition
of the acoustic function given by Eqs. (6, 7, 8), one notices that it depends only on the mesh and field
adjacent to the blade surface. More precisely, the exponential and Bessel terms of Ps depend only on the
mesh coordinates at the blade surface, noted Xb(xb, yb, zb), while the elementary force dFi also depends
on the first sheet of mesh in the fluid "parallel" to the surface one, noted Xp, on the field at the center of
the surface boundary cells, noted Wb, and the field in the cells adjacent to the blade surface, noted Wc.
Therefore, the sensitivities of the acoustic function J(W,X) are given by the following differentiations:

∂J

∂Xb/p

=

(
∂J

∂xb/p
;
∂J

∂yb/p
;
∂J

∂zb/p

)T
,

∂J

∂Wb/c

=

(
∂J

∂ρb/c
;
∂J

∂ρub/c
;
∂J

∂ρvb/c
;
∂J

∂ρwb/c
;
∂J

∂ρEb/c

)T
.

These expressions, not detailed here for the sake of brevity, are obtained analytically by hand chain
derivation, with the same method and notations as in [6], in which ∂dFi/∂(X|W ) and ∂dQi/∂(X|W )
have already been developped. It is then implemented in the in-house tool HeliOpt.
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3. Propeller noise problem

3.1 Configuration

Table 1: Propeller cruise condition characteristics.

Parameter Value
Number of blades B 5
Flight Mach number M 0.50
Rotation regime [rpm] 1500
Thrust coefficient CT 0.22
Static pressure p∞ [Pa] 26436.3
Sound velocity c∞ [m.s-1] 299.463

The propeller used in this work cannot be
shown and only few details can be given for con-
fidentiality reasons. It is a full scale five blades
puller propeller designed for short-range flight air-
crafts. In the present case, the operating condition
is a cruise flight without incidence, for which some
data is provided in Table 1. The propeller is iso-
lated, however the geometry includes the spinner
and the hub.

3.2 Numerical set up

The CFD simulations rely on ONERA’s finite volume solver elsA [11]. Since the present case is
axisymmetrical, it allows to limit the computational domain to one blade channel of azimuthal extent
2π/B, as illustrated in Fig. 1. As already stated, the flow is steady in the blade frame, therefore the
computations are performed in this rotating frame by solving the steady compressible Reynolds-Averaged
Navier-Stokes (RANS) equations. The mesh is built with structured full matching multiblocks, extending
10R up and downstream from the blade pitch axis and radially,R being the blade radius. The whole mesh
is approximately 6 million points.

Figure 1: Mesh blocks of the CFD domain

The RANS equations are closed using the
Spalart-Allmaras turbulence model [12]. The rea-
son for chosing this model is that it is so far the
most advanced turbulent model that has been lin-
earised in the elsA adjoint solver, and it is desir-
able to apply the same numerical schemes in both
CFD and adjoint solvers to ensure the optimisa-
tion process robustness. The convective fluxes are
discretized with a Roe upwind scheme [13] with
MUSCL extension to the second order and a van
Albada limiter [14]. The diffusive fluxes are dis-
cretized using a second order centered scheme.
The time marching scheme is a first order back-
ward Euler.

4. Method validation

4.1 Acoustic function

As a first step toward validation of the optimisation strategy, the loading noise function implemen-
tation has to be validated. For that purpose, the Ffowcs Williams and Hawkings method (FWH) is
considered as a reference, using the well validated in-house code KIM [15], based on blade pressure
extracted from the CFD. The acoustic function is not directly comparable to the Sound Pressure Level
obtained by FWH, since it is a simplified form of the Hanson-Léwy SPL (cf. Section 2.2.1). Therefore,
the latter is considered rather than J in order to perform such comparisons. Directivities along a semi-arc

ICSV26, Montreal, 7-11 July 2019 5
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at 73.8R in a plane perpendicular to the propeller one are shown on Fig. 2. In the downstream direction,
i.e. over θ = 90◦, both formulations present similar directivities whatever the tone frequency, with an
underestimation by Hanson-Léwy between 1 and 2 dB. Below 90◦, it overestimates the FWH predictions
up to 17 dB. The far field hypothesis made on the Hanson-Léwy formulation is respected, thus it cannot
be the cause of such large differences, and it seems unlikely that the radial forces on the blade, which are
neglected, can have such an impact. These discrepancies are still investigated. However, one may note
that the BPF levels at θ = 90◦, which has been chosen as the noise level to be evaluated by the J function
and reduced through the optimisation, are in satisfying agreeement with a 0.9 dB difference.

The SPL at this particular tone and direction is further investigated. Three shape parameters of blade
profile, sweep, chord length and maximum thickness, are modified in order to induce a local blade de-
formation at 0.75R. Each deformation produces a new blade geometry, which is simulated by CFD
and acoustically evaluated with KIM and the acoustic function J . Figure 3 presents the SPL variations
compared to the original blade shape for six deformation cases. Although the noise variations are very
small (below 0.1 dB), the acoustic function shows trends similar to the FWH results, thus validating the
acoustic function ability to reflect the loading noise sensibility to shape variations. In other words, if the
optimisation procedure manages to mitigate J , it will mitigate the far field loading noise accordingly.

Figure 2: Far-field loading noise directivities cal-
culated with KIM ( ) and the Hanson-Léwy for-
mulation (♦), for BPF, 2BPF and 3BPF.

Figure 3: Loading noise SPL variations obtained
by KIM and the acoustic function J , at the BPF
and in the propeller plane, with local blade defor-
mations: 0: no deformation; 1-2: sweep ±2◦; 3-4:
chord ±2%; 5-6: thickness ±2%

4.2 Sensitivities

The acoustic function sensitivities ∂J
∂X

and ∂J
∂W

developped in 2.2.3 and computed by HeliOpt are now
compared to values obtained with second order finite differences. The latter consist in adding a local
small perturbation to the field or flow. For instance, for the sensitivity to xb on the node i, we calculate:

∂J

∂xb,i
≈
J(W (α), X+δxb,i(α))− J(W (α), X−δxb,i(α))

2δxb,i
(9)

where X±δxb,i represents the initial mesh X perturbed by ±δxb,i on coordinate xb of node i. The pertur-
bation amplitude is chosen depending on the studied variable local variations. For instance, for xb,i the
δxb,i amplitude has to be very small compared to |xb,i±1 − xb,i|.

Some results are presented on Fig. 4, for the sensitivites to xb and ρb. These values are computed
on grid points or cell centers on the blade surface along a section close to the tip, where load sources
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are known to be the strongest. The results given by the analytical formulae implemented in HeliOpt are
in excellent agreement with those obtained by finite differences. Similar results are obtained for all the
variables ofXb, Xp, Wb andWc, as well as for a section at the blade root (0.36R). Therefore, the acoustic
function sensitivities to the mesh and flow are validated.

(a)
∂J

∂xb
, suction side (b)

∂J

∂ρb
, pressure side

Figure 4: Sample of acoustic function mesh and flow sensitivites calculated by HeliOpt ( ) and finite
differences (♦) on a blade section at 0.82R.

5. Conclusions and prospects

This study proposes a first approach of adjoint based shape optimisation for propeller noise reduction,
and lays the foundation required for that method. The frame of a single subsonic propeller without
incidence offers an ideal case for steady adjoint, and allows to focus the acoustic analysis on steady
loading noise. Therefore the latter is defined as the objective function that must be minimized, and this
acoustic function is derived from the Hanson-Léwy formulation. The sensitivities to the mesh and flow,
required for the adjoint solving, have been linearised by hand. Beforehand performing a blade shape
optimisation based on this objective, the function is compared to FWH noise simulations on a propeller
test case. Although there are discrepancies in the upstream direction, the general trends of the SPL in
the propeller plane are correctly predicted, especially the noise variations when changing local shape
parameters. Then, the function sensitivities are compared to evaluations realised by finite differences,
showing excellent agreement. Therefore, the implementation of the acoustic function and its sensitivities
in the optimisation process are validated.

The next step of this work is to chose relevant shape parameters for the optimisation, and validate
the gradients calculated by the adjoint solver against finite differences. This exercice is currently on
going at ONERA on sweep, chord length and maximum thickness. There are many other approaches for
parametrising this optimisation problem, among which the free-form method [16] is also contemplated
for future work. Then, an optimisation may be performed. However, it requires to define a strategy,
including the above parametrisation, but also the constraint functions, which in the present case are
likely to be the propeller thrust and/or power, since we want to maintain a certain level of aerodynamic
performance. The challenge is to foressee what is the most suited strategy that will lead to the best
optimisation, i.e. maximum noise mitigation with minimum performance loss.
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